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Abstract

In 1996, Tennenhouse and Wetherall proposed active net-
works, where users can inject code modules into network
nodes. The proposal sparked intense debate and follow-
on research, but ultimately failed to win over the net-
working community. Fifteen years later, the problems
that motivated the active networks proposal persist.

We call for a revival of active networks. We present
NetServ, a fully integrated active network system that
provides all the necessary functionality to be deployable,
addressing the core problems that prevented the practical
success of earlier approaches.

We make the following contributions. We present a
hybrid approach to active networking, which combines
the best qualities from the two extreme approaches–
integrated and discrete. We built a working system that
strikes the right balance between security and perfor-
mance by leveraging current technologies. We suggest
an economic model based on NetServ between content
providers and ISPs. We built four applications to illus-
trate the model.

1 Introduction

Tennenhouse and Wetherall presented the vision of an
active network architecture in their seminal 1996 pa-
per [28]. They noted that growing demand for in-
network services resulted in the proliferation of mid-
dleboxes, overcoming “architectural injunctions against
them.” By adopting active technologies already avail-
able at end systems–mobile code between web server
and client, for example–they proposed to activate net-
work nodes, making in-network computation and storage
available to users.1 They argued that active networks not
only consolidate the ad hoc collection of middleboxes
into a common programmable node, but also accelerate

1We use the termusers broadly, referring not only end users, but
also application service providers and content providers.

the pace of innovation. The possibility of in-network de-
ployment enables new network-based services, and those
new ideas are no longer shackled by the slow pace of pro-
tocol standardization.

It is remarkable that, 15 years later, their voice rings
even louder today. Middleboxes have continued to pro-
liferate. NAT boxes are everywhere, from enterprise net-
works to home networks. Web proxies and load bal-
ancers are growing in numbers and capability, recently
coining a new term,application delivery controller, to
refer to the most sophisticated breed. Even traditional
router vendors are jumping in with SDKs to allow third
party packet processing modules [21].

The ossification of the network layer has gotten to a
point where researchers are no longer hesitant to call for
a clean-slate redesign of the Internet, but we have yet to
see a clear winner with a serious prospect of adoption. In
the meantime, content and application providers’ need
for in-network services are filled by application-layer so-
lutions that can make suboptimal use of the network.
Witness the emergence of the Content Distribution Net-
work (CDN) industry.

The rise of CDNs has also contributed to a recent
trend: blurring of the lines between content providers
and Internet service providers (ISPs). Some very large
content providers–Google, for example–operate data
centers at Internet exchange points. Some traditional
ISPs, on the other hand, are getting into CDN market–
Level 3 hosting and delivering Netflix’s streaming video,
for example. This trend highlights the benefit of operat-
ing services at the strategic points within the network.

Despite the far-reaching vision, however, the advo-
cates of active networks ultimately failed to win over the
networking community. The biggest objections were the
security risk and performance overhead associated with
the extreme version of active networks where every user
packet carries code within it. Another important factor,
in our opinion, was the lack of compelling use cases.
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We call for a revival of active networks. Active net-
working was ahead of its time when it was proposed,
but we believe its time has arrived. We claim that the
technology advances in the past fifteen years provides a
solid ground on which we can design an active network-
ing system that strikes the right balance to address both
security and performance concerns. Moreover, we ob-
serve that active networks present a compelling use case
in today’s Internet economy.

We present NetServ, a fully integrated active network
system that provides all the necessary functionality to be
deployable, addressing the core problems that prevented
the practical success of earlier approaches. Our contri-
bution can be summarized in terms of resolving the fol-
lowing three conflicts:

Integrated vs. Discrete We present a hybrid approach
that combines the best qualities from the two ex-
treme approaches to active networking.

Security vs. Performance We built a working system
that strikes the right balance between security and
performance by leveraging the current technologies.

Content provider vs. ISPs We suggest an economic
model on top of the newly available in-network re-
sources between content providers and ISPs. We
built four applications to illustrate the model.

We elaborate on the three conflicts in Section 2. Sec-
tion 3 describes the resulting architecture meeting the
goals and challenges. Section 4 describes our implemen-
tation on Linux. In Section 5, we expand on the security
issues. In Section 6, 7, 8, we describe our four sample
applications, talk about our activities on GENI, and dis-
cuss some issues regarding the deployment of the appli-
cations. In Section 9, we evaluate our Linux implemen-
tation. Section 10 describes the OpenFlow extension of
NetServ, which addresses the performance limitation of
our Linux implementation. Sections 11 discusses related
work. We conclude in Section 12.

2 Goals and Challenges

2.1 Integrated vs. Discrete

Active networking proposed two approaches to program-
ming the network. In theintegrated approach, every
packet contains user code that is executed by the net-
work nodes through which the packet travels. Many re-
searchers attribute the ultimate demise of active networks
to the security risk and performance overhead associated
with user packets carrying code.

In the more conservativediscrete approach, net-
work nodes are programmed by out-of-band mecha-
nisms which are separate from the data packet path. In

other words, the discrete active network nodes are pro-
grammable routers. Indeed, since the active network
proposal, the research community has seen many pro-
grammable router proposals [11,18,20,22] which are ei-
ther considered a platform for active networking, or at
least heavily influenced by it.

Notwithstanding the general view that associates pro-
grammable routers with active networks, we do not con-
sider typical programmable routers an adequate platform
to realize the active network vision. Typical uses of pro-
grammable routers center around the network functions
required by the network operators, like QoS, firewall,
VPN, IPsec, NAT, web cache, and rate limiting. The
variety and sophistication of available services on pro-
grammable routers is a boon for network management,
but it is far from the active network vision, where users
inject custom functionality into the network. In fact, we
argue that programmable routers, despite their root in ac-
tive networks, compound the problem that motivated ac-
tive networks in the first place: proliferation of middle-
boxes.

NetServ aims to be the vehicle to bring back the active
networking vision, not just another programmable router.
NetServ must provide a mechanism to inject user code
into the network. At the same time, we cannot repeat the
same failure by adopting the integrated approach.

We take a hybrid approach. Like the discrete ap-
proach, we separate the data path and the control chan-
nel through which the network nodes are programmed.
Like the integrated approach, however, it is the user who
programs the network nodes. A user sends an on-path
signaling message towards a destination of his interest,
which will trigger the NetServ nodes on-path to down-
load the user’s code module and install it dynamically.

2.2 Security vs. Performance

The user-driven software installation made security our
top priority. Unlike previous programmable routers that
ran service modules in (or very close to) kernel space
for fast packet processing, NetServ runs modules in user
space. Specifically, user modules are written in Java and
executed on Java Virtual Machines (JVMs). A NetServ
node hosts multiple JVMs, one for each user.

Our choice of user space execution and JVM allows us
to leverage the decades of technology advances in operat-
ing systems, virtualization, and Java. NetServ makes use
of isolation and resource control mechanisms available in
all layers: OS-level virtualization, process control, Java
2 security, and the OSGi component framework. We dis-
cuss resource control and isolation further in Section 5.

Running service modules in user space, and in
Java on top of that, inevitably raises the eyebrows of
performance-mindedcritics. In Section 9, we explore the
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most worrisome case, namely, a Java service module sit-
ting in the fast data path, and performing deep packet in-
spection (DPI) and modification. Every processed packet
incurs the overhead of kernel packet filter, kernel-to-user
(and back) transitions, transfer from native to Java code,
and application code running in JVM. The evaluation of
our Linux-based implementation shows that the overhead
is indeed significant, but not prohibitively so.

Our real defense against performance-related criti-
cisms is the multi-box lateral expansion of NetServ us-
ing the OpenFlow [24] forwarding engine, described
in Section 10. In this extended architecture, multiple
Linux-based NetServ nodes are attached to an OpenFlow
switch, which provides a physically separate forwarding
plane. The scalability of user services is no longer lim-
ited to a single NetServ box.

We do not claim to have invented any of the individual
technologies that we use for NetServ. Our challenge, and
thus our contribution, lies in combining the technologies
to strike the right balance between security and perfor-
mance, culminating in a fully-integrated active network
system that can be deployed on the current Internet while
remaining true to the original active networking vision.

2.3 Content providers vs. ISPs

We identify two Internet actors that are currently in a tus-
sle, and suggest a way to use NetServ to enter into an
economic alliance. We have already noted that the lines
between content providers and ISPs are blurring, which
highlights the importance of occupying strategic points
in the network. Those strategic points are often at the
network edge. Content providers are motivated to oper-
ate at the network edge, close to end users, as evidenced
by the success of CDN operators like Akamai.

The network edge belongs to a particular type of
ISPs, often calledeyeball ISPs. As opposed tocontent
ISPs who provide hosting and connectivity to content
providers,eyeball ISPs provide last-mile connectivity to
end users. It has been noted that eyeball ISPs wield in-
creased bargaining power in peering agreements because
theyown the eyeballs [12]. We argue that their presence
at the network edge is another powerful asset. The edge
routers of eyeball ISPs, due to their proximity to end
users, are excellent candidates for NetServ nodes that can
host cached content and custom service modules for con-
tent and application providers. For content providers, a
large number of NetServ nodes spread out at the network
edge would create an attractive alternative to CDNs. For
eyeball ISPs, a cluster of NetServ nodes at the network
edge provide another source of revenue.

We envision that the economic alliance between con-
tent providers and ISPs will be facilitated by brokers
who aggregate resources from different ISPs, arrange re-
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Figure 1: NetServ node architecture.

muneration, and possibly provide value-added services.
This is already happening in cloud computing.

In Section 6, we describe four sample applications
that we have built in order to illustrate this opportu-
nity. Building those applications had an interesting con-
sequence on the NetServ architecture. Some of our ap-
plication scenarios require that a user service module
running on NetServ not only perform packet processing,
but also provide traditional end-to-end network services.
The end result is that a NetServ application module can
be apacket processing application module that sits in
the data path, aserver application module that uses the
TCP/IP stack in the traditional way, or a combination of
both. We consider this trait yet another way we conform
to the active networking vision, or possibly even extend
it, as we aim to eliminate the distinction between routers
and servers. User code simply runs everywhere.

3 Architecture Overview

Figure 1 depicts the architecture of a NetServ node. The
service modules, represented as ovals, run in a virtual ex-
ecution environment. The virtual execution environment
provides a basic API as a building block layer, consisting
of preloaded modules.

We took heed of Calvert’s reflection on active net-
working in 2006 [10]. He noted that “late binding”–i.e.,
leaving things unspecified–did not help the case. We
picked the JVM as the execution environment for ser-
vice modules to achieve service mobility and a platform-
independent programming interface. Java is the natural
choice today. No other technology matches its maturity,
features, track record of large-scale deployments, exten-
sive libraries and wide-spread use among developers.

The execution environments communicate with the
packet transport layer. The packet transport layer pro-
vides the TCP/IP stack for server application modules.
For packet processing application modules, the packet
transport layer provides a mechanism to filter IP packets
and route them to appropriate modules.
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Figure 2: Deploying modules on a NetServ node.

The NetServ controller downloads and installs an ap-
plication module when it receives a signaling message.
A user sends a signaling message towards a destination
of his interest. Every NetServ node on-path intercepts
the message, takes an appropriate action, and forwards it
to the next hop.

Figure 2 places a NetServ node in a broader context
of an end-to-end service. (1) End user requests are re-
ceived by a content provider’s server, triggering signal-
ing from the server. (2) As a signaling message travels
towards an end user, it passes through a mixture of reg-
ular IP routers and NetServ-enabled routers between the
content provider and the user. Regular IP routers simply
forward the message towards the destination. (3) When
the message passes through a NetServ router, however,
it causes the NetServ router to download and install an
application module from the content provider. The ex-
act condition to trigger signaling and what the module
does once installed will depend on the application. For
example, a content provider might send a signal to in-
stall a web caching module when it detects web requests
above a predefined threshold. The module can then act
as a transparent web proxy for downstream users. We
will describe four specific examples of this application
scenario in Section 6.

4 Implementation

We implemented the NetServ architecture on Linux. We
released source code2 in conjunction with a NetServ tu-
torial we gave at the 11th GENI Engineering Conference
(GEC11). We will continue to release new versions of
our software and give NetServ tutorials at future GECs.

Figure 3 describes our Linux implementation. The ar-
row at the bottom labeled “signaling packets” indicates
the path a signaling packet takes. The packet is inter-
cepted by the signaling daemons, which unpack the sig-
naling packet and pass the contained message to the Net-
Serv controller. The controller acts on the message by
issuing commands to the appropriate service containers,

2http://www.cs.columbia.edu/irt/project/netserv
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Figure 3: Linux implementation.

to install or remove a module, for example.
Service containers are user space processes with em-

bedded JVMs. Each container holds one or more ap-
plication modules created by a single user. The JVMs
run the OSGi module framework [4]. Thus, the appli-
cation modules installed in service containers are OSGi-
compliant JAR files known asbundles. The OSGi frame-
work allows bundles to be loaded and unloaded while the
JVM is running. This enables a NetServ container to in-
stall and remove application modules at runtime.

The two circles on the upper-right service container
are server application modules, sending and receiving
normal TCP/IP packets labeled “client-server data pack-
ets.” The two circles on the lower-left container are
packet processing application modules. The arrow la-
beled “forwarded data packets” shows how an incoming
packet is routed from the kernel to a user space container
process. The packet then visits the two packet processing
modules in turn before being pushed back to the kernel.

We provide a detailed description of each part of Fig-
ure 3 in the following subsections.

4.1 Signaling

We use on-path signaling as the deployment mechanism.
Signaling messages carry commands to install and re-
move modules, and to retrieve information–like router
IP address and capabilities–about NetServ routers on-
path. We use the Next Steps in Signaling (NSIS) protocol
suite [17], an IETF standard for signaling. NSIS consists
of two layers: a genericsignaling transport layer and an
application-specificsignaling application layer.

The two boxes in Figure 3, labeled “GIST” and “Net-
Serv NSLP,” represent the two NSIS signaling layers
used in a NetServ node. GIST, the General Internet Sig-
nalling Transport protocol [27], is an implementation of
the transport layer of NSIS. GIST is a soft state protocol
that discovers other GIST nodes and maintains associa-
tions with them in the background, transparently provid-
ing this service to the upper signaling application layer.
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SETUP NetServ.apps.NetMonitor_1.0.0 NETSERV/0.1
dependencies:

filter-port:5060
filter-proto:udp
notification:

properties:visualizer_ip=1.2.3.4,visualizer_port=5678
ttl:3600

user:janedoe
url:http://content-provider.com/modules/netmonitor.jar
signature:4Z+HvDEm2WhHJrg9UKovwmbsA71FTMFykVa0Y\xGclG8o=

<blank line>

Figure 4: ASETUP message.
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NetServ NSLP is the NetServ-specific application
layer of NSIS. It contains the signaling logic of NetServ
and relays messages to the NetServ controller. The cur-
rent implementation of the NetServ signaling daemons is
based on NSIS-ka [3].

There are two kinds of NetServ signaling messages:
requests and responses. Typically, a content provider’s
server sends a request toward an end user. The last on-
path NetServ node generates a response to the server.

There are three types of NetServ requests:SETUP,
REMOVE, and PROBE. The SETUP message is used to
install a module on the NetServ nodes on-path. The
REMOVE message uninstalls it. ThePROBE message is
used to obtain the NetServ nodes’ statuses, capabilities,
and policies. Figure 4 shows an example of aSETUPmes-
sage. It requests that an application module called Net-
Monitor be downloaded from the given URL, installed
in the packet path to process UDP packets for port 5060,
and automatically removed after 3600 seconds. Our
companion technical report [23] contains a listing of the
currently supported header fields in request messages.

Figure 5 shows how response messages are gener-
ated at the last node and returned along the signaling
path back to the requester. The responses toSETUP and
REMOVE requests simply acknowledge the receipt of the
messages. A response to aPROBE request carries the
probed information in the response message. As the mes-
sage transits NetServ nodes alone the return path, each
node adds its own information to the response stack in
the message. The full response stack is then delivered
back to the requester. Figure 5 shows a response to a
module status probe being collected in a response stack.

4.2 NetServ Controller

The NetServ controller coordinates three components
within a NetServ node: NSIS daemons, service contain-
ers, and the forwarding plane. It receives control com-
mands from the NSIS daemons, which may trigger the
installation or removal of application modules within ser-
vice containers, and in some cases filtering rules in the
forwarding plane.

The controller is responsible for setting up and tear-
ing down service containers. The current prototype pre-
forks a fixed number of containers. Each container is
associated with a specific user account. The controller
maintains a persistent TCP connection to each container,
through which it tells the container to install or remove
application modules.

4.3 Forwarding Plane

The forwarding plane is the packet transport layer in a
NetServ node, which is typically an OS kernel in an
end host or forwarding plane in a router. The architec-
ture requires only certain minimal abstractions from the
forwarding plane. Packet processing modules require a
hook in user space and a method to filter and direct pack-
ets to the appropriate hook. Server modules require a
TCP/IP stack, or its future Internet equivalent. The for-
warding plane must also provide a method to intercept
signaling messages and pass them to the GIST daemon
in user space.

Currently we use Netfilter, the packet filtering frame-
work in the Linux kernel, as the packet processing hook.
When the controller receives aSETUP message contain-
ing filter-* headers, it verifies that the destination is
within the allowed range specified in the configuration
file. It then invokes aniptables command to install a
filtering rule to deliver matching packets to the appropri-
ate user space service container using Netfilter queues.

The Linux TCP/IP stack allows server modules to lis-
ten on a port. The allowable ports are specified in the
configuration file.

NetServ can use forwarding planes other than the
Linux kernel. We have prototyped alternate forwarding
planes for NetServ using the Click router [22] and the
OpenFlow [24] switch. We are also porting NetServ to
Juniper routers using the JUNOS SDK [21]. The Click
implementation and our approach for Juniper port are de-
scribed in [23]. The OpenFlow extension for NetServ is
described in detail in Section 10.

4.4 Service Container and Modules

Service containers are user space processes that run mod-
ules written in Java. Figure 6 shows our current imple-
mentation. The service container process can optionally
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be run within lxc [2], an OS-level virtualization technol-
ogy included in the Linux kernel. We defer the discus-
sion of lxc to Section 5.

When the container process starts, the container cre-
ates a JVM, and calls an entry point Java function that
launches the OSGi framework.

The service container starts with a number of prein-
stalled modules which provide essential services to the
application modules. We refer to the collection of prein-
stalled modules as the building block layer. The build-
ing block layer typically includes system modules, li-
brary modules, and wrappers for native functions. Sys-
tem modules provide essential system-level services like
packet dispatching. Library modules are commonly used
libraries like Servlet engine or XML-RPC. The building
block layer can also provide wrappers for native code
when no pure Java alternative is available. For example,
our ActiveCDN application described in Section 6.1 re-
quires Xuggler [7], a Java wrapper for the FFmpeg video
processing library.

The set of modules that make up the building block
layer is determined by the node operator. An applica-
tion module with a specific set of dependencies can dis-
cover the presence of the required modules on path us-
ingPROBE signaling messages, and then include a depen-
dency header in theSETUP message to ensure the appli-
cation is only installed where the modules are available.
We plan to develop a recommendation for the composi-
tion of the building block layer.

The container process useslibnetfilter queue to
retrieve a packet, which is then passed to the packet dis-
patcher, a Java module running inside the OSGi frame-
work. The packet dispatcher then passes the packet to
each packet processing application module in turn. This
path is depicted by the arrow labeledforwarded data
packets in Figure 6. We avoid copying a packet when
it is passed from C code to Java code. We construct a di-
rect byte buffer object that points to the memory address
containing the packet. The reference to this object is then
passed to the Java code.

5 Security

In this section, we consider security risks that arise from
the fact that multiple service containers belonging to dif-
ferent users coexist in a NetServ node.

Resource control and Isolation: A single user should
not be allowed to consume more than his fair share of
the system resources such as CPU, memory, disk space
or network bandwidth. Furthermore, a user’s execution
environment must be isolated from the others’, in order
to prevent intentional or accidental tampering.

Authentication and Authorization: A user’s request
to install or remove a module must be verified to ensure
that it is from a valid user. Installed modules are subject
to further restrictions. In particular, a packet processing
module must not be allowed to inspect or modify packets
belonging to other users.

5.1 Resource Control and Isolation

We have multiple layers of resource control and isola-
tion in the service container. First, because the container
is a user space process, we can use the standard Linux
resource control and isolation mechanisms, such as nice
value,setrlimit(), disk quota, andchroot.

We control the application modules further using Java
2 Security [14]. It provides fine-grained controls on file
system and network access. We use them to confine the
modules’ file system access to a directory, and limit the
ports on which the modules can listen. Java 2 Security
also allows us to prevent the modules from loading native
libraries and executing external commands.

In addition, the container can optionally be placed
within lxc3, the operating system-level virtualization
technology in Linux. Lxc provides further resource con-
trol beyond that which is available with standard oper-
ating system mechanisms. We can limit the percentage
of CPU cycles available to the container relative to other
processes in the host system. Lxc provides resource iso-
lation using separate namespaces for system resources.
The network namespace is particularly useful for Net-
Serv containers. A container running in lxc can be as-
signed its own network device and IP address. This al-
lows, for example, two application modules running in
separate containers to listen on “*:80” without conflict.
At at the time of this writing, a service container running
inside lxc does not support packet processing modules.

NetServ modules also benefit from Java’s language
level security. For example, the memory buffer contain-
ing a packet is wrapped with aDirectByteBuffer ob-
ject and passed to a module. TheDirectByteBuffer

3lxc is also referred to as “Linux containers” which should not be
confused with NetServ service containers. References to containers
throughout this paper mean NetServ service containers.
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is backed by memory allocated in C. However, it is not
possible to corrupt the memory by going out-of-bounds
since such access is not possible in Java.

5.2 Authentication and Authorization

SETUP request messages are authenticated using the sig-
nature header included in each message. Currently, the
NetServ node is preconfigured with the public key of
each user. When a user sends aSETUP message, it signs
the message with a private key, this signature is verified
by the controller prior to module installation. The cur-
rent prototype signs only the signaling message–which
includes the URL of the module to be downloaded. The
next prototype will implement signing of the module it-
self. As future work, we plan to develop a third party au-
thentication scheme which will eliminate the need to pre-
configure a user’s public key. A clearinghouse will man-
age user credentials and settle payments between content
providers and ISPs.

Authorization is required if theSETUP message for an
application module includes a request to install a packet
filter in the forwarding plane. If the module wants to
filter packets destined for a specific IP address, it must be
proved that the module has a right to do so. The current
prototype preconfigures the node with a list of IP prefixes
that the user is authorized to filter.

Our requirement to verify the ownership of a network
prefix is similar to the problem being solved in the IETF
Secure Inter-Domain Routing working group [6]. The
working group proposes a solution based on Public Key
Infrastructure (PKI), calledRPKI. RPKI can be used to
verify whether a certain autonomous system is allowed
to advertise a given network prefix. We plan on using
that infrastructure once it becomes widely available.

We also plan to support a less secure, but simpler veri-
fication mechanism that does not rely on PKI. It is based
on a reverse routability check. To prove the ownership
of an IP address, the user generates a one-time password
and stores the password on the server with that IP ad-
dress. The password is then sent in theSETUP message.
Before installing the module, the NetServ controller con-
nects to the server at the IP address, and compares the
password included in theSETUP message with the one
stored on the server. A match shows that the user of the
module has access to the server. The NetServ node ac-
cepts this as proof of IP ownership.

6 NetServ Applications

We advocate NetServ as a platform that enables content
providers and ISPs to enter into a new economic alliance.
In this section, we present four example applications–
ActiveCDN, KeepAlive Responder, Media Relay, and

End user
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NetServ

router
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router
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Content

provider

(1) User requests video: http://content-provider.com/?file=foo

(2) Content provider sends video file

(3) Content provider sends on-path signal to deploy ActiveCDN module

NN

(4) NetServ routers download the module

(3) Content provider sends on-path signal to deploy ActiveCDN module

(6) NetServ routers with ActiveCDN reply to probe

(7) Another user requests http://content- provider.com/?file=foo

(8) Content provider finds nearby ActiveCDN node, sends redirect message

(9) User requests http://netserv1.service-provider.com/?file=foo

(10) ActiveCDN downloads the video, simultaneously serving and caching it

(5) Content provider probes for installed ActiveCDN modules

(11) ActiveCDN can also process content

Figure 7: How ActiveCDN works.

Overload Control–which demonstrate economic benefit
for both parties.

6.1 ActiveCDN

We developed ActiveCDN, a NetServ application mod-
ule that implements CDN functionality on NetServ-
enabled edge routers. ActiveCDN brings content and
services closer to end users than traditional CDNs. An
ActiveCDN module is created by a content provider, who
has the full control of the placement of the module. The
module can be redeployed to different parts of the In-
ternet as needed. This is in stark contrast to the largely
preconfigured topology of existing CDNs.

The content provider also controls the functionality of
the module. The module can perform custom processing
specific to the content provider, like inserting advertise-
ments into video streams.

Figure 7 offers an example of how ActiveCDN works.
When an end user requests video content from a content
provider’s server, the server checks its database to deter-
mine if there is a NetServ node running ActiveCDN in
the vicinity of the user. If there is no ActiveCDN node
in the vicinity, the server serves the video to the user,
and at the same time, sends aSETUP message to deploy
an ActiveCDN module on an edge router close to that
user. This triggers each NetServ node on-path, generally
at the network edge, to download and install the mod-
ule. Following theSETUP message the server sends a
PROBE message to retrieve the IP addresses of the Net-
Serv nodes that have successfully installed ActiveCDN.
This information is used to update the database of de-
ployed ActiveCDN locations. When a subsequent re-
quest comes from the same region as the first, the content
provider’s server redirects the request to the closest Ac-
tiveCDN node, most likely one of the nodes previously
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Figure 8: Operation of KeepAlive Responder.

installed. The module responds to the request by down-
loading the video, simultaneously serving and caching it.
The content provider’s server can send aREMOVE mes-
sage to uninstall the module, otherwise the module will
be removed automatically after a while. The process re-
peats when new requests are made from the same region.

6.2 KeepAlive Responder

The ubiquitous presence of Network Address Transla-
tors (NATs) poses a challenge to communication services
based on Session Initiation Protocol (SIP) [25]. After a
SIP User Agent (UA) behind a NAT box registers its IP
address with a SIP server, the UA needs to make sure that
the state in the NAT box remains active for the duration
of the registration. Failure to keep the state active would
render the UA unreachable. The most common mecha-
nism used by UAs to keep NAT bindings open is to send
periodic keep-alive messages to the SIP server.

The timeout for UDP bindings appears to be rather
short in most NAT implementations. SIP UAs typically
send keep-alive messages every 15 seconds [9] to remain
reachable from the SIP server.

While the size of a keep-alive message is relatively
small–about 300 bytes when SIP messages are used for
this purpose, which is often the case–large deployments
with hundreds of thousand or even millions of UAs are
not unusual. Millions of UAs sending a keep-alive ev-
ery 15 seconds represent a significant consumption of
network and server resources. A surprising fact is that
the keep-alive traffic can be a bottleneck in scaling a SIP
server to a large number of users [9].

Figure 8 shows how NetServ could help offload NAT
keep-alive traffic from the infrastructure of Internet Tele-
phony Service Providers (ITSPs). Without the NetServ
KeepAlive Responder, the SIP UA behind a NAT sends a
keep-alive request to the SIP server every 15 seconds and
the SIP server sends a response back. When an NSIS-
enabled SIP server starts receiving NAT keep-alive traf-
fic from a SIP UA, it initiates NSIS signaling in order to
find a NetServ router along the network path to the SIP
UA. If a NetServ router is found, the router downloads
and installs the KeepAlive module provided by the ITSP.

After the module has been successfully installed, it
starts inspecting SIP traffic going through the router to-
wards the SIP server. If the module finds a NAT keep-
alive request, it generates a reply on behalf of the SIP

Figure 9: Operation of NetServ Media Relay.

server, sends it to the SIP UA, and discards the original
request. Thus, if there is a NetServ router close to the SIP
UA, the NAT keep-alive traffic never reaches the network
or the servers of the ITSP; the keep-alive traffic remains
local in the network close to the SIP UA.

The KeepAlive Responder spoofs the IP address of the
SIP server in response packets sent to the UA. IP address
spoofing is not an issue here because the NetServ router
is on-path between the spoofed IP address and the UA.

6.3 Media Relay

ITSPs may need to deploy media relay servers to facili-
tate the packet exchange between NATed UAs. However,
this approach has several drawbacks, including increased
delay, additional hardware and network costs, and man-
agement overhead.

Figure 9 shows how NetServ helps to offload the me-
dia relay functionality from an ITSP’s infrastructure. The
direct exchange of media packets between the two UAs
in the picture is not possible. Without NetServ the ITSP
would need to provide a managed media relay server.
When a NetServ router is available close to one of the
UAs, the SIP server can deploy the Media Relay module
at the NetServ node.

When a UA registers its network address with the SIP
server, the SIP server sends an NSIS signaling message
towards the UA, instructing the NetServ routers along the
path to download and install the Media Relay module.
The SIP server then selects a NetServ node close to the
UA, instead of a managed server, to relay calls to and
from that UA.

6.4 Overload Control

SIP servers are vulnerable to overload due to the lack of
congestion control in UDP. The IETF has developed a
framework for overload control in SIP servers that can
be used to mitigate the problem [15]. Figure 10 illus-
trates the scenario. The SIP server under load, referred
to as the Receiving Entity (RE), periodically monitors its
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Figure 10: NetServ as SIP overload protection.

load. The information about the load is then communi-
cated to the Sending Entity (SE), which is the upstream
SIP server along the path of incoming SIP traffic. Based
on the feedback from the RE, the SE then either rejects
or drops a portion of incoming SIP traffic.

We implemented a simple SIP overload control frame-
work in NetServ. When the load on the SIP server ex-
ceeds a preconfigured threshold, the SIP server starts
sending NSIS signals towards the UAs in an attempt to
discover a NetServ node along the path and install the SE
NetServ module on the node. Once the module is suc-
cessfully installed, it intercepts all SIP messages going
to the SIP server. Based on the periodic feedback about
the current volume of traffic seen by the SIP server, the
module adjusts the amount of traffic it lets through in real
time. The excess portion of incoming traffic is rejected
with “503 Service Unavailable” SIP responses.

Without NetServ, an ITSP’s options in implementing
overload control are limited. The ITSP can put both the
SE and the RE in the same network. Such configuration
only allows hop-by-hop overload control, in which case
excessive traffic enters the ITSP’s network before it is
dropped by the SE. Since all incoming traffic usually ar-
rives over the same network connection, using different
control algorithms or configurations for different sources
of traffic becomes difficult.

With NetServ, the ability to run an SE implementation
at the edge of the network makes it possible to experi-
ment with control algorithms and configurations for dif-
ferent sources of traffic. Being able to install and remove
a NetServ SE module dynamically makes it easy for an
ITSP to change the traffic control algorithm. Since the
NetServ SE module is installed outside the ITSP’s net-
work, excess traffic is rejected before it enters the ITSP’s
network, protecting not only the SIP server, but also the
network connection.

7 NetServ on GENI

GENI [1] is a federation of many existing network
testbeds under a common management framework.
GENI is comprised of a diverse set of platform resources,
which are shared among many experimenters.

NetServ is becoming a resident tool of the GENI in-
frastructure. NetServ’s common execution environment
can accelerate development, deployment and testing of

experiments. NetServ’s Java-based API makes GENI a
gentler environment for educational use.

Figure 11: ActiveCDN demo.

We demonstrated NetServ, using two of our sample
applications, at the plenary session of the 9th GENI En-
gineering Conference (GEC9).4 Figure 11 shows the
screenshots from the ActiveCDN demo. The ActiveCDN
module performed custom processing on cached content,
watermarking a video stream with local weather infor-
mation of Salt Lake City where the module was installed.
We hold NetServ tutorials at GECs since GEC11.

8 Discussion

Reverse data path
The descriptions of the NetServ applications in Sec-

tion 6 assumed that the reverse data path is the same as
the forward path. On the Internet today, however, this is
often not the case due to policy routing.

For ActiveCDN and Media Relay, this is not an is-
sue. The modules only need to be deployedcloser to
the users, not necessarily on the forward data path. The
module will still be effective if the network path from the
user to the NetServ node has a lower cost than the path
from the user to the server.

For KeepAlive Responder and Overload Control, the
module must be on-path to carry out its function. How-
ever, this is not a serious problem in general. First, Net-
Serv routers are located at the network edge. It is un-
likely that the reverse path will go through a different
edge router. Even in the unlikely case that a module is
installed on a NetServ router which is not on the reverse
path, if we assume a dense population of users, it is likely
that the module will serve some users, albeit not the ones
who triggered the installation in the first place. If a mod-
ule is installed at a place where there is no user to serve,
it will time-out quickly.

If a reverse on-path installation is indeed required,
there are two ways to handle it. First, the client-side
software can initiate the signaling instead of the server.
But this requires modification of the client-side software.
Second, the server can use round-trip signaling. We
implementedTRIGGER signaling message in NetServ
NSLP. The server encapsulates aSETUP or PROBE in a

4The 14-minute demo video is athttp://vimeo.com/16474575.
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TRIGGER, and sends it towards the end user. The last
NetServ router on-path creates a new upstream signaling
flow back to the server. This approach, however,
assumes that the last NetServ node is on both forward
and reverse path, and increases the signaling latency.

Off-path signaling
In addition to on-path signaling, we envision that

certain cases of off-path signaling would be useful for
some NetServ applications. There is a proposal to
extend NSIS to include epidemic signaling [13]. The
proposed extension will enable three additional modes
of signal dissemination: (1) signaling around the sender
(bubble), (2) signaling around the receiver (balloon),
and (3) signaling around the path between the sender
and receiver (hose). The bubble and balloon modes
will be useful for NetServ module deployment within
an enterprise environment. The hose mode will be
useful for the scenarios where NetServ nodes are not
exactly on-path, but a couple of hops away. This mode
can mitigate the aforementioned concerns about the
divergent reverse path.

9 Evaluation

In this section, we provide evaluation results for our
Linux implementation. In particular, we measure the
overhead introduced by placing packet processing mod-
ules in user space JVM. First, we measure the Maximum
Loss Free Forwarding Rate (MLFFR) of a NetServ node
with a single service container. We show the overhead
associated with each layer in a NetServ node. Second,
we perform a microbenchmark measurement to show the
delay in each layer. Lastly, we run 100 service containers
in a NetServ node and measure the throughput and mem-
ory consumption. Our results suggest that while there is
certainly significant overhead, it is not prohibitive.

9.1 Setup

Our setup consists of three nodes connected in sequence:
sender, router, and receiver. The sender generates UDP
packets addressed to the receiver and sends them to the
router, which forwards them to the receiver.

All three machines were equipped with a 3.0GHz In-
tel Dual Core Xeon CPU, 4 x 4GB DDR2 RAM, and an
Intel Pro/1000 Quad Port Gigabit Ethernet adapter con-
nected on PCIe x 4 bus which provided 8Gb/s maximum
bandwidth. All links ran at 1Gb/s. We disabled Ethernet
flow control which allowed us to saturate the connection.

For the sender and receiver, we used a kernel mode
Click router version 1.7.9 running on a patched 2.6.24.7

Linux kernel. The Ethernet driver was Intel’s igb ver-
sion 1.2.44.3 with Click’s polling patch applied. For the
router, we used Ubuntu Linux 10.04 LTS Server Edition
64bit version, with kernel version 2.6.32-27-server, and
the igb Ethernet driver upgraded to 2.4.12 which sup-
ports the New API (NAPI) in the Linux kernel.

9.2 Results

We measured the MLFFRs of six different configurations
of the router. Each configuration adds a layer to the
previous one, adding more system components through
which a packet must travel.

Configuration 1 is the plain Linux router we described
above. This represents the maximum attainable rate of
our hardware using a Linux kernel as a router.

Configuration 2 adds Netfilter packet filtering kernel
modules to configuration 1. This represents a more re-
alistic router setting than configuration 1 since a typical
router is likely to have a packet filtering capability. This
is the base line that we compare with the rest of the con-
figurations that run NetServ.

Configuration 3 adds the NetServ container, but with
its Java layer removed. The packet path includes the ker-
nel mode to user mode switch, but does not include a
Java execution environment.

The packet path for configuration 4 includes the full
NetServ container, which includes a Java execution en-
vironment. However, no application module is added to
the NetServ container.

Configuration 5 adds NetMonitor, a simple NetServ
application module with minimal functionality. It main-
tains a count of received packets keyed by a 3-tuple:
source IP address, destination IP address, and TTL.

Configuration 6 replaces NetMonitor with the Keep-
Alive module described in Section 6.2. KeepAlive exam-
ines incoming packets for SIPNOTIFY requests with the
keep-aliveEvent header and swaps the source and des-
tination IP addresses. For the measurement, we disabled
the address swapping so that packets can be forward to
the receiver. This test represents a NetServ router run-
ning a real-world application module.

Figure 12(a) shows the MLFFRs of five different
router configurations. The MLFFR of configuration 1
was 786kpps, configuration 2 was 641kpps, configura-
tion 3 was 365kpps, configuration 4 was 188kpps, and
configuration 5 was 188kpps.

The large performance drop between configurations
2 and 3 can be explained by the overhead added by a
kernel-user transition. The difference between configu-
rations 3 and 4 shows the overhead of Java execution.
There is almost no difference between configurations 4
and 5 because the overhead of the NetMonitor module is
negligible.
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Figure 12: Forwarding rates of the router with different configurations.

The dips in the curves for configurations 3 through
5 are the result of switching between the interrupt and
polling modes of the NAPI network driver in Linux. See
our technical report [23] for details.

Figure 12(b) shows the repeated measurement but with
340B packets, in order to compare them with configura-
tion 6. For configuration 6, we created a custom Click
element to send SIPNOTIFY requests, which are UDP
packets. The size of the packet was 340B, and we used
the same SIP packets for configurations 1 through 5.

The MLFFR of configuration 1 was 343kpps,
configuration 2 was 343kpps, configuration 3 was
213kpps, configuration 4 was 117kpps, configuration 5
was 111kpps, and configuration 6 was 71kpps.

There was no difference between the performance of
configurations 1 and 2. The difference between configu-
rations 2 and 3 is due to the kernel-user transition. The
difference seen between configurations 3 and 4 is due
to Java execution overhead. Both of these were previ-
ously seen above. Again, there is almost no difference
between configurations 4 and 5. The difference between
configurations 5 and 6 shows the overhead of KeepAlive
beyond NetMonitor. There is a meaningful difference be-
tween the modules because the KeepAlive module must
do deep packet inspection to find SIPNOTIFY messages,
and further, we made no effort to optimize the matching
algorithm.

Figure 13 shows our microbenchmark result. It com-
pares delays as a packet travels through each layer in
a NetServ node. The first bar shows only the delay in
Linux kernel (configuration 1 in our MLFFR graphs),
the second bar adds the delay from the kernel packet
filter (configuration 2), and the third bar shows the de-
lays in all layers up to the KeepAlive module (configura-
tion 6). The second bar represents the delay experienced
by packets transiting a NetServ node without being pro-
cessed by a module. We note that the additional overhead
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Figure 13: Microbenchmark.

compared to the first bar, plain Linux forwarding, is very
small. The third bar, representing the full packet pro-
cessing overhead, shows a significant amount of delay,
as expected.

The overhead is certainly significant. Packets pro-
cessed by the KeepAlive module achieve only 20% of
throughput and incur 92microsecond delay, compared to
unprocessed packets. However, we make a few obser-
vations in our defense. The KeepAlive throughput of
71kpps is on par with the average traffic experienced by
a typical edge router [8]. Our tests were performed on
modest hardware, and more importantly, a packet pro-
cessing module would only be expected to handle a small
fraction of the total traffic. Our Linux implementation,
thus, is quite usable in low traffic environments. And, as
we argued before, the OpenFlow extension in Section 10
provides a solution for high traffic environments.

Lastly, we observe the behavior of a NetServ node
running many containers. Incoming traffic is equally
distributed to each container. Figure 14 shows the to-
tal throughput and memory consumption as we increase
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Figure 14: NetServ node with many containers.

the number of containers in a NetServ node. The to-
tal throughput gradually decreases, indicating the over-
head of running many containers. The line labeled “peak
throughput” is the maximum throughput reported just be-
fore the NetServ node started experiencing packet loss as
the input rate increased. The line labeled “throughput at
saturation” is the throughput when it plateaued against
the increasing input rate. The overhead of running many
containers, again, exacerbates the difference. Mem-
ory consumption is proportional to the number of con-
tainers. Each container consumes about 110MB when
the KeepAlive module is busy processing packets at the
peak throughput. Each container contains a JVM, OSGi
framework, and a collection of building block modules.
Figure 14 shows that a NetServ node scales reasonably
well as we increase the number of containers in it.

10 OpenFlow Extension

The Linux-based implementation that we described in
the previous section has a limitation in terms of perfor-
mance. Multiple layers present in our execution envi-
ronment introduce significant overhead when a packet is
subject to DPI, as our evaluation will show in Section 9.
A more serious limitation is the fact that the scalability is
limited to a single Linux box, even when no packet pro-
cessing is performed. In general, a general-purpose PC
cannot match the forwarding performance of a dedicated
router. This makes our Linux implementation unsuitable
for high traffic environment.

We can address this limitation by offloading the for-
warding plane onto a physically separate hardware ele-
ment, capable of forwarding packets at line rate. The
hardware device must also provide dynamically instal-
lable packet filtering hooks, so that the packets that need
to be processed by NetServ modules can be routed appro-
priately to one or more NetServ nodes which are attached
to the hardware device.
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Figure 15: How OpenFlow works.

The OpenFlow programmable switch architecture pro-
vides exactly the capabilities that we need. In this sec-
tion, we briefly explain the OpenFlow architecture, and
describe our prototype implementation of the OpenFlow
extension of NetServ. At the time of this writing, the pro-
totype is at an early stage where we have proved that our
approach works. We expect to have a beta release by the
time this paper is published.

10.1 OpenFlow Overview

An OpenFlow switch [24] is an Ethernet switch with its
internal flow table exposed via a standardized interface
to add and remove flow entries. The OpenFlow Con-
troller (OFC), typically a software program running on
a remote host, communicates with the switch over a se-
cure channel using the standard OpenFlow Protocol. An
entry in the flow table defines a mapping between a set
of header fields–MAC/IP addresses and port numbers,
for example–and one or more associated actions, such
as dropping a packet, forwarding it to a particular port
on the switch, or even simple modifications of header
fields. When a packet arrives at an OpenFlow switch,
the switch looks up the flow table. If an entry match-
ing the packet header is found, the corresponding actions
are performed. If no entry matches the packet header,
the packet is sent to the remote OFC, which will decide
what to do with the packet, and also insert an entry into
the switch’s flow table so that subsequent packets of the
same flow will have a matching entry.

Figure 15 illustrates this process. (1) A packet des-
tined for 10.0.0.1 arrives at an OpenFlow switch, which
contains no matching entry in its flow table. (2) A
PacketIn message is sent to the OFC. The OFC, after
consulting its routing table, determines the switch port
to which the incoming packet should be output. (3) The
OFC sends aFlowMod command to the switch to add
a flow table entry. (4) The command also include an in-
struction to forward the incoming packet, which has been
sitting in a queue waiting for the verdict from the OFC.
The packet goes out to the destination. (5) All subse-
quent packets destined for 10.0.0.1 match the new flow
table entry, so the packets are forwarded by the hardware
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Figure 16: NetServ with OpenFlow extension.

switch at line rate without incurring the overhead of mak-
ing a round trip to OFC.

10.2 NetServ on OpenFlow

NetServ on OpenFlow integrates the two technologies
in two ways. First, one or more NetServ nodes are at-
tached to an OpenFlow switch. From NetServ’s point of
view, the OpenFlow switch provides a common forward-
ing plane for multiple NetServ nodes. From OpenFlow’s
point of view, the NetServ nodes are external packet pro-
cessing devices. (The OpenFlow paper [24] envisions
such devices based on NetFPGA.)

Second, the OpenFlow Controller (OFC) is now im-
plemented as a NetServ module. As such, the OFC can
be dynamically installed, updated, or moved to another
node. Furthermore, there can be many OFCs, one per
user, or even one per application. In conjunction with
FlowVisor–a special purpose OFC that acts as a transpar-
ent proxy for a group of OFCs–NetServ-based OFCs will
open up interesting possibilities like an in-network ser-
vice that reconfigures network topology as needed. Fur-
ther exploration is planned as future work.

Figure 16 shows what happens when a packet destined
for 10.0.0.1 is being processed by a NetServ node at-
tached to an OpenFlow switch. First of all, the OFC
running in NetServ sends a proactiveFlowMod com-
mand to direct all NSIS signaling messages to the Net-
Serv controller. (1) When the NetServ controller receives
a SETUP message–thanks to the proactive flow table
entry–it installs the requested packet processing applica-
tion module. In addition, the NetServ controller tells the
OFC that an application module has requested a packet
filter, and the OFC remembers the fact in preparation for
incoming packets, but it does not add a flow table entry
at this point. (2) A packet matching the filtering rule of
the NetServ application arrives. There is no flow table
entry for it, so it goes to the OFC. The OFC in NetServ,
before it begins its usual OFC work of consulting its rout-
ing table, notices that the packet matches the application

filtering rule that the NetServ controller has told the OFC
earlier. (3) The OFC translates the NetServ application’s
packet filter into a flow table entry, and injects it into the
OpenFlow switch so that the packet will be routed to the
NetServ node. (4) The packet is delivered to the NetServ
node, and then to the appropriate application module. (5)
After processing the packet, the NetServ node sends it
back to the switch. At that point, however, the packet
must go back to the OFC, so that it can find its switching
destination. When the OFC sees the packet the second
time around, it knows that it has been processed by a
NetServ module (from the input switch port), so it goes
straight to the normal OFC work of consulting its routing
table. (6) The OFC injects another flow table entry in or-
der to output the packet. (7) The packet goes to the des-
tination. (8) Subsequent packets matching the NetServ
application’s filtering rule are now routed directly to the
NetServ node without going to the OFC first (because of
the flow table entry added in step (3).) (9) And when
those subsequent packets come back from the NetServ
node to the switch, there is the flow table entry added in
step (6) to guide them to the correct output port.

Having a separate hardware-based forwarding plane
eliminates the performance problem for the packets that
do not go through a NetServ node. For the packets
that need to go through NetServ, the OpenFlow exten-
sion does not reduce individual packet processing time,
but we can increase the throughput by attaching multi-
ple NetServ nodes. Different flows can be assigned to
different NetServ nodes, or depending on applications, a
single flow can use multiple NetServ nodes.

11 Related Work

Many earlier programmable routers focused on provid-
ing modularity without sacrificing forwarding perfor-
mance, which meant installing modules in kernel space.
Router Plugins [11], Click [22], PromethOS [20], and
Pronto [18] followed this approach. As we noted before,
NetServ runs modules in user space.

LARA++ [26] is similar to NetServ in that the mod-
ules run in user space. However, LARA++ focuses more
on providing a flexible programming environment by
supporting multiple languages, XML-based filter spec-
ification, and service composition. It does not employ a
signaling protocol for dynamic code installation.

The Million Node GENI project [5], which is a part
of GENI, provides a peer-to-peer hosting platform using
Python-based sandbox. An end user can contribute re-
sources from his own computer in exchange for the use
of the overlay network. The Million Node GENI focuses
on end systems rather than in-network nodes.

Google Global Cache (GGC) [16] refers to a set
of caching nodes located in ISPs’ networks, provid-
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ing CDN-like functionality for Google’s content. Net-
Serv can provide the same functionality to other content
providers, as we have demonstrated with ActiveCDN
module.

One of the goals of Content Centric Networking
(CCN) [19] is to make the local storage capacity of nodes
across the Internet available to content providers. CCN
proposes a replacement of IP by a new communication
protocol, which addresses data rather than hosts. Net-
Serv aims to realize the same goal using the existing IP
infrastructure. In addition, NetServ enables content pro-
cessing in network nodes.

12 Conclusion

We call for a revival of active networks. We present Net-
Serv, a fully integrated active network system that pro-
vides all the necessary functionality to be deployable,
addressing the core problems that prevented the practi-
cal success of earlier approaches.

We present a hybrid approach to active networking,
which combines the best qualities from the two extreme
approaches–integrated and discrete. We built a work-
ing system that strikes the right balance between security
and performance by leveraging current technologies. We
suggest an economic model based on NetServ between
content providers and ISPs. We built four applications to
illustrate the model.
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