COMS 4705: Intro to NLP Lec 9.5: Finetuning
John Hewitt € Melody Ma Columbia University

Finetuning

Through pretraining on a broad range of text, we’ve come to a probability distribution
pe,. We might not want to sample from this distribution, though! However, we also
have the learned parameters 6, themselves, of a neural network. These parameters can
serve as the initialization of an optimization problem for more specific task. This is
finetuning. It is a fascinating empirical fact of neural networks that the pretrained
parameters 8, are an excellent starting point.

Finetuning on a task

Consider a dataset D = {(x;,y;)}", of examples, where each z; € V*, and y; € V*. We
want a probability distribution that generates outputs like the y when given inputs like
the . We have 6, to start with. We're going to take minibatches from D, start with
6o = 6,, and then run stochastic gradient descent:

0o = 0, (1)
0;=0;_1— va0]Eminiloatch(D) [—log po(y: | z:)] (2)

So, we're just optimizing over the parameters of our network the same loss function had
we started from a random initialization instead of our pretrained ¢,. But we’re hoping
that starting from where we do will lead to good things. And in practice it does! But
one should ask, why? When we write out an optimization problem:

min[E [~ log po(y |)] 3)

if we do a great job of computing that minimum, it shouldn’t matter so much where we
start. In general, non-convex optimization is hard, though, so maybe starting from 6,
helps us achieve a lower minimum loss. Unfortunately, this isn’t really true either. Even
for relatively large datasets D, for the large neural networks that we use, we can tend
to achieve roughly minimum (e.g., 0) loss via gradient descent even without pretrained
initialization. So, if pretraining does not necessarily make optimization better, why
would we want to start from 6,7

Intuitions of finetuning

At a high level, the success of finetuning is due to the parameters of the network not
straying “too far” from the pretrained parameters. The pretrained parameters 6, lead to
building all sorts of interesting representations, similarities between words and phrases
with similar meanings, subskills relating to understanding language. When finetuning,
we leverage these learned representations, and just “tweak” them a bit such that the
output distribution is what we’d like. Let’s use an example to demonstrate this.

Consider two models: 6y, which has randomly initialized parameters, and 6,, our pre-
trained model. We train both of them on the dataset D = {(z;,y;)}", where z; is
a question about a university’s location and y; is the corresponding answer. For ex-
ample, one training pair could be (Q: Where is the University of Pennsylvania?, A:
Philadelphia). Now, if we select an example from the held-out set — say, Q: Where is
Pennsylvania State University? — and ask both models to predict its location, what
answers could we get? The randomly initialized model 8y might output a biased an-
swer such as “Philadelphia”, since “Pennsylvania” and “Philadelphia” could have close
embedding space. In contrast, the pretrained model 6, having likely seen information
about Pennsylvania State University during pretraining on large-scale web data, would
be more likely to output the correct answer, State College. Therefore, by starting from

COMS 4705: Intro to NLP Lec 9.5: Finetuning

0,, we encourage the model not to stray “too far” from its pretrained parameters. In
other words, finetuning mainly adjusts our desired model behavior, such as its format
of response, instead of changing the actual information it has already learned.

Adapting parameters

The intuition of not straying “too far” from the pretrained parameters is nice because
we can try to define what “too far” means, and develop our intuitions. One natural idea
is Lo distance — simply, in a natural vector space metric, how much have we moved
due to gradient descent?

16, =0l (4)

Is this the right notion of distance in our finetuning? One way of exploring this is to
run our optimization procedure with an explicit penalty on Lo distance, as follows:

min® [~ logpo(y |)] + 56, — 0]l (5)

where § is a hyperparameter deciding the relative importance of not moving too far in
weight space. This is called an Ly penalty, and it’s a reasonable strategy, but in practice
isn’t used too much. Intuitively, this penalizes every single parameter equally for how
much it strays from its initial position, and maybe some parameters should move a lot,
while others shouldn’t move much at all.

Another interesting space to measure “too far” in is distributional space. Instead of
penalizing the deviation of the parameters themselves, maybe we want to make sure
our learned distribution py isn’t too different from the pretrained distribution pg, . One
way to do this is to decide a distribution over text, say 7 and then penalize the KL-
divergence of the token-level distributions of each model on the prefixes defined by that
text:

Eont [KL(po, (- | 7<) IPo(- | 2<1))] (6)

Recall that pg, (- | £<¢) is a [V|-sized categorical distribution over tokens z; given prefix
T<¢, and the KL-divergence of one such conditional distribution is

po, (W | x<¢)
KL (po, (- : = o8 (w | 2r)
(pgp(| x<t)||P9(| $<t)) U;}pep(w | 37<t) og pa(w | x<t)

(7)

Po, (wlz<t)
po(wlz<t)
different py, and py are for that token prediction. So, if the pretrained distribution places

a lot of probability on a word in a given prefix and our finetuned distribution does not,
the parameters are penalized and pushed towards placing more probability on that word.
Is this the right intuition for not straying too far from the pretrained parameters? Sort
of, sometimes. Intuitively, sometimes we want to change the distribution quite a bit
— say we pretrained mostly on English text, but we want to finetune on translation to
Tamil. It turns out that the English pretraining is still quite useful for this task, despite
the pretrained distribution being quite different from the one we’d like. Therefore, we
can add this KL penalty as an extra objective, which is a common tool. So now, the
objective becomes:

min(E [—logpo(y |)] + Ewer [KL(po, (- | 2<0)llpo(- | 2<0))])- ®)

where pg, (w | x<¢) is the weight of token w according to 6, and shows how

Together, this objective is saying 1) increase the likelihood of the finetuning data, while
2) don’t forget what model has learned in pretraining.

COMS 4705: Intro to NLP Lec 9.5: Finetuning

Perhaps unintuitively, the strongest intuition for “not straying too far from the pre-
trained parameters” may come from the simple intuition of a small learning rate
during gradient descent. When finetuning pretrained models, we almost always use a
small learning rate, such that each gradient descent step doesn’t take us very far (in Lo
space) from the pretrained parameters. It is sometimes said that this implicitly penalizes
the optimization process from exploring too far away from the pretrained parameters.
For practitioners, one can take away that figuring out the right learning rate is often one
of the more important discrete searches to perform when trying to improve finetuning.

Parameter-efficient finetuning

In pretraining and in finetuning so far, we’ve considered every learnable parameter of our
network to be changeable independently when we perform stochastic gradient descent.
However, we can also change just a subset of the parameters, a technique known as
parameter-efficient finetuning.

We’ll go over two popular methods for performing parameter-efficient finetuning: prefix-
tuning and low-rank adaption (LoRA).

In prefix-tuning, a set of learnable prefix vectors {fi, f2,..., fx}, where each f; € R?
and f; ~ U(—e¢,¢€), is prepended to the input sequence as additional context for the
Transformer blocks. Strictly speaking, if these learnable vectors are placed only at the
input layer, this was originally called prompt-tuning (,), while if they
are placed at every layer of the Transformer, this was originally called prefix-tuning (

,). We'll just go over the version with a single layer of learnable prefix
parameters.

All parameters of the pretrained model are frozen, and only the prefix parameters are
optimized to minimize the loss. Formally,

min By oyop [L(, ;
{f1:f2,sfr} (z,y) p [L(z,9)])

where L(z,y) is the loss as applied to our network while using the prefix vectors.

Intuitively, although we are not updating the preexisting model parameters, introduc-
ing the prefixes adapts hidden representations at each layer. As a result, the model’s
outputs can change even though its original parameters are fixed.

Low-Rank Adaptation, or LoRA (,), is one of the most popular methods for
parameter-efficient finetuning. It works by introducing a learnable low-rank matrix as
an update to the pretrained parameters. Suppose we have a weight matrix Wg € Réxd
and we do not want to update all of its parameters. Instead, we introduce a rank-1
matrix uv |, where u € R? and v € R%. Now, we have Wg = Wg +uv'. By introducing
this rank-1 matrix, LoRA allows the model to only adjust its behavior along a small
number of directions. In practice, we can introduce a matrix with rank up to k, where

k < d. That is, Wg = Wg + Z?Zl u@v@) " which allows the model to adapt along &
independent directions in the parameter space:

min E(z.y)~p [£(2,9)] (10)

U1,V1,U2,V2,..., UL,V

where L(x,y) is the loss as applied to our network while using the low-rank modified
parameters.

COMS 4705: Intro to NLP Lec 9.5: Finetuning

References

Hu, E. J., yelong shen, Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., and Chen,
W. (2022). LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations.

Lester, B., Al-Rfou, R., and Constant, N. (2021). The power of scale for parameter-
efficient prompt tuning. In Moens, M.-F., Huang, X., Specia, L., and Yih, S. W.-t.,
editors, Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3045-3059, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Li, X. L. and Liang, P. (2021). Prefix-tuning: Optimizing continuous prompts for
generation. In Zong, C., Xia, F., Li, W., and Navigli, R., editors, Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pages 4582-4597, Online. Association for Computational Linguistics.

	Finetuning
	Finetuning on a task
	Intuitions of finetuning
	Adapting parameters
	Parameter-efficient finetuning

