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The goal of this short note is to quickly put all the pieces of the course so far together
into a single full description of building an NLP system to perform the task of machine
translation.

Goal: Learn function f : source text→ target text.

Data

Our dataset is a set of M pairs (aka examples) of strings,

D =
{(

x(i), y(i)
)}M

i=1

where x(i) refers to the x string (the first element in the pair) in the i-th example. In
our case, string x is a French sentence (or sequence of text), and string y is an English
one. We call these the source and target text respectively. To give a concrete example
for M = 2:

D =
{
(“Bonjour”, “Hello”), (“J’aime les films”, “I like movies”)

}
.

Tokenization

We learn our vocabulary by performing Byte-Pair Encoding on our dataset:

V = BPE(D).

The simple way to do this is to concatenate both strings in every example together into
a huge chunk of text, then feed to BPE (this is what was done in A2). Another way is
to learn a separate vocabulary for the source and target texts.

Now that we have our vocabulary (and hence have learned a tokenizer), we can tokenize
each example in D such that for all i ∈ [1,M ] :

x(i) ← tokenize(x(i))

y(i) ← tokenize(y(i))

meaning that

x(i) = x
(i)
1 , . . . , x

(i)
t x

(i)
t ∈ V

y(i) = y
(i)
1 , . . . , y

(i)
t′ y

(i)
t′ ∈ V .

Note that we can’t directly use this for language modeling yet - recall that our goal is
to learn P (y(i) | x(i)), but the language models we’ve learned so far can only take in
a single sequence as input1. The trick is to concatenate our source and target strings
demarked by special tokens <START> and <END>2:

s(i) = x
(i)
1 , . . . , x

(i)
t , <START>, y(i)1 , . . . , y

(i)
t′ , <END>.

The reason we have the <START> token is so that the model knows exactly when to start
predicting English - without it, the model would need to also learn to predict when the
French text ends, which not only wastes model capacity but is also pretty tough to do.
We also append an <END> token to each s so that the model explicitly learns when to
stop generating.

1Unlike traditional machine learning, we can’t only have x as input and y as the label because we
need to learn our target autoregressively, i.e. P (y2:t′ | x, y1), then P (y3:t′ | x, y1, y2), and so on.

2We add these tokens as unique integers to V.
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Model

Let’s adapt our simple language model setup from previous lectures to machine trans-
lation. To recap, this model is defined as:

P (wt | w<t) = softmax(E⊤hw<t)

hw<t =
1

t− 1

T−1∑
j=1

σ(Ewj + pj)

where E ∈ Rd×|V|, h ∈ Rd, and pj ∈ Rd is our positional embedding. This works straight
out of the box if we define each sequence as s = w1, . . . , wt, . . . , wT where wt ∈ R|V| is
a one-hot vector.

Note: This model from lecture 1 is too simple to work in practice - please look forward
to more complex, performant architectures in future lectures!

Training

Intuitively, if our example sequence looks like:

s = J’aime les films <START> I like movies <END>

then we need to learn:

P (I | J’aime les films <START>)
P (like | J’aime les films <START> I)
P (movies | J’aime les films <START> I like)
P (<END> | J’aime les films <START> I like movies)

Our only parameter to be trained is E, and we initialize it randomly, i.e. E ∼
U [−0.0001, 0.0001]|V|×d. We train it via gradient descent,

E ← E −∇EL(E)

where L(E) is the negative log likelihood (NLL) over only the target tokens (let’s
call the index of the first target token k):

L(E) =

Average over dataset︷ ︸︸ ︷
1

M

M∑
i=1

T∑
j=k

− logP (sj | s<j)︸ ︷︷ ︸
NLL over target tokens only

Generation

Now that we’ve trained our model to learn P (y | x), how can we use this to actually
generate a translation given x?

One strategy is greedy decoding, which just iteratively picks the most likely next
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word. To illustrate this, let’s use our earlier example. Suppose

P (· | J’aime les films <START>) =



...
0.9
0.1
0.05

...


and that the values shown are at indexes 7, 8, 9 and correspond to strings “I”, “we”, and
“us” respectively. Clearly, “I”, is the most likely next word, and the way we represent
this mathematically is via argmaxw∈V , which just says: which token w in V has the
highest probability? So here, we have

ŷ1 = argmax
w∈V

P (w | J’aime les films <START>) = 7.

Note that if we were to take the max instead, the value would be 0.9.

Putting this all together, here’s the formal algorithm:

Algorithm 1 Greedy Decoding Algorithm
input: x1:t, P
ŷ0 ← <START>
j ← 1
while j < t′ or yj−1 ̸= <END> do

ŷj ← argmaxw∈V P (w | x1:t, ŷ0:j−1)
j ← j + 1

end while
return ŷ1:j−1

A few things of note here:

1. We predict the next token based on the previous predicted token(s) - this means
errors can compound if the previous token was predicted incorrectly.

2. In practice, instead of j < t′ the stop condition is a user-defined max_new_tokens,
which can be much larger than t′, and the <END> token is used to stop generation
early.

Lastly, we need to detokenize each token in ŷ1:t′ , i.e. converting 7 in the earlier example
to “I”.

Evaluation

We evaluate with another dataset

D′ =
{(

x(i), y(i)
)}N

i=1

that was not seen during training (not used to compute loss or gradients or update
weights). This dataset is called the validation set if we use it to help us improve our
model3, otherwise it’s called the test set4 if it’s completely held out until the final
evaluation.

3The validation set is very useful for indicating if your model is overfitted to the training data,
especially if you run it periodically during training.

4Note that we can and should have both when possible. Without a test set, it is possible for a
researcher to overfit during the model development cycle.
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First, we generate predictions (sequences) for all examples via the Greedy Decoding
Algorithm (GDA),

ŷ
(i)
1:t′ = GDA(x1:t, P ) ∀i ∈ [1, N ]

Then, we compute the BLEU score between each predicted ŷ
(i)
1:t′ and the true y

(i)
1:t′ , and

take the average.

Model Building Process

To build a better model, we

1. Change hw<t to be a better neural network

2. Check if BLEU score went up

3. Rinse and repeat

4. Perform final evaluation on test set

5. Publish results if good, else perish.
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