
COMS 4705: Intro to NLP
John Hewitt

Lec 11: Postraining I
Columbia University

This note is concerned with getting a language model to do what you want it to do.
After the pretraining process, you have a model pθ parameterized by learned parameters
θ which computes the likelihood of all tokens in w ∈ V as continuations of a prefix w<t,
that is, pθ(· | w<t) ∈ R|V|. Now, you have the ambitious goal of constructing a system
based on this model that could attempt a broad range of tasks. We’ll attempt to cover
both the fundamental problems to be solved and core methods.

The language model doesn’t know what you want

In this course so far, we’ve discussed how designing expressive neural networks and
training them on large amounts of data can lead to strong representations, and a
considerable amount of knowledge learned from text. But our interface for interacting
with a pretrained language model is, well, a probability distribution. It doesn’t know
what we want, it just tells us what’s likely to come next.

Consider tokenizing the sequence

What year was Columbia University founded?

with the goal of feeding the tokens to your language model and receiving an answer.
Let this be w1:t, and consider the distribution pθ(· | w1:t). What are the elements of V
that are likely continuations? Is it 1754, the founding year of Columbia? (Or maybe
the tokens 1 or 17 or 175, depending on how the tokenizer tends to tokenize years?) To
reason about this, we think, what kind of text was the model trained on? It was trained
on a large amount of naturally occuring web text. Surely, the model saw Columbia
University was founded in 1754 at some point, but in this question form it might be
more likely that something like the following happens:

What year was Columbia University founded? What year was Princeton
University founded? What…

so a likely first new token is What. Or it might be likely to generate

What year was Columbia University founded? I’ve wondered about this for
a long time…
What year was Columbia University founded? Great question! In this note,
we’ll…

The most likely continuation of your sequence isn’t necessarily the answer, even if the
model stores knowledge about the answer in its weights and representations. After
all, the model doesn’t know what you want, and further questions or follow-up ideas may
just be more probable under its estimate of the internet text probability distribution.

Let’s look at some methods for making it clearer what we’re looking for — leveraging
the distribution (and/or parameters) of our pretrained model to make it more useful for
our goals.

In-context learning, or, pattern repetition

Consider my question about Columbia University’s founding. I can better specify my
goals by showing, through the patterns in the input text, the kind of string I want the
model to produce. Consider the following updated input:

What year was Harvard founded? 1640.
What year was Columbia University founded?

1

COMS 4705: Intro to NLP Lec 11: Postraining I

Before my question about Columbia, I’ve added what is known as an in-context example.
It’s in-context because this whole prefix we’re passing to the model is known as the
context, and it’s an example of an input (the question) and output (the year of founding)
pair that we’re looking for. The phrase in-context learning refers to the model picking
up on the pattern that likely or probable continuations to the sequence are years.

Intuitively, by providing in-context examples, we are reducing the entropy of the space of
outputs, making otherwise-plausible continuations (like following with another related
questions) less likely because they don’t fit the pattern. This is also often used in, e.g.,
multiple-choice question answering, to indicate to the model that it should be producing
the letter:

Let’s set this out in a bit of notation. Consider a dataset of inputs and outputs,
{(x(1), y(i))}ki=1, and a new input x for which we want to query an answer from our
language model. Each input xi and output yi is a string over our vocabulary V. If
we sample from the language model conditioning on x without using our dataset of
examples:

ŷ ∼ pθ(y | x), (1)

we’ve stated that the problem likely arises that ŷ isn’t really a good answer to x, but
instead just a continuation of x. Recall that this might be done by formatting as:

[START] x1 x2 ... xn [SEP]

where [START], [SEP], [END] are all special tokens in V, and we condition on the
sequence up through [SEP] and then sample from the model to generate until [END].

Conditioning on some examples from our dataset in-context, also called few-shot prompt-
ing, is:

ŷ ∼ pθ

(
y | x, (x(1), y(1)), . . . , (x(k), y(k))

)
, (2)

which we might format as:

[START] <inp1> x^1_1,... </inp1>
<out1> y^1_1, ... </out1>
...
<inpk> x^k_1,... </inp1>
<outk> y^k_1, ... </out1>

<inpk+1> x1 x2 ... xn </inpk+1>
<outk+1>

So, we’ve got some extra formatting tags to delimit the start and end of each of the
input and the output for the few-shot examples, and we then put the last input—that
we’re asking our model to answer—and sample a response.

However, one downside of few-shot prompting is that it is computationally expensive
at inference time, since the model needs to process long prompts for every input. To
address this issue, we can bake in the desired behavior into the model’s parameters by
adapting them — a process known as fine-tuning.

2

