
COMS 4705: Intro to NLP
John Hewitt

Lec 0: Background Mathematics
Columbia University

COMS 4705 requires some mathematical comfort with vectors, matrix algebra, proba-
bility distributions, a bit of differential calculus, and some ideas from optimization. You
may be able to fill in some or all of these gaps by learning as we go. This note is to
aid in filling in gaps, and provide a few of the “tricks” or bits of nice math that may
come up. This note should also help demystify some of the language used in the course
if you’re not yet comfortable with these topics.

This document does not intend to be exhaustive. Some properties are left undefined, and
many important things are missing. We’re aiming to strike a balance of concision and
coverage. If you have comments, suggested additions, suggested removals, or (especially)
bug reports, please send them to jh5020@columbia.edu.

Vectors and Matrix Algebra

Vectors

A vector v in space Rd is said to be d-dimensional. We’ll sometimes say “real-valued
vectors” to refer to such vectors, as their dimensions (each individual vi, where i ∈
{1, . . . , d}) are in the reals, Rd. However, we work with computers and these vectors
never really contain reals; sometimes we use a very small finite field, like using 32 bits,
or 16, or 8, or even 4 to specify the possible values each dimension can take. This will
sometimes be important, but in our notation, we’ll still say Rd.

A dot product between vectors produces a scalar quantity. Let v and u be in Rd. Then
their dot product is

u⊤v =

d∑
i=1

uivi (1)

Matrices

A matrix W ∈ Rm×n is said to be an m by n matrix. A matrix is said to specify a linear
mapping. By linear, we mean things like y = mx+ b. In the case of W as we’ve defined
it, it’s a mapping from vectors in Rn to vectors in Rm.

Note that W is m vectors of n dimensions each, and also can be seen as n vectors of m
dimensions each. As such, we can index into W , as Wi,: , to refer to the ith n-dimensional
vector, or as W:,i to refer to the ith m-dimensional vector. As such, I could for example
compute a dot product W⊤

i,:Wj,: between two n-dimensional vectors. I could also index
into W as Wij to refer to the scalar value there.

Let a be a vector in Rn. In a matrix-vector product, we have

(Wa)i = W⊤
i,:a (2)

∀i ∈ {1, . . . ,m} (3)

Note here that I have parentheses around Wa to clarify that the index i indexes into the
result of the matrix-vector product. Matrix-vector products (and thus matrix-matrix
products) are a bunch of dot products.

A matrix-matrix product between W ∈ Rm×n and G ∈ Rn×d is a matrix in Rm×d. This
matrix-matrix product is possible because the dimension “in the middle” is the same,
n. The remaining dimensions, you’ll notice, are the first dimensionality of W (m) and

1

COMS 4705: Intro to NLP Lec 0: Background Mathematics

the second dimensionality of G (d). We have

(WG)ik = W⊤
i,:G:,k (4)

i ∈ {1, . . . ,m} (5)
k ∈ {1, . . . , d} (6)

Some useful vector and matrix properties

Two vectors u and v in the same dimensionality Rd are said to be orthogonal if

u⊤v = 0. (7)

We sometimes denote this as u ⊥ v.

Norms

The L2 norm of a vector v ∈ Rd is

‖v‖2 =

√√√√ d∑
i=1

v2i (8)

We’ll also often just call this the “norm” of the vector, without specifying L2. There
are, however, many other norms, for example, the L1 norm,

‖v‖1 =

d∑
i=1

|vi|. (9)

Another fun one is the infinity norm,

‖v‖∞ =
d

max
i=1

|vi|. (10)

There are some fine matrix norms as well; one is the Frobenius norm, which is like L2.
For W ∈ Rm×n, we have

‖W‖F =

√∑
i,j

W 2
ij (11)

Outer products

The outer product uv⊤ between two vectors u ∈ Rm and v ∈ Rn is the matrix

(uv⊤)ij = uivj (12)

Note that uv⊤ is in Rm×n. This is an interesting matrix. You can think of it as n
copies of the vector u stacked together, each one weighted by some scalar vj . You can
also think of it as m copies of the vector v stacked together, each weighted by some
scalar ui. But what’s best about this matrix, and the notation we’ve used for it, is the
transparent semantics. It looks like uv⊤, and you can treat it as such in a matrix-vector
product. Consider:

(uv⊤)v = u(v⊤v) = u‖v‖22 (13)

2

COMS 4705: Intro to NLP Lec 0: Background Mathematics

So, here I’m just multiplying the vector u with the scalar ‖v‖22, that is, the squared
norm of v. This transparent semantics is nice in the sense that this matrix intuitively
maps the extent of v-ness of a vector w (through the dot product v⊤w) to a resulting
amount of u-ness. Put another way, it takes the extent to which a vector w aligned
with v and makes the resulting vector align with u to the same amount. Also note that
if w ⊥ v, then we have

(uv⊤)w = u(v⊤w) = u× 0 = 0 (14)

Linear independence

A vector u is linearly dependent on a set of vectors {v1, . . . ,vm}, all in Rd, if there exist
scalars c1, . . . , cm such that

u =

m∑
i=1

civi (15)

The vector u is said to be linearly independent from that set if no such scalars exist.
One way to put it is that the set {v1, . . . ,vm} are like ingredients in an additive soup,
or building blocks, and linear independence states that it’s impossible to construct u
from any possible additive combination of those building blocks or soup ingredients.

Matrix rank

The rank of a matrix W is the minimum number k such that we can represent W exactly
as the sum of k outer products:

W =

k∑
i=1

u(i)v(i)⊤ (16)

Note here how I’ve used u(i) to specify the ith vector out of some list of vectors, not
putting the index at the bottom so as not to suggest I’m indexing into the vector to
denote a scalar. Also note that thus an outer product uv⊤ has rank 1, since it can be
represented by the sum of just itself.

The rank is also (and is usually introduced as) the number of linearly independent m-
dimensional vectors (or equivalently, the number of linearly independent n-dimensional
vectors) that make up W .1 However, I like the outer product form more.

Representing W as its sum of outer products when discussing rank is useful for a number
of reasons. For now, the only one I’ll mention is it makes intuitive to me the fact
that the rank of W is often used as a measure of the complexity of the map
defined by W . That is, if W = uv⊤, then the function is simple – it maps the
affinity with v to a corresponding affinity with u, and maps everything else to 0. If
W = u(1)v(1)⊤ + u(2)v(2)⊤, then the function defined by W is sort of doing two things
at once. Nice!

Eigenvectors and eigendecomposition

Much as with matrix rank, eigenvectors (and singular vectors) are going to be useful more
for getting a feeling for the properties of a matrix than for their definitional properties.

1Sometimes these vectors are called “row vectors” and “column vectors” correspondingly, but I always
found that confusing, especially as we venture into more complex matrix-like objects, so I note it here
only so you’ll not be lost if you see those terms.

3

COMS 4705: Intro to NLP Lec 0: Background Mathematics

Here’s a definition: an eigenvector of matrix W ∈ Rd×d is a vector v such that it is a
unit-norm vector (‖v‖ = 1), and that

Wv = σv. (17)

The scalar value σ is the eigenvector’s corresponding eigenvalue. So, eigenvectors of W
are vectors that are only scaled, not changed in direction. As such, it is only defined for
square matrices. Also, the eigenvectors of W are mutually orthogonal.

When a d×d matrix has d eigenvectors (this is always true when the matrix is symmet-
ric), it can be represented by its eigendecomposition. Let V ∈ Rd×d be a matrix of
the d eigenvectors, sorted in order of decreasing absolute value of their eigenvalues. Let
Σ be the diagonal matrix of just the sorted eigenvalues. Then we can represent W as

W = V ΣV ⊤ (18)

This doesn’t seem terribly enlightening to me; I prefer to write it out as the following
sum:

W =

d∑
i=1

σiViV
⊤
i , (19)

where σi is the ith eigenvalue. So, just like in our matrix rank section, we’ve written the
matrix as a sum over simple outer products. But additionally here, intuitively, because
we’ve sorted the eigenvalues in decreasing absolute value, taking only the first k of d
values of this sum is like taking the most important components of the matrix. This
is true more formally; taking the first k components of this sum computes the best
rank-k approximation to W under the Frobenius (L2-like) distance. That is,

min
Ŵ |rank(Ŵ)=k

‖W − Ŵ‖F =

k∑
i=1

σiViV
⊤
i (20)

So intuitively, it’s useful to think of the eigendecomposition of a matrix as telling us a
decomposition of the function computed by the matrix in decreasing order of importance.
If W has n real non-zero eigenvalues, it will be full-rank. But, if the sorted eigenvalues—
also called the spectrum—quickly decay, that is, maybe the first is σ1 = 1 and then
σ2 = 0.5 and then σ3 = 0.25... and in general σi =

1
2i , then the outer product matrix

corresponding to, say, σ10 has a very small contribution to the matrix! (Note that this is
because all the eigenvectors are unit norm, so the outer products ViV

⊤
i can’t incorporate

a large scaling factor themselves.) So, this matrix, despite being full rank, doesn’t feel
like a full-rank matrix, since it’s well-approximated by lower-rank matrices.

Singular vectors and singular value decomposition

Some square matrices over the reals R don’t have n eigenvectors2. Many matrices are
not square.3 In these cases, we can’t use the intuitions we’ve built about the eigende-
composition to reason about the properties of matrices. However, we can do something
basically just as good for these intuitive purposes, leveraging the connnected idea of
singular vectors.

2Though if you define the matrix over the complex numbers C, they do – because the corresponding
eigenvalues are complex. We will not use this.

3Citation needed.

4

COMS 4705: Intro to NLP Lec 0: Background Mathematics

Let W ∈ Rm×d (so this time it’s not necessarily square.) A pair of left- and right-singular
vectors u ∈ Rm and v ∈ Rd are unit-norm vectors such that

Wv = σu (21)
W⊤u = σv. (22)

As before with eigenvectors, we’ll be much more interested in the properties of the
singular value decomposition of a matrix. Intuitively, let U ∈ Rm×m and V ∈ Rd×d

be the matrices representing the left- and right-singular vectors of a matrix, and let
Σ ∈ Rm×d be the diagonal(ish)4 matrix of singular values. Then

W = UΣV ⊤ (23)

Writing this out again as a weighted sum of outer product matrices, we get

W =

min(m,d)∑
i=1

σiUiV
⊤
i (24)

Note how, much as in our discussion of rank, we’ve written out W as a weighted sum of
simple matrices—simple functions—mapping some u to some v. The weighting σi—the
singular value—is a description of the importance of that component of the map (in an
L2 sense.) And as in our discussion of the eigendecomposition, we have that the best
rank-k approximation to W (as measured by L2 distance) is that given by the sum over
the first k terms in the singular value decomposition.

Higher-order tensors.

A tensor T ∈ Rm×n×d is called a 3-axis tensor. We can specify tensors with as many
axes as we’d like. Those we’re already familiar with are 2-axis tensors (matrices), 1-axis
tensors (vectors) and 0-axis tensors (scalars.) Tensors are a bit hard for our brains to
understand. But one nice hack to try with yourself is to take your k-axis tensor, and
say “oh this is just a bunch of (k− 1)-axis tensors stacked together!” and if (k− 1)-axis
tensors are easy to understand, great! And if not, just repeat this until you hit some
number of axes you’re comfortable with. This mostly isn’t a joke; in any tensor-tensor
operation, it does eventually boil down to a lot of dot products.

A tensor-vector product between T ∈ Rm×n×d and v ∈ Rd is

(Tv)ij = T⊤
ij,:v (25)

Note that we’ve lost the last axis of T to its multiplication with v, so (Tv) ∈ Rm×n is
a matrix (or, 2-axis tensor.)

A tensor-matrix product between T ∈ Rm×n×d and W ∈ Rd×g is

(TW)ijℓ = T⊤
i,j,:W:,ℓ ℓ ∈ {1, . . . , g} (26)

Note here again how shapes of the tensors help us see that this is possible. T is of shape
m × n × d and W is of shape d × g. When we line up the shapes in the order of the
multiplication, we see that the d-dimension axes are next to each other.

4Diagonal matrices are square and non-zero only along the diagonal (Wij where i = j). This matrix
Σ has non-zero entries on what looks like the diagonal if you were to lop off a bunch of all-zero values
of either rows or columns depending on whether m or d is larger.

5

COMS 4705: Intro to NLP Lec 0: Background Mathematics

Probability Distributions

Probability distributions express uncertainty over the value of a variable. A discrete dis-
tribution specifies a countable5 space X of possible outcomes. A probability distribuion
p over countable space X defines a function from elements x ∈ X to scalars, such that

∀x ∈ X , p(x) ≥ 0 non-negativity (27)∑
x∈X

p(x) = 1 normalization (28)

So, every element gets a probability. All probabilities are non-negative. The sum over
all probabilities for elements in the set is 1.

We often say something like x ∼ p(x) to denote that x refers to a random sample from
the distribution p.

Expectations

Taking the expectation of a quantity over a random variable means taking a weighted
average of what that quantity would be for every value of the random variable, where the
weights in the average are specified by the probabilities of the distribution of the random
variable. So, if I have a space of strings {a, aaa, ab} and a random variable distributed
according to probability distribution {0.25, 0.5, 0.25}, and I define a function length(x)
which is the number of letters in the string, then the expected number of letters in x is

0.25× 1 + 0.5× 3 + 0.25× 2 = 2.25 (29)

More generally, let x ∼ p(x) from space X . Let f : x 7→ f(x) be a function whose range
(output space) is some space with addition defined on it. Then the expectation of f(x)
over p is

Ex∼p(x) [f(x)] =
∑
x∈X

p(x)f(x) (30)

Entropy

The entropy of a probability distribution is a statement of the uncertainty one should
have over which element in the set a random sample from said distribution will be.

The entropy of a discrete distribution p over space X is

H(p) = −
∑
x∈X

p(x) log p(x) (31)

One way to think of the entropy is the (sometimes fractional) number of unbiased coin
flips’ worth of uncertainty there is in the value of a random variable. If I flip a coin
once, I have a probability distribution {0.5, 0.5} over {heads, tails}. The entropy is

−(0.5 log(0.5) + 0.5 log(0.5)) = −(0.5× (−1) + 0.5× (−1)) = 1 (32)

This is assuming the base of the log is 2. Often we’ll take log-base e instead, but the
intuition is the same; it’s just hard to visualize an e-sided coin.

5If you don’t know what countable means, don’t worry about it. Some of the time, we’ll mean
“finite”. When the space is infinitely large but countable, it usually means we’re referring to infinitely
many discrete elements like strings of arbitrarily long length. Uncountable things are things like the
space of real values R.

6

COMS 4705: Intro to NLP Lec 0: Background Mathematics

It’s useful to think of two extrema of entropy. The first is, for a finite (not countably
infinite) space X , what’s the maximum possible entropy of a probability distribution
over that space? Well, we’re maximally uncertain about the value of a random variable
if it could be any of them with equal probability. Let puniform(x) = 1

|X | . This is called
the uniform distribution over X . The entropy of this distribution is

H(puniform) = −
∑
x∈X

puniform(x) log puniform(x) (33)

= −|X |
(

1

|X |
log

1

|X |

)
(34)

= − log
1

|X |
= log |X | (35)

So, the maximum possible entropy grows with the log of the size of the finite space.

What’s the minimum entropy a distribution can have and how do we achieve that?

Comparing distributions

One way of measuring how similar two distributions are is the Kullback-Leibler di-
vergence, which looks a lot like entropy. Let p and q be distributions over the same
countable space X . Then the KL-divergence is:

DKL(p‖q) =
∑
x∈X

p(x) log
p(x)

q(x)
(36)

The KL-divergence is a directed quantity. Intuitively, DKL(p‖q) views p as a reference
distribution, or true distribution. (In the sense that we’re weighting each term in x by
p(x), so the “importance” or likelihood of each element in computing the divergence
is weighted by p. The term in the fraction is a ratio of probabilities, p(x)

q(x) , so you
should think of the KL-divergence as caring about probability ratios, not, say, absolute
differences of probabilities. If two probabilities are really small, like 10−5 and 10−6, this
can still matter a lot. Finally, consider that if we fix p(x) and slowly push q(x) to zero,
the term p(x)

q(x) zooms off to infinity, so if you want low KL, you really don’t want there
to be any element x such that p(x) > 0 and q(x) = 0. Contrastively, if q(x) is large but
p(x) = 0, it doesn’t matter, as the contribution of this element to the divergence is zero.

If KL-divergence cares about probability ratios, the total variation distance cares
about absolute differences. If you recall the L1 norm from vectors, this is basically that
with a factor of 1

2 multiplied in:

dTV(p, q) =
1

2

∑
x∈X

|p(x)− q(x)| (37)

One way to think of the total variation distance is, if I were to sample from p and I were
to sample from q, what fraction of the time would those samples be different elements
of X ?

Joint and conditional distributions

Joint probability distributions express the uncertainty we have over a set of random
variables. A probability distribution p over a space X × Y of tuples of elements, one
from space X and one from space Y, can be seen as a function that maps pairs (x, y) to
scalar probabilities p(x, y), where x ∈ X and y ∈ Y .

7

COMS 4705: Intro to NLP Lec 0: Background Mathematics

Conditional probability distributions express the uncertainty we have over the value
of one random variable given that we’re told the value of another. Taking a joint
distribution p(x, y), the conditional distribution p(y | x) states the probability of y
given an observed value of x. One can think of this as taking the joint probability and
fixing x, so that we have now a single-variable distribution over Y.

A related concept is marginalization, in which we take a joint distribution p(x, y), and
derive from it a distribution p(x) wherein we’ve “marginalized out” the variable y by
considering all values y could take, considering the probabilities thereof, and summing
over these probabilities to get the probabilities of just x without dependence on y:

p(x) =
∑
y∈Y

p(x, y) (38)

Chain rule of probability

Consider a large set of spaces {X1, . . . ,Xm}, and the goal of representing a probability
distribution over that space. On the one hand, such a distribution is a function that takes
in a tuple like (x1, . . . , xm) and produces a scalar. But it’s often useful to express this
joint distribution as a product of univariate conditional distributions. As an example,
if I have a joint distribution over a variable representing whether I pass a test and a
variable representing whether I study, it might be useful to model (1) whether I study,
and then separately (2) whether I pass conditioned on knowing I did/didn’t study.

The following identity, which equates the joint probability to a product of conditionals,
is called the chain rule of probability:

p(x1, . . . , xm) =

m∏
i=1

p(xi | x<i) (39)

Matrix calculus

In some sense, all of the learning done by the systems in this course is made possible
by neat software that performs efficient autodifferentiation of the functions that we
specify. So, on a day to day basis we don’t spend a ton of time computing gradients.
However, sometimes we do—often when defining a new loss function or regularization—
and regardless it’s important to know for debugging your network training. (My network
isn’t training! Oh maybe the gradient is zero through the blahblah function...)

Vector gradients

You’re likely familiar with differential calculus:

∂

∂x
x2y = 2xy (40)

For what we need of matrix calculus, we’re basically doing the same thing, but we get a
vector-valued gradient. Consider two vectors, u,v ∈ Rd. Let f(u,v) = u⊤v. Then the
partial derivative of f with respect to u we write as

∇uf = ∇uu
⊤v (41)

= v (42)

8

COMS 4705: Intro to NLP Lec 0: Background Mathematics

How can you tell? Well, you can take a single-variable derivative for each ui:

∇ui
f = ∇ui

u⊤v (43)

= ∇ui

d∑
j=1

uivi re-writing dot product as sum (44)

=

d∑
j=1

∇ui
ujvj derivative passes through sum (45)

= ∇uiuivi +
∑
j ̸=i

∇ujujvj split into term with ui and others (46)

= ∇ui
uivi +

∑
j ̸=i

0 terms without ui are constant w.r.t. ui (47)

= vi derivative of a linear function (48)

Computing this single-term gradient for every i gives you a vector of gradients ∇uf =
[v1, . . . , vd] = v.

Matrix-vector gradients

Let W ∈ Rm×d and v ∈ Rd. Let f(W, v) = Wv. What’s the gradient with respect to
W? Well, it’s not defined, because f isn’t a scalar function. Even though the form of the
gradient ∇W will be of shape Rm×d, we can’t take the gradient of a vector function. This
is sometimes a gotcha; here are some quantities you might be interested in computing
instead.

Let f(W, v) = (Wv)i. This function returns the ith dimension of the vector result of
Wv. This is a scalar function! The result is:

∇W f(W, v) = ∇W (Wv)i (49)
= ∇WW⊤

i,:v (50)
= [· · · ;0;v;0; · · ·] ∈ Rm×d v at index i (51)

(52)

This notation might be a bit confusing. Writing out (Wv)i as W⊤
i,:v, we’re noting that

only the row W⊤
i,:v contributes to the result at index i. This gives us a vector-vector

gradient; the gradient w.r.t. W⊤
i,:v of vi is v. So, the gradient of all of W is a bunch of

zeros everywhere except at index i out of m.

Chain rule of differential calculus, plus matrix conventions

Also recall taking derivatives through nonlinearities. Let W ∈ Rm×d, let u ∈ Rm, and
let v ∈ Rd. Let

f(W,u,v) = u⊤ exp(Wv) (53)

9

COMS 4705: Intro to NLP Lec 0: Background Mathematics

Let’s compute the gradient with respect to v:

∇vf(W,u,v) = ∇vu
⊤ exp(Wv) (54)

= ∇v

m∑
i=1

ui exp(W
⊤
i,:v) dot product of u and exp(·) as a sum

(55)

=

m∑
i=1

ui∇v exp(W
⊤
i,:v) gradient passes through sum and constant multiple

(56)

=

m∑
i=1

ui exp(W
⊤
i,:v)∇vW

⊤
i,:v chain rule (57)

=

m∑
i=1

ui exp(W
⊤
i,:v)Wi,: vector-vector gradient (58)

You’re welcome to leave the gradient like this. ui is a scalar, exp(W⊤
i,:v) is a scalar, and

we sum over all Wi,: multiplied by these scalars to get the gradient for v. But we can
also write this sum in a matrix form by writing out our scalars exp(W⊤

i,:v) as a diagonal
matrix with the scalar values around the diagonal, as such:

m∑
i=1

ui exp(W⊤
i,:v) Wi,: = (u⊤ diag(exp(Wv))) W (59)

Diagonal matrix, Rm×m, where diag(exp(Wv))ii = W⊤
i,:v

The m vectors of shape Rd of this matrix are being weighted and summed

We’ve highlighted here the correspondence between terms on the left- and right-hand-
side. The use of the diagonal matrix is a convention for concisely writing out the gradient
through an elementwise nonlinearity (like the exponential, here.) It makes the matrix
shapes work out. Another equivalent way to write this (with identical highlighting) is

m∑
i=1

ui exp(W⊤
i,:v) Wi,: = (u � exp(Wv))⊤ W (60)

This is a vector in Rm, like u.

The Rd vectors of this matrix are being weighted and summed

In this notation, we take the vector u and take its elementwise product (aka hadamard
product) with the vector exp(Wv). The elementwise product is

(u� exp(Wv))i = ui exp(Wv)i (61)

where ui and exp(Wv)i are scalars. To see the equivalence between this matrix form
and the previous one, note that the result of u⊤(diag(exp(Wv))) is an Rm vector with
the same values.

10

	Vectors and Matrix Algebra
	Vectors
	Matrices

	Some useful vector and matrix properties
	Norms
	Outer products
	Linear independence
	Matrix rank
	Eigenvectors and eigendecomposition
	Singular vectors and singular value decomposition
	Higher-order tensors.

	Probability Distributions
	Expectations
	Entropy
	Comparing distributions

	Matrix calculus

