COMS 4705: Intro to NLP Lec 9: Pretraining
John Hewitt € Nicholas Deas Columbia University

The main innovation that has moved methods in natural language processing from
largely not working to largely working is pretraining. At a high level, this idea re-
turns exactly to the start of the course. Pretraining means trying to learn from a huge
amount of text (and usually now also images, video, audio, etc. But we’ll focus on text.)
All of the topics we've covered so far—expressivity of neural networks, optimization,
tokenization, and parallelizable architectures—are to some extent in service of better
pretraining.

The method we introduced in lecture 1 is similar to word2vec [1,
and we saw that our simple word prediction algorithm led to very interesting learned
structure. By scaling up the expressivity of the architecture and the scale, interesting
things keep happening!

Recall language modeling

token O token 1 token 0 token 1
RO L0
& &L &
Uncle Iroh laughed END PAD z\é“ Uncle Iroh laughed END Zuko e\é‘\
2 XN 2 SN
E: S z S
5 Zuko poured the tea END 0\9}‘\ S | poured the tea END Thanks 0\@“\
&]
Thanks ! END PAD PAD ! END The Earth Kingdom
Sequence Axis Sequence Axis
Padded Batch Construction Packed Batch Construction

Figure 1: Comparison of padding and packing for batch construction.

What predictive problem are we going to be training our network on? You guessed it,
language modeling. Recall that we have some learnable parameters 6 in our distribution
py, we have a data distribution D, and we're going to optimize:

ngn E.p [logpg(x)] (1)

But at this point let’s get a bit more specific. This math suggests that we’re optimizing
specifically over entire documents. In practice, something slightly messier happens.

Let’s say I have a batch size B and a maximum sequence length n. I’ve probably set
B and n such that I have as long sequences as I can, and as large a batch as I can,
such that it’ll fit on my GPU cluster. So, that’s Bn tokens I can potentially learn
from. However, if I try to optimize the math above, suggesting that I optimize for the
likelihood of whole documents, this means I need to filter out documents longer than n
tokens. Furthermore, any documents shorter than n tokens I need to pad with useless
blanks that won’t be trained on, in order to fill out the batch. That’s wasted compute!

Instead, batches are packed with tokens. That is, we string together a bunch of docu-
ments and just pick the first Bn tokens, even if they cross document boundaries. If they
do cross document boundaries, we include a document separator token.

We then optimize a similar-looking objective over this new distribution over tokens, call
it D.

minE, 5 [—logpo(z¢ | T<t)] (2)

This is a bit of a technical detail—much of the time we’re still optimizing document
likelihoods, but not always due to the packing (Figure 1), but I think it helps build
intuition—we’re looking for useful token sequences to learn from, and a lot, as fast as
possible.

COMS 4705: Intro to NLP Lec 9: Pretraining

Pretraining Data Size and GPT Models

First, consider the size of datasets that are used in practice for pretraining models
such as the GPT series of models. In June of 2018, the initial idea of a generative
pre-trained transformer (GPT) was introduced by Alec Radford and others at OpenAl
[]. The GPT-1 model has 117 million learnable parame-
ters, and was trained on the BooksCorpus, containing roughly 985 million words or 1.3
billion tokens. With this size and training, the model was already able to do interesting
things by primarily learning to predict the next token. Later, in 2019, Radford and
others released GPT-2 |] which has 1.5 billion learnable parameters
and was pretrained on a large corpus of web text containing 8 million documents and
roughly 21 billion tokens. In 2020, OpenAl then announced GPT-3 |]
with 175 billion parameters trained on an estimate ~500 billion tokens of CommonCrawl
data. Finally, GPT-4 |] and GPT-5 were announced in March, 2023
and August 2025 respectively, but we don’t really know details about the size of the
model or training corpus.

Some other common, recent models and their associated parameter counts are listed
in Table 1. Many current leading models have hundreds of billions of tokens and are
trained on tens of trillions of tokens.

Model Provider Model Size (# Parameters) Corpus Size (# Tokens)
OLMo-2 AllenAl 7-13 billion 5 trillion
Gemma 3 Google 270 million - 27 billion 6-12 trillion
DeepSeek-V3 DeepSeek Al 685 billion 14.8 trillion
Llama 3 Meta 7-405 billion 15 trillion
Qwen3 Alibaba 235 billion - 1 trillion 36 trillion

Table 1: Common large language models with their size and number of training tokens.
Ranges of model sizes indicate that multiple models of different sizes were part of the
same named release (e.g., Gemma-3-8B and Gemma-3-27B).

Data distributions

Take a look at Table 2. Here are two “real” pretraining documents from FineWeb
[J

What token sequences should we learn from? Sometimes we approximate the training
distribution of language models as the whole internet, but this is wrong for various
reasons. Still, it’s a useful intuition, and a large part of pretraining datasets is often
Common Crawl dumps, which are large public crawls of the internet. But cleaning,
filtering, formatting the text in raw crawls is critical.

Here are some types of filtering or processing found in the FineWeb dataset |
o Text extraction from HTML! Actually not easy to get right.
e Language filtering for mostly-English data
e URL filtering to avoid adult content
e Deduplication
o Personally identifiable information heuristic removal

To put some of these pre-processing steps in perspective, consider the texts removed

https://huggingface.co/spaces/HuggingFaceFW/blogpost-fineweb-v1

COMS 4705: Intro to NLP Lec 9: Pretraining

Figure 4: Construction of DCLM-BASELINE from DCLM-
PooL. Before this pipeline, we extracted DCLM-Pool from
Common Crawl with resiliparse. Percentages are based on
the total number of original documents.

Figure 2: Proportion of texts removed by pretraining data filtering and pre-processing
steps from |]

by each of several steps in Figure 2. Beginning with a pool of CommonCrawl texts,
DataCompLM removes nearly 99% of the original documents to curate a corpus for
pretraining, and the final corpus still contains roughly 2-3 trillion tokens. While most
documents are removed by filters similar to those listed above (e.g., language filters,
deduplication), the final step, model-based filtering, primarily concerns selecting the
kinds of documents we think would be best for pretraining.

It’s very expensive to test hypotheses about what kind of web data is best for pretrain-
ing. Vaguely, some notion of quality is usually used—Wikipedia is high quality, random
web pages might be low-quality. One nice concrete intuition is as follows, however.

In DataCompLM, they trained models to score each web document with how alike it
is to a combination of Reddit Explain-Like-I'm-Five data and a synthetically generated
question-and-long-response chatbot dataset called OpenHermes2.5 |]. That
is, when filtering down from a raw web dump, documents are kept when the model pre-
dicts that they’re more like these sources. And this worked very well!

Model-Based Filtering

As mentioned, if Wikipedia is primarily high quality, why can’t we just train a model
only on Wikipedia texts? All of English Wikipedia contains roughly 5-7 billion tokens ®.
In contrast, however, the original GPT-2 model training used more than 21 billion tokens
of text. Therefore, we need a method to estimate the quality of documents outside of
known sources like Wikipedia.

While some other approaches exist 2, the approach taken in DataCompLM to score the
quality of documents based on known sources is similar to many of the model-based
filtering approaches often used to filter pretraining corpora. Assume you have a pool
of documents, D = {D1, Ds, ..., Dy} that you may want to use to pretrain your model
where each document is a string over a finite vocabulary, D; = wyq,...,wp. Given that
quality is difficult to define precisely, it is unlikely we will come up with a good approach

LAs of October 2025, there are around 5 billion words on English Wikipedia.

2For example, one heuristic of quality that was used for curating data for GPT-2 was to collect
webpages linked to and highly upvoted in Reddit comments. In this case, the general idea is that posts
with many upvotes link to higher quality web pages while those with fewer upvotes likely link to lower
quality web pages.

COMS 4705: Intro to NLP Lec 9: Pretraining

FineWeb Examples

Previous abstract Next abstract Session 40 - The Interstellar Medium. Display session,
Tuesday, June 09 Gamma Ray Burst (GRB) explosions can make kpc-size shells and holes
in the interstellar media (ISM) of spiral galaxies if much of the energy heats the local gas
to above 107 K. Disk blowout is probably the major cause for energy loss in this case, but
the momentum acquired during the pressurized expansion phase can be large enough that
the bubble still snowplows to a kpc diameter. This differs from the standard model for the
origin of such shells by multiple supernovae, which may have problems with radiative cooling,
evaporative losses, and disk blow-out. Evidence for giant shells with energies of ~ 10°3 ergs
are summarized. Some contain no obvious central star clusters and may be GRB remnants,
although sufficiently old clusters would be hard to detect. The expected frequency of GRBs
in normal galaxies can account for the number of such shells. Program listing for Tuesday

Wikipedia sobre fisica de particulas Rapidinho. Me falaram que a defini¢do de fisica de
particulas da Wikipedia era muito ruim. E de fato, era assim: Particle physics is a branch
of physics that studies the elementary particle|elementary subatomic constituents of matter
and radiation, and their interactions. The field is also called high energy physics, because
many elementary particles do not occur under ambient conditions on Earth. They can
only be created artificially during high energy collisions with other particles in particle
accelerators. Particle physics has evolved out of its parent field of nuclear physics and is
typically still taught in close association with it. Scientific research in this area has produced
a long list of particles. Mas hein? Particulas que s6 podem ser criadas em aceleradores?
Fisica de particulas é ensinada junto com fisica nuclear? A pesquisa produz particulas (essa
é otimal!)? Em que mundo essa pessoa vive? Reescrevi: Particle Physics is a branch of
physics that studies the existence and interactions of particles, which are the constituents of
what is usually referred as matter or radiation. In our current understanding, particles are
excitations of quantum fields and interact following their dynamics. Most of the interest in
this area is in fundamental fields, those that cannot be described as a bound state of other
fields. The set of fundamental fields and their dynamics are summarized in a model called
the Standard Model and, therefore, Particle Physics is largely the study of the Standard
Model particle content and its possible extensions. Eu acho que ficou bem melhor. Vamos
ver em quanto tempo algum editor esquentado da Wikipedia vai demorar para reverter.
Atualmente estd um saco participar da Wikipedia por causa dessas pessoas.

Table 2: Some example documents from FineWeb. Note that they’re still pretty messy.

COMS 4705: Intro to NLP Lec 9: Pretraining

to label each document as definitively “bad” or “good” So, the aim of model-based
quality filtering is to instead sort this set of documents by there quality.

Taking sources of documents that we assume are high quality (i.e., Wikipedia), we can
train a classifier defined by f(D) — ¢, where the output, ¢, is a value [0, 1] represents
the probability that D could be from our high quality sources. If Wikipedia is our high
quality source for example, we train this classifier to prioritize (i.e., give a high score
to) documents that look like or contain Wikipedia text and de-prioritize (i.e. give a
low score to) documents that don’t look like Wikipedia text. We can then label each
document with this classifier, sort our training pool by the associated score, and take
the highest scoring documents as our pretraining data.

To train these model-based filters, we can use much of what we have learned in the course
so far. Instead of predicting the next token, however, we instead want to perform binary
classification that will output a single quality score. If we remove the final linear layer
and softmax of a transformer, we instead get a vector corresponding to the last token of
the input, h = Transformerg(D) where h € R? and 6 represents all learnable parameters
of the transformer. Intuitively, this h is the best representation of the document we can
extract from the model given it incorporates some information about all prior tokens in
the sequence through all layers of the model.

Using this representation from the model, we define a new model as follows:
f(D) =a(hTg) ()

where ¢ is a small set of learnable parameters in R¢ defining the classifier. Then, we can
define a loss function for this classifier and use gradient descent to train all parameters.
Formally, we could try to optimize the score given to documents from Wikipedia (or
another high quality source):

min Epews [~ log(/(D)) (4)

This formulation, however, can be trivially optimized by always predicting f(D) =
1 because it lacks negative examples. So, we modify our training by assuming that
generally, any other documents that we sample besides Wikipedia documents are, on
average, worse than Wikipedia. While this may result in a poor classifier if we relied
on binary labels, remember that we only need to sort our pool of training data by their
similarity to Wikipedia rather than discretely classify documents as high or low quality.
So, we instead optimize:

I(Iglin]EDeWiki [— log(f(D))} - IEDE’D [_ IOg(f(D))] (5)

g

Scaling laws (estimates)

Part of the promise of pretraining is that it’s been shown to work (and thus is to some
extent predicted to work) across many orders of magnitude. This is especially important
because of the immense costs of scaling to each additional order of magnitude. See
Figure 3, in which scaling the amount of computation, the amount of data, and the
number of parameters leads to a decay in loss that scales linearly with the logarithm of
the increase in cost. While sometimes stated as natural laws, I think of them as useful
estimates.

Given this predictable relationship, we can attempt to determine the “optimal” tradeoff
between scaling the number of parameters and the number of tokens a model is trained

COMS 4705: Intro to NLP Lec 9: Pretraining

7 4.2
6 —— L=(D/5.4-1013)-90% | 5.6 —— L=(N/8.8-10!3)-0.076
3.9
4.8
® 5
8. S e .0
g 3.3 3.2
F 3
3.0
2.4
L = (Crninf2.3 - 108) 70050
2 2.7
i0-* 10~ 10" 10-% 10-' 10! 10° 109 10° 107 109
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Figure 3: The scaling law plots from Figure 1 of |].

on. Specifically, work has investigated how we can empirically determine this tradeoff.
To do so, they fit a function that predicts the loss a transformer model will achieve at
the end of pretraining | |, which is of the form

A A B
L(N.D)£E+ = + 53

(6)
In this function, I:(N , D) represents the predicted loss (similar to what we have seen
earlier in the course) based on the number of parameters (/V) and the number of training
tokens (D). As there is inherit uncertainty in predicting the next word of real language,
the first term, FE, represents the minimum achievable or ideal loss of the model. The
second term, %, represents the added loss due to having too few parameters, while
the third term, %, represents the added loss due to not training on enough data.
Among the constants in this function, « and (3 represent the rates of improvement gained
when scaling the number of parameters and the number of training tokens respectively.
Therefore, knowing these values of these rates provides general guidelines for how to
scale the number of parameters and training tokens relative to each other in order to
achieve the optimal loss.

After fitting this function to real model training runs and losses, the authors estimated
that the relevant scalar values are roughly @ ~ 8 ~ 0.5. Because a and g are found
to be similar, this means that optimally, the number of parameters and the number of
training tokens should be scaled similarly to each other.

This optimal tradeoff, however, is generally not followed in practice; while this function
gives insights into how to optimally use a computational budget to minimize the resulting
training loss, it does not take into account the costs of model inference. Smaller models
are less costly to run, so model developers generally choose instead to tradeoff more time
spent pretraining and more tokens to keep the costs of model inference to users low.

References

[Brown et al., 2020] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan,
T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, 1., and Amodei,
D. (2020). Language models are few-shot learners. In Larochelle, H., Ranzato, M., Hadsell, R.,
Balcan, M., and Lin, H., editors, Advances in Neural Information Processing Systems, volume 33,
pages 1877—1901. Curran Associates, Inc.

[Hoffmann et al., 2022] Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai, T., Rutherford,
E., de Las Casas, D., Hendricks, L. A., Welbl, J., Clark, A., Hennigan, T., Noland, E., Millican,
K., van den Driessche, G., Damoc, B., Guy, A., Osindero, S., Simonyan, K., Elsen, E., Rae, J. W.,
Vinyals, O., and Sifre, L. (2022). Training compute-optimal large language models.

COMS 4705: Intro to NLP Lec 9: Pretraining

[Kaplan et al., 2020] Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R.,
Gray, S., Radford, A., Wu, J., and Amodei, D. (2020). Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361.

[Li et al., 2024] Li, J., Fang, A., Smyrnis, G., Ivgi, M., Jordan, M., Gadre, S. Y., Bansal, H., Guha,
E., Keh, S. S., Arora, K., et al. (2024). Datacomp-lm: In search of the next generation of training
sets for language models. Advances in Neural Information Processing Systems, 37:14200-14282.

[Mikolov et al., 2013] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of
word representations in vector space. CoRR, abs/1301.3781.

[OpenAlI, 2025] OpenAl (2025). Gpt-5 system card.

[OpenAl et al., 2024] OpenAl et al. (2024). Gpt-4 technical report.

[Penedo et al., 2024] Penedo, G., Kydli¢ek, H., Lozhkov, A., Mitchell, M., Raffel, C. A., Von Werra,

L., Wolf, T., et al. (2024). The fineweb datasets: Decanting the web for the finest text data at scale.
Advances in Neural Information Processing Systems, 37:30811-30849.

[Radford and Narasimhan, 2018] Radford, A. and Narasimhan, K. (2018). Improving language under-
standing by generative pre-training.
[Radford et al., 2019] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019).

Language models are unsupervised multitask learners.

[Teknium, 2023] Teknium (2023). Openhermes 2.5: An open dataset of synthetic data for generalist
Ilm assistants. https://huggingface.co/datasets/teknium/OpenHermes-2.5.

https://huggingface.co/datasets/teknium/OpenHermes-2.5

	Recall language modeling
	Pretraining Data Size and GPT Models
	Data distributions
	Model-Based Filtering
	Scaling laws (estimates)

