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We’ve spent a lot of time figuring out how better to estimate probability distributions py
over sequences of text. In this note, we’ll go over strategies for taking this distribution
and generating text. These strategies will depend on the kind of text we're generating,
and what errors we think exist in the distribution our model has learned.

Sampling and finding the argmax

We've trained our model autoregressively, conditioning on tokens used as input (and
those we've generated so far) and predicting the next token. We’ll sample from it
similarly. Let z1,...,z; be an input token sequence, and yi,...,y:—1 be a (possibly
empty) string of output tokens generated so far. For brevity, we will denote these
sequences as x and y.; respectively. We sample a next token as:

ye ~ po(ye | ©,y<t) (sampling, or ancestral sampling) (1)

The sampling process is a loop of sampling subsequent y until a stopping condition is
met — either a special end of text token is generated, or a maximum sequence length
is met.

Overall, as models become increasingly strong, and as we clean the data they’re trained
on, this simple sampling method becomes better and better. Intuitively, we work really
hard to estimate the distribution pgy, and the better it is, the less we need to do afterward
to “fix” it. But consider that some text is noisy, our model isn’t perfect, and the model
likely spreads some probability mass over output sequences that aren’t what we want.
Assuming our model is good, we might instead want find the most likely output under
the model:

yrr = arg max py (y|x) (argmax) (2)

This is much easier to write out than it is to compute. Whereas during sampling, we run
the model’s forward pass once per token we end up generating, finding the argmax of our
model is a search through an exponentially large space (base is the vocab size, exponent
is the maximum sequence length) (]V|7).! In practice, people don’t really do this, but
it’s a good thought experiment to consider whether you think the maximum-probability
output of your model will be meaningfully better than a sample.

Indeed, approximations to finding the argmax are often used in practice. One is greedy
decoding, so named as it’s the greedy algorithm for approximating the argmax search.
We set:

o = axgmaspy(w | 7, y<0) (greedy decoding) (3)
we

This picks the most likely output word at each step. This is a common generation
strategy because, like sampling, it costs one forward pass per token generated, but like
the argmax, it avoids low-probability sequences. It’s a nice default to try if you're
playing with a model.

Truncation sampling and temperature scaling

One issue with mode-seeking generation strategies (the mode is the highest-probability
element of a distribution, so mode-seeking just means it’s attempting to find the mode,

IHowever, you can still try this if you're interested — you can run Dijkstra’s algorithm or similar —
to find the shortest path (highest likelihood generation) from the starting sequence to the generation
of the special end of sequence token. (In this graph analogy, nodes are prefixes of text, edges (labeled
with words) are weighted by negative log probabilities, so finding the shortest path finds the maximum-
probability terminating sequence.)
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Figure 1: Two examples of truncation of a language model’s distribution, from
[Hewitt et al., 2022]. On the left, the distribution over the next word after the start

of the document and My name. Note that most probability is on the word

like, e.g., greedy decoding) is that you always get the same response if you generate
multiple times.? Sampling from the trained distribution py certainly gives you many
possible generations (if there’s entropy in the trained distribution) but may generate
low-probability, and potentially low-quality, outputs.

The most successful strategies for hitting a nice tradeoff between how much of the dis-
tribution we keep (coverage/diversity) and how high-quality our outputs are on average,
are in a family of algorithms called (by some, including me) truncation sampling. These
algorithms have the following form

A = select(V, pp, x,y<t) (choose accepted set A C V) (4)

po(w|@,y<t)/Z weA

w | x, =
pao( | 2,y<t) 0 otherwise

yr ~pag(w | z,y<;) (sample from accepted set) (6)

where Z =3 1 po(w | ¥,y<¢) is the normalization constant — the sum of probabilities
of words that we're keeping in the accepted set. The function select is where the fun
happens; we get to use a range of heuristics to decide which words stay in the accepted
set, and which ones have probabilities set to zero. Usually, these heuristics relate to
the probability of the word in that context — high-probability words are probably good
continuations and are kept; low-probability words are more likely to be bad continuations
and may be cut. We can re-frame greedy decoding under this family by setting the select
function to only have the most likely next word in A at each step. Note that the accept
set A is computed for each prefix (we’re omitting a subscript for brevity.)

There are many ways to implement the “high probability is probably a good continu-

2In fact, at the large, distributed scale at which modern LMs are often built and served, this is..not
true. Little variations in the forward passes of modern models can lead to differences in probabilities
and then different generations. At small scale, it’s still true. Here’s one example of what can happen.
Recall that we run our models using floating point numbers represented with very few bits. Small
deviations in behavior might lead to relatively large changes in the floating point value (because there
aren’t many values for a number to “be”, unlike in the real numbers. When sampling, differences in, e.g.,
the CUDA kernels used can lead to different floating point approximations, which can then compound
as the network’s forward pass progresses. But, the spirit of this statement about not having variation
in outputs still holds; we’re not sampling from the distribution we estimated; indeed it would be hard
to characterize the kind of variation we accidentally get from odd distributed systems things.
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ation; low-probability not so much” intuition. One very simple method is to just set
some minimum threshold of probabilities for the accept set:

A={weV|pg(w|z,y<t) > €} (7)

Intuitively, low probabilities are not just indicative of unlikely continuations, it’s also
just hard to estimate the probability of a thing whose true probability is very very
low. This algorithm epsilon sampling | | implements this intuition.
There are some details here that one has to keep in mind however; for example, it is
possible that no words are above the e threshold, in which case often implementations
will just generate the argmax word at that timestep.

By far the most popular truncation method is top-p sampling, also called nucleus
sampling [ ].  The intuition of top-p sampling is that the most
likely p percent of the model’s distribution at any timestep is “good” (should be kept)
and the remaining 1 — p lowest-probability percent is bad.

’LU(I)7 L) w(\V\) = arg SorthV p9(w | &€, y<t) (8)

k=min{i e N'| Y po(w? | z,y<1) > p} (9)
j=1

A= {w® . wh} (10)

To interpret this, think of (1) sorting the vocabulary in decreasing order of probability,
and then taking the k£ most probable words such that k is the minimal set whose sum
of probabilities it at least p.

Each of these algorithms makes different assumptions about what is “wrong” about the
distribution we’ve learned. Each also includes a parameter (p or €) which controls the
tradeoff of how much you cut of the distribution (which you’d like to avoid) vs how much
you avoid potentially generating low-quality outputs (by cutting off the low-likelihood
words.)

A final method we must discuss is temperature sampling, which is not a truncation
sampling algorithm. It does not explicitly set any probabilities to zero; instead intu-
itively it interpolates in log space between the uniform distribution (arbitrarily high
temperature) and the most likely token (zero temperature). The distribution is as fol-
lows:

po(w |,y

weY p@(w | T, y<t)1/T

p‘r,G(w ‘ x7y<t) = Z (11)
Note the exponent — when 7 approaches zero, logits are exponentiated, making the

largest even larger relative to the others. When 7 approaches infinity, logits are raised
to the power of roughly 0, so each gets probability roughly %
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