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Bootstrapping for Categories 
• Semantic bootstrapping: prototypical 
exemplars for syntactic categories 
(Grimshaw 1979, Pinker 1984)


• Strongly supported by analysis of child-
directed input (Rondal & Cession 1990)


• Distributional learning: young children 
can use distributional regularities, 
including word order and morphology,  
to identify the categories of novel words 
(Brown 1957, Naigels 1990, Mintz 2002, 
Shi & Melacon 2010)


• Proposal: starting from a small set of 
labeled words, iteratively construct 
classifiers on the basis of distributional 
distance with the seeds


• Seed set increases and classifiers go 
from concrete to abstract


Problem 
• Children learn syntactic categories very 

early and use them well (Valian 1986, 
Yang 2013)


• Whether categories are innate (Chomsky 
1965) or emergent (Chomsky 1955), they 
must be acquired from language specific 
distributional information. 


• Popular methods in cognitive modeling 
(e.g., Redington et al. 1996) and 
unsupervised NLP (e.g., Haghighi & Klein 
2006) are computationally expensive yet 
still perform poorly


• Simple and empirically motivated 
methods (Mintz 2000) do not scale well 
(Chemla et al. 2009)


• Need an effective model with better 
connections to language development.
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Two frame-based distance metrics

Method 
From word frames to category frames 
(Reeder et al. 2013, Schuler et al. in press)

Identity 
w∈C, AwB, AxB


⟹x∈C

online with   

developmental support

KL-clusters 
KLAB(w, x) clusterers

⟹x∈argmin(x, C) 

offline still efficient 


(quadratic time)

lexical and category frames 
the_N_is: (the_is, D_is, the_V, D_V)⟹N

seeds

(dog, N)
(ran, V)

(red, A)

Frequent Classifiers 
A_B ⟹ C 

both lexical and category

frames are used

x∈C? 

AxB

YES(x, C)

Results 
All results measured by 1-to-1 accuracy 
compared with baseline (initial seeds only)

Exp 1: Child-directed English 
• 86 salient seed words from the Chicago 
early language corpus (e.g., selected this, 
not the, as a determiner seed)


• 220,000 words mapped to 7 categories


• 25-fold cross-validation


• Accuracy 62.44% (baseline: 20.5%)

Exp 2: WSJ/Chinese Treebanks 
• Haghighi & Klein (2006): large word vectors


• Top 3 words per category (WSJ 45, Chinese 
33): current model uses only text


HK2006 Current CRF

WSJ 68.8% 55.6% 41.3%

CTB 39.0% 46.7% 34.4%

Exp 3: KL-clusters 
• A range of languages (top 1000 words only)


• Hierarchical clustering (Parkes et al. 1998)


• Scoring by types


# seeds Baseline Accuracy

CHILDES 100 10.0% 70.4%

WSJ 89 8.9% 76.2%

CTB 85 8.5% 73.1%

German 35 3.5% 52.9%

Indonesian 34 3.4% 71.8%

Spanish 34 3.4% 62.8%

Conclusion 
• Cognitive and perceptual cues (a la 

semantic bootstrapping) can be 
effectively combined with distributional 
linguistic cues (a la lexical and category 
frames)


• Robustness of results with respect to 
seed selection (few seeds, ambiguity 
allowed)


• The online learning algorithm leads to 
developmental predictions and can 
incorporate other mechanisms of word 
learning (e.g., Lederer et al. 1999, 
Stevens et al. 2016)


• Future work: incorporation of structural 
information (e.g., morphology, non-local 
contexts, abstract syntax) 
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