Follow the River and You Will Find the C

A systems programming course with a narrative

Jae Woo Lee, Michael Kester and Henning Schulzrinne

Columbia University
SIGCSE 2011

Objects-first

e Objects-first v. Iterative-first v. Functional-first
— Current trend is object-first with Java or Python

* Everyone has an opinion — | have one too!

But not today.

Our course addresses a consequence of
choosing objects-first.

The Gap problem

CS1, CS1.5, €S2 OS

* Java % e C
Toy programs * Linux kernel
Eclipse make, svn, gdb
NotePad * vi,emacs

Typical hodgepodge transition courses offer either:
1. Too little — students are underprepared
2. Too much — students run away

Designing an effective transition

e One-semester course that covers.
— The whole C

— Some essential C++
— A lot of UNIX and networking

* With four goals:
1. Don’t forgo depth
2. Focus on doing it right

3. Lay out the big picture
4. Don’t be boring

How?

 The big project: web server from scratch
— Seemingly independent /abs as milestones
— Each contributes code or concept

* Rigid structure

— Each lab builds on previous ones
* Provide solution after each deadline

— Super-detailed instructions
* Not much room for creativity

* Motivating students
— You will write a real web server from scratch!
— You will go from a programming student to a programmer

The course, a drama

Climax
Rising action *Lab7: Web server
Lab4: 1/0 Falling action
*Lab5: UNIX *Lab8: Apache module
*Lab6: Sockets *Multi-tier architecture

Resolution
C++ essentials

*Lab9: Object lifetime
*Lab10: Linked List Il
*SmartPtr

Exposition
*Labl: Tools
*Lab2: Pointers

*Lab3: Linked List

Labl: Shell basics, SVN, Make

e Learn essential UNIX command line tools
* Learn how to compile and link multiple source
files

e Learn how to use SVN and Make

Lab2: Pointers and Arrays

* The most important and

difficult milestone!

— Students need plenty of

time and help

* Give hard problem:

$./twecho one two three
one ONE

two TWO

three THREE

* Require bug-free code

— Use Valgrind
— Focus on doing it right

int main(int argc, char **argv)

{

if (argc <= 1)
return 1;

char **copy =

duplicateArgs (argc, argv);

char **p = copy;

argv++;
pt+;
while (*argv) {
printf ("%$s %$s\n", *argv++,

}
freeDuplicatedArgs (copy) ;

return 0O;

*pt++) ;

Lab3: Linked List

* Rigid structure — header file given

struct Node {
struct Node *next;
void *data;
i
struct List {
struct Node *head;
|
struct Node *addFront (struct List *1lst, void *data);
struct Node *findNode (struct List *1st, const void *dataSought,

int (*compar) (const void *, const wvoid *));

 Comprehensive test driver also given
— Again, bug-free code using Valgrind

* Pointer semantics and type unsafe
— Will be revisited in Lab10

Lab4: Standard I/0

 Mdb: flat-file database of name and messages

struct MdbRec {
char name[16];
char msg[24];

b

* Implement MdbLookup
— Reads shared database file into linked list on start-up
— Use lab3’s linked list as a library
— Prompts for search string and prints matching records
— MdbAdd binary is provided for testing

Lab5: Turning MdbLookup into a
server without socket programming

* End of C; lecture shifts to UNIX and networking
— Brief overview of OS and TCP/IP — impart the concept of layers
— Process management in UNIX — fork and exec

* Turn MdbLookup into a server using Netcat

mkfifo mypipe

nc remote-host 40000 | : | cat mypipe | \
client server nc -1 -p 40000 | \
mdb-lookup > mypipe

— The server-side pipeline is given; students put it in a shell script
and write a C program to fork and exec the script

Lab6: Sockets and HTTP

Go through sample TCP client and server code
— TCPEchoClient.c / TCPEchoServer.c

Lab6, part 1: MdbLookupServer

— TCPEchoServer.c + MdbLookup.c (from lab4)

— Fewer than 20 lines of modification

Explain HTTP protocol

— Show the protocol in action using Netcat

* Netcat client posing as a browser
* Netcat server posing as a web server

Lab6, part 2: implement wget lite
— Downloads a single file using HTTP

Lab7: Web server from scratch!

At this point, students have all they need to implement a
subset of HTTP 1.0:

— Only GET requests
— Does not send content-type header

Part 1: serve static HTML page with images
Part 2: serve dynamic page generated by MdbLookup

/mdb-lookup?key=string string

Browser | | http-server | | MdbLookupServer
search results

. search results
formatted in HTML table

“OMG, this thing shows up in my FireFox!”

Lab8: Apache module

* Rewrite lab7 as an Apache module
— Download, build and configure Apache web server

— Write a C module to connect to MdbLookupServer

e One of the easiest labs!

Software Architecture: The Big Picture

* Retrace the evolution of MdbLookup
— Lab4: command line, access local database
— Lab5: server, put together with Netcat and pipes
— Lab6: server, coded using the sockets API
— Lab7: web-based server, written from scratch
— Lab8: web-based server, written as Apache module
* Now students understand multi-tier client-server
architecture
— Underlying architecture for LAMP, J2EE, etc.

3 weeks left — let’s learn C++

* Focus on object lifetime and memory usage
— Natural extension to our focus so far

— Often poorly understood by many who use C++

* Coverage
— Object construction and destruction
— Templates and STL containers

Lab9: Object Construction and
Destruction in C++

Detailed study of MyString
class implementation
Trace the Basic4

— Insert printf in constructor,
destructor, copy and op=()

— Analyze the output
generated by add() function

— Need to compile with

"—-fno-elide-constructors”

class MyString

{
public:

// member functions ...

// overloaded ops ...
private:

char *data;

int len;

b

MyString add (MyString sl1,
MyString s2)

{
MyString temp (" and ");
return sl + temp + s2;

}

Lab10: Working with legacy code —
Linked List Revisited

 Part 1: New face to the legacy code

— Implement StrlList, linked list of MyString, using lab3 linked
list as underlying engine

void StrList::addFront (const MyStringé& str) calls:
struct Node *addFront (struct List *list, void *data)

— This is hard!
* Need to switch from pointer semantics to value semantics
 Comprehensive test driver provided

 Part 2: Now upgrade the engine

— Turn StrlList into a template class TList
* For the engine, switch from lab3 linked list to STL list

— Part 1 test drive works without modification with typedefs

typedef string MyString;
typedef TList<string> StrList;

Come full circle — Java-style object
reference in C++

e “I'missJava...”
1. Nice Java code

Foo b = a.createFoo(); b.doSomething(); return;
2. Same exact code in C++ (or is it?)
Foo b = a.createFoo(); b.doSomething(); return;
3. We can do this, but...
Foo *b = a.createFoo(); Db->doSomething(); return;
4. Now this come pretty darn close
SmartPtr<Foo> b = a.createFoo(); b->doSomething(); return;

* SmartPtr
— Reference-counted, so can be freely copied
— Initialized with pointer to heap-allocated object
— Overloads operator->() and operator*()

Conclusion

e Students loved the course

— Great evaluations and reviews

* They liked:
— Single track nature of the course
— Rigid structure

* Detailed lab instructions
 Immediate verification of correctness

— Class mailing list

 Will share course materials with other instructors

