
lthough most people have a common understand-
ing of what the Internet is, the expression Future
Internet has different meanings depending essen-
tially on the expectations about the future connec-

tivity, services, and time scale. The following definitions, some
of them evoked from the current use of the Internet, are com-
plementary, each highlighting different aspects of the expect-
ed future network.

Internet of Communities: This term refers to the organiza-
tion of people activities through the Internet, on the basis of
common interests and likings.

Internet of Services: It refers to the interconnection of
providers and consumers of any type of service that can be
accessed through the Internet.

Internet of Media: It refers to a network supporting media
search, delivery, and integration, regardless of their format,
providing suitable storage and quick access.

Internet of Things: It means a pervasive network, capable
of connecting all devices that can generate, transmit, or
receive contents, including sensors, cameras, and wearable
devices.

Internet in the Space: It refers to a network designed for
supporting future deep space missions, also referred to as
Interplanetary Internet.

The classification above is not simply a way of highlighting
different aspects of the Future Internet, but has also led
researchers to the definition of new networking paradigms,
disruptive of the current conversational architecture of the IP
protocol. The content centric networking is a striking example
of a new way of conceiving networking [1].

Many researchers have observed a scale-free structure of
the current Internet [2], with a dense local connectivity and
long haul network interconnections. The expectations for the
Future Internet enhance this feature. The offered services
may be regarded as emergent behaviors determined by the
operation of the basic constituents of the Internet, the high

variety of contents, algorithms, nodes, networks, and protocols
therein. Mutual relations between these constituents highlight
nonlinear relations of the statistical descriptors of traffic
flows. Thus, the integration of activities happening at very dif-
ferent time and spatial scales makes any system analysis very
difficult. Thus, the Future Internet appears as a complex sys-
tem [2], the management of which may be devised as an
aggregation of control loops, both nested and chained. Hence,
the effects of any control element may be fed back to other
elements.

For all these reasons, a suitable management architecture
for the Future Internet is needed. According to the func-
tional model defined by the ITU-T specification M.3400, a
Network Management system is traditionally organized in
the Fault, Configuration, Accounting, Performance, and
Security (FCAPS) management components. Fault Manage-
ment means revealing and counteracting faults; Configura-
t ion Management is used to obtain the configuration
parameters from network entities, to enable their configura-
tion, and to keep track of configuration changes; Perfor-
mance Management includes quantifying, measuring,
reporting, analysing, and controlling performance of each
network component; Accounting Management includes usage
statistics, allocation of costs, and relevant billing; Security
Management consists of monitoring accesses to the network
resources according to pre-defined policies. Subsequently, in
the context of the so-called Next Generation Networks
(NGN), the management categories have been extended to
roaming management, fraud management, software manage-
ment, user and equipment management, Quality of Service
(QoS) management, subscriber, and equipment trace man-
agement [3].

In a Future Internet perspective, the use of protocols like
SNMP has been criticized [4]. What is observed is that with-
out a complete separation of the control and data plane, the
effectiveness of the control actions is questionable. In other

IEEE Network • November/December 201124 0890-8044/11/$25.00 © 2011 IEEE

AA

Mauro Femminella, Roberto Francescangeli, Gianluca Reali, DIEI — University of Perugia
Jae Woo Lee and Henning Schulzrinne, Columbia University

Abstract
This article shows an autonomic management solution based on the recently
defined programmable node architecture NetServ. The article starts with a general
description of the classical network management requirements and their adaptation
to the expected network evolution. After a description of the major issues charac-
terizing the management of the expected Future Internet, the main autonomic man-
agement paradigms, and some recently introduced autonomic service platforms,
we show and demonstrate the effectiveness of the NetServ architecture. Born as a
means to deploy and execute networked services at runtime over programmable
routers, NetServ has proved to be a suitable environment for hosting an autonomic
management architecture.

An Enabling Platform for Autonomic
Management of the Future Internet

FEMMINELLA LAYOUT 11/14/11 11:37 AM Page 24

IEEE Network • November/December 2011 25

words, the management protocol should not rely on the net-
work services provided by entities that it is supposed to man-
age.

The most significant expected enhancement of the manage-
ment architecture is the introduction of autonomic, or self-
management, procedures. In fact, the autonomic operation is
regarded as the most suitable approach to manage the net-
work complexity.

In particular, the following self management scopes have
been identified [5]:

Self-locating, which refers to the capability of dynamically
associating each element of the network with a location within
a global reference system.

Self-configuring, which means the process of configuring
network elements by minimizing human intervention. These
functions are needed when any new element is deployed or
when the operating conditions require changes in the element
configurations. An example of self configuration functions is
the IPv6 interface reconfiguration due to site renumbering.

Self-healing, which indicates any proactive or reactive auto-
nomic function capable of restoring, in response to any prob-
lem, the proper system operation without human intervention
and service disruption. Examples of self-healing functions are
the connectivity restoration functions in sensor networks due
to a sensor failure.

Self-optimizing, which denotes the use of autonomic func-
tions for allocating network resources, maximizing their uti-
lization, and preserving the target QoS/QoE for customers.
Thus, this category includes performance management and is
strictly related to configuration management.

Self-protecting, an autonomic set of procedures and proto-
cols aimed at classifying all entities in the network and associ-
ating each with access rights according to known privilege
levels, so as to prevent undesired or intrusive actions. Denial
of service (DoS) attack prevention and virus dissemination
counteraction strategies are typical instances of self-protecting
autonomic operations.

A common requirement of all the autonomic scopes illus-
trated is a suitable context awareness. This means a deep
knowledge of the set of information representing the working
condition of the network entities. For example, the knowledge
of flow traffic descriptors, server load, available bandwidth,
supported services, and router capabilities, allows executing
self-optimizing and self-configuring procedures. Again, the
knowledge of some key performance indicators (KPI), such as
signaling traffic volume, abnormal protocol operation events,
resource utilization levels, and number of alarms generated,
allows the implementation of self-protecting and self-healing
strategies, such as autonomic fault prevention, fault localiza-
tion, and fixing procedures.

In what follows, we present a novel solution for deploying
autonomic network and service management architectures.
We do not aim at introducing new management paradigms,
but rather to increase the effectiveness of the existing ones by
resorting to the potential provided by the NetServ project,
which is a framework designed to deploy and execute net-
worked services at runtime over programmable routers.

The use of the NetServ capabilities in the management
plane represents a step forward in the state of the art, illus-
trated in the next section, since it increases the flexibility of
management solutions, their dynamic response to events
requiring management actions, decreases the relevant traffic,
and decreases the response time. We illustrate a proposal for
deploying a self-management architecture. After that, we
show some experimental results of a practical demonstration
of some self-securing functions. Experiments consist of miti-
gating a dynamic DoS attack from multiple sources, which is

one of the pressing security problems for the Future Internet.
The article ends with some final comments on the results
achieved and possible research directions.

Related Work
In the recent literature, some different management
paradigms have been proposed to achieve a suitable context
awareness and to implement effective autonomic network and
service management. The most significant ones are illustrated
in what follows.

Autonomic Computing
Autonomic computing [6] may be regarded as a precursor of
autonomic management, and consists of a number of control-
ling devices, referred to as Autonomic Managers. Each manag-
er implements a control loop aiming to regulate a Managed
Entity, which is a network resource to be managed, accessible
through a standard interface referred to as a Touchpoint. An
Autonomic Manager is goal-oriented, and takes run-time deci-
sions, independently of the other managers, according to the
established goal. The manager operation in autonomic com-
puting has been sketched by the expression “Monitor-Ana-
lyze-Plan-Execute,” which has inherited similar concepts from
the research area of artificial intelligence, such as “Sense-
Think-Act.”

Semantic Reasoning
Semantic reasoning [7] is an inductive process for extracting
management related information from available data of the
managed system. The fundamental aspect of this approach is
the ontological representation of the set of system compo-
nents, which includes both business related information, such
as service level agreements, and infrastructure based informa-
tion. In order to use and combine this set of heterogeneous
information, an initial abstraction process is needed, in order
to create a common representation of it, organized according
to a given information model. In this way the overall system is
represented by a hierarchical data structure, including infor-
mation of all system entities, their mutual relations, and man-
agement rules and goals. Hence, this approach allows using a
set of simultaneous ontologies both to infer logical conse-
quences not directly observable (e.g. an abnormal component
operation) and to dynamically determine a close match
between resource allocation and management objectives.

Overlay Management Backbones
The overlay management backbone approach [8] consists of
the use of distributed hash tables (DHT) for implementing
distributed self-organizing activity management. By using
DHT, network components are associated with specific tasks
in an autonomic and dynamic way, such as collecting a specific
information type or monitoring. The underlying general algo-
rithm partitions a key space until each portion of the space is
associated with a manager entity. DHT algorithms associate a
key space identifier with each management activity, which is
in turn associated with the relevant manager entity. Typical
applications of this management approach are workload dis-
tribution in peer-to-peer networks and QoS control.

Ambient Networking
Ambient networking [9] is a strategy for providing connectivi-
ty by cascading multiple network segments. This approach has
been defined in the context of wireless networks, which are
managed through the so-called Ambient Control Space
(ACS). The objective of the ACS is to integrate any available
network seamlessly. The network composition is realized for

FEMMINELLA LAYOUT 11/14/11 11:37 AM Page 25

IEEE Network • November/December 201126

the sake of user needs, in an autonomic way, through the
negotiation and the establishment of a Composition Agree-
ment. The ACS control policies may include any set of user
defined policies, including pricing aspects as well as QoS/QoE
requirements.

Bio-Inspired Autonomic Systems [10]
The expected complex nature of the Internet has led
researchers to find similarities with other complex systems,
such as biological ones. In fact, many desired properties, such
as stability and robustness, and self-management objectives,
such as self-healing and self-protecting, are already present in
biological systems.

Research Projects
All management paradigms have already been included in dif-
ferent management platforms. In what follows we report a sig-
nificant, albeit non-exhaustive, list of projects targeting
management issues in advanced IP networks.

The FOCALE (Foundation, Observation, Comparison,
Action, and Learning Environment) [4] architecture consists
of a combination of control loops including the main achieve-
ments of the Autonomic Computing and Semantic Reasoning.
A common representation of objects exchanged between the
entities of the FOCALE architecture, including the vendor
specific data, is achieved through an extensive use of the
DEN-ng (Directory Enabled Networks — next generation)
Information model [7]. Similar objectives and approach are
part of the AutoI project [11], which exhibits a layered organi-
zation of management functions. This management architec-
ture, including both orchestration and device management
functions, are external to the controlled entities. The same
vertical and layered architecture is present in the Cisco ANA
(Active Network Abstraction) project. Virtualization is the
basic approach of this architecture, made of the so-called Vir-
tualized Network Elements (VNEs). Each VNE is associated
with a network device and operates autonomously for retriev-
ing information from the surrounding environment and
enforcing management policies.

A different approach is followed by the 4WARD proposal,
where management functions are embedded in network

devices and exchange information according to a peer-to-peer
organization. The management architecture is therefore
embedded in the network architecture. Similar concepts are
found in the Complexity Oblivious Network Management
(CONMan) [12] project, the management architecture of
which consists of one or more Network Managers (NM) host-
ed within managed devices. Each NM can manage all device
relevant aspects, including security aspects.

NetServ
NetServ is a programmable node architecture designed for
deploying in-network services [13]. It is suited for any type of
nodes, such as routers, servers, set-top boxes, and user equip-
ment. NetServ includes an in-network virtualized service con-
tainer and a common execution environment for both network
services and traditional addressable services (e.g. a Web serv-
er). NetServ is thus able to fill the gap between these two
types of services that have traditionally been kept separated in
the Internet architecture. In this way administrators can be
provided with a suitable flexibility to optimize resource
exploitation.

The NetServ prototype architecture is shown in Fig. 1. It
is currently based on the Linux operating system. It includes
an NSIS-based signaling protocol [14], used for dynamic
NetServ node discovery and service modules deployment
therein. The NetServ controller coordinates NSIS signaling
daemons, service containers, and the node transport layer. It
receives control commands from the NSIS signaling dae-
mons, which may trigger installation or removal of both
application modules within service containers and filtering
rules in the data plane. Each deployed module has a lifetime
associated with it. It needs to be refreshed by a specific sig-
naling exchange by its lifetime expiration, otherwise it is
automatically removed. The NetServ controller is also in
charge of setting up and tearing down service containers,
authenticating users, fetching and isolating modules, and
managing service policies.

Service containers are user space processes. Each container
includes a Java Virtual Machine (JVM), executing the OSGi
framework for hosting service modules. Each container may

Figure 1. NetServ node internal architecture.

Service
container

NFQUEUE #1

Java OSGi

NetServ
controller

Netfilter

Linux kernel transport layer

UNIX
socket

NetServ
NSLP

GISTN
SI

S
si

gn
al

in
g

da
em

on
s

GIST packet
interception

iptables
command

Forwarded
data

packets

Client-server
data packets

Signaling
packets

Server
modules

Modules
installation

Packet
processing
modules

Service
container

Java OSGi

Modules
verification

NetServ repository

FEMMINELLA LAYOUT 11/14/11 11:37 AM Page 26

IEEE Network • November/December 2011 27

handle different service modules, which are OSGi-compliant
Java archive files, referred to as bundles. The OSGi frame-
work allows for bundles hot-deployment. Hence, the NetServ
controller may install modules in service containers, or
remove them, at runtime, without requiring JVM reboot.
Each container holds a number of preinstalled modules, which
implement essential services. They include system modules,
library modules, and wrappers of native system functions. The
current NetServ prototype uses the Eclipse Equinox OSGi
framework. Service modules, represented by circles in Fig. 1,
are OSGi bundles deployed in a service container. Figure 1
shows two types of modules:

Server modules, circles located within the upper-right ser-
vice container. They act as standard network servers, commu-
nicating with the external through a TCP or UDP port.

Packet processing modules, circles located within the
lower-left container. They are deployed in routers along the
packet path and can both inspect and modify packets in tran-
sit. The solid arrow in Fig. 1 labeled “forwarded data packets”
shows how an incoming packet is routed from the network
interface, through the kernel, to a service container process
being executed in user space. The packet is handled by two
different modules before being sent back to the kernel and
routed toward its final destination.

The module classification as server module or packet pro-
cessing module is only logical, since each NetServ module may
act in both ways. This is actually an important NetServ feature
since it overcomes the traditional distinction between router
and server by sharing each other’s capabilities.

The NetServ repository, introduced in the NetServ architec-
ture for management purposes, includes a pool of manage-

ment programs deployable through NetServ signaling in the
NetServ nodes present in the managed network.

Currently, the Linux kernel is used to implement the Net-
Serv transport layer. Packet filters, used to intercept packets
in the NetServ node, and rules, used to route them to the
proper service container, are installed in the node forwarding
plane by using the netfilter library through the iptables tool.

NetServ Signaling
NetServ dynamic node discovery and dynamic module deploy-
ment are capabilities enabled by its NSIS-based signaling pro-
tocol. NSIS (Next Steps In Signaling)[14], is an IETF
standardized signaling protocol framework for managing gen-
eral-purpose states in network nodes. It consists of two layers:
• NSIS transport layer protocol (NTLP), a generic lower layer

used for node discovery and message sending, which is
regarded as independent of any signaling application.

• NSIS signaling layer protocol (NSLP), the upper layer
which defines message format and sequences. It contains
the specific signaling application logic.
These NSIS signaling layers are part of the NetServ archi-

tecture. They are represented in Fig. 1 by two boxes, labeled
as “GIST” and “NetServ NSLP.” GIST (General Internet Sig-
naling Transport protocol), is a widely used implementation
of NTLP. GIST uses existing transport and security protocols
to transfer signaling (i.e. NSLP) messages on behalf of the
served upper layer signaling applications. It provides a set of
easy-to-use basic capabilities, including node discovery and
message transport and routing.

NetServ NSLP is the NetServ-specific implementation of
NSLP. These two layers run as separate daemon processes in

Figure 2. NetServ signaling flow.

IPIPIP

Probe stack Probe #2
Probe #1

GIST response (UDP)

IP router

GIST query (UDP)

GIST query (UDP)

GIST confirm (TCP)

Setup request (TCP)

GIST response (UDP)

Setup response (TCP)

GIST query (UDP)

GIST discovery and
association completed

Last-node
detection
(timeout,
ICMP check)

GIST confirm (TCP)

Probe request (TCP)

GIST response (UDP)

Probe response (TCP)

GIST confirm (TCP)

Setup request (TCP)

GIST response (UDP)
GIST query (UDP)

GIST confirm (TCP)

Probe request (TCP)

Setup response (TCP)

Probe response (TCP)

NRNFNI

Probe stack
Probe #1

GIST discovery and
association completed

Last-node
detection
(timeout,
ICMP check)

FEMMINELLA LAYOUT 11/14/11 11:37 AM Page 27

IEEE Network • November/December 201128

each NetServ node and exchange messages and events through
UNIX sockets. The current implementation of the NetServ
signaling daemons is based on an extended version of
NSIS-ka, an open source NSIS implementation by the Karl-
sruhe Institute of Technology, modified so as to provide the
dynamic capabilities needed by NetServ.

The current GIST specification defines the on-path discov-
ery method only, which is currently used in NetServ. Never-
theless, the standard allows introducing different message
routing methods and provides generic objects for making
GIST easily extendable. For example, an epidemic routing
method would allow discovering and signaling peers in all
directions efficiently. In what follows, the default routing
method is on-path.

The dashed arrow, in Fig. 1, indicates the path of a signal-
ing packet within a NetServ router, while Fig. 2 shows a typi-
cal NetServ NSIS message exchange in a network including
both NetServ and non-NetServ nodes.

In a generic message exchange, a GIST query packet is first
sent through the network toward a specific destination, from
the NetServ Initiator (NI), in order to discover, if any, on-
path NetServ nodes; the query is then intercepted by the
GIST daemon of the first NetServ node on-path (NetServ
Forwarder — NF) which begins the association process by
sending back a response message; the association handshake is
then completed by the NI by issuing a confirm message. Once
the peer association is completed, the NI sends the NetServ
NSLP signaling message directly to the NF GIST daemon,
which passes it to the NetServ NSLP layer, which first unpacks
the signaling packet and then sends it to the NetServ con-
troller. The controller acts on the message by issuing com-
mands to the appropriate service containers. Upon receiving
the signaling packet, if the initial destination has not been
reached, the discovery process continues toward the NetServ
Receiver (NR) by the same message exchange. If a non-Net-
Serv node on-path receives a GIST query, it simply forwards it
transparently to the next hop according to its routing table as
a normal IP packet (Fig. 2). Note that after a peer association
is established, subsequent signaling messages are directly
transmitted to the peer without involving any discovery pro-
cess, thus speeding up delivery of signaling messages.

NetServ signaling messages convey commands to install and
remove modules, and to retrieve information about NetServ

nodes. Any authorized NetServ instance can
query any other NetServ node to discover, for
example, the supported types of services, the list
of the currently installed modules, a particular
service output, and general information about
the node and its supported service policies and
containers.

Two kinds of NetServ signaling messages are
used, requests and responses, and three types of
NetServ requests, SETUP, REMOVE, and
PROBE. The SETUP message is used to install
a module on the NetServ nodes on-path and to
refresh the lifetime of currently installed mod-
ules, thus avoiding their expiration. The
REMOVE message is used to force removal of a
module. The PROBE message is used to obtain
the status of NetServ nodes, their capabilities,
and policies.

Each request has a corresponding response.
Responses to SETUP and REMOVE requests
simply acknowledge the message reception and,
eventually, the last node on-path. A response
message to a PROBE request carries the probed
information. As the message flows downstream,

each node adds its own information to the probe response
stack in the message. The full response stack is then delivered
back to the NI. Figure 2 shows a SETUP and PROBE mes-
sage exchange including the response stack creation and deliv-
ery. The REMOVE exchange is similar to the SETUP one,
and is not shown for simplicity.

Management Architecture
The deployment, maintenance, and control traffic generated
by a widespread dissemination of management agents over a
variety of heterogeneous nodes may require a huge effort. A
static management architecture, although autonomic, is not
suited for such a pervasive network. Clearly, not all devices
with a network interface can host a management agent, even
with simple monitoring tasks. On the other hand, no devices
should be excluded from the deployment of a management
strategy. A possible solution consists of providing a manage-
ment architecture with discovery capabilities and hot-deploy-
able components so as to tune the instantiation of the
management modules where they are actually needed. In what
follows we describe an autonomic management architecture
implementing the functions needed in a Future Internet sce-
nario.

Figure 3 shows the basic element of the proposed architec-
ture, the NetServ Autonomic Management Element (NAME).
It is inspired by the FOCALE architecture shown in [4], which
has been mapped into the service deployment architecture
shown in Fig. 1. In fact, the FOCALE architecture already
includes most of enabling mechanisms for autonomic network
management, and its modularity allows integrating the unique
features of NetServ that, we believe, may introduce significant
dynamics in network and service management. The NetServ
additional functions are included in this architecture by imple-
menting it as a NetServ service, and by also introducing the
PEP (policy enforcement point) deployment module, which
can deploy management programs over the selected NetServ
managed resources at runtime. These programs are stored in
the NetServ repository.

Management actions are context aware. Context consists of
the whole set of information characterizing customer services,
network services, link quality, user preferences, operator
agreements, and anything else deemed significant for manage-
ment purposes. Context related information is received from

Figure 3. Management architecture.

NetServ
repository

System
policies

System
ontology

Object
models

NetServ autonomic management element

Vendor-neutral
data and commands

NetServ autonomic
manager

NetServ
commands

Vendor-specific data and commands

Action
manager

Action
planner

Policy analyzer
and PDP

Model-based
translation layer

PEP module
deployment

Feedback
controller

NetServe managed
resource(s) Managed resource(s)

Semantic reasoning engine

DEN-ng
information

model

FEMMINELLA LAYOUT 11/14/11 11:37 AM Page 28

IEEE Network • November/December 2011 29

external collectors, which may be heterogeneous. In order to
use all of them together, they need to be represented by a
common syntax. This task is done by the model-based transla-
tion layer (MBTL), which maps the vendor specific informa-
tion into the information model. This representation is carried
out by using models stored in the object models repository
shown in Fig. 3.

The information received from external sources is then pro-
cessed by the Policy analyser and PDP (PA-PDP). If the
PA-PDP receives context-related information that cannot be
associated with any context model already known, this infor-
mation is passed to the set of modules that have to process it
in order to define the needed actions and the relevant policies
for keeping the context within an acceptable state. These mod-
ules are the Semantic Reasoning engine (SRE), the Action
Planner (AP), the Action Manager (AMG), and the Feedback
Controller (FC). Their functions are inherited from the
FOCALE architecture. In particular, the information related
to the unknown context is first processed by the SRE, which
uses ontologies, stored in the relevant repository, for inferring
the system state. If this state needs controlling actions, the AP
identifies them. The set of actions deemed necessary for lead-
ing the system to an acceptable state are passed to the AMG,
which has to organize them according to a specific strategy,
including action compatibility check and schedule. This strate-
gy is passed to the PA-PDP, which can trigger its execution.
After that, the FC is in charge of monitoring the outcomes of
the selected strategy. If it proves successful, it is encoded in a
set of policies which are added to the relevant repository. The
set of active policies are used by the PA-PDP to keep the sys-
tem state acceptable, even by deploying the management pro-
grams available in the NetServ repository.

The introduction of some NetServ specific functions has an
impact on all the entities of the architecture, since they are
mapped into the system ontologies, are present in the relevant
semantic reasoning algorithms, contribute to the set of active

policies deployed, and affect the relevant management deci-
sions.

This architecture is backward compatible. The legacy
resource management can co-exist with the dynamic NetServ
management. In addition, as shown in [4], this type of archi-
tecture is easily replicable so as to form a NAME domain,
which is in turn replicable in a fractal fashion. In this way, sys-
tem management may be organized hierarchically, with outer
control loops implementing orchestration functions and inner
loops having specific device management tasks.

In addition, the NAME implementation as a NetServ ser-
vice allows it to achieve a further attractive property. Accord-
ing to the system needs, such as the fulfillment of some
policies or due to the need of migrating services, a NAME
can either replicate itself or move to any NetServ node of the
network. Again, even the individual NAME modules may eas-
ily be moved from a hosting machine while remaining associ-
ated with the logical NAME architecture. In synthesis, the
NAME deployment in NetServ makes it straightforward to
implement autonomic management functions governing the
management architecture itself, which is a further self-man-
agement level with respect to traditional systems.

Case Study: Self-Protecting from a DoS
Attack
This section describes an experiment showing the NAME
effectiveness in self-protecting a network resource from a DoS
attack, one of the most important Internet security threats.
The attack shown in this experiment is just a sample of a
generic DoS attack, but it is sufficiently structured to show the
NetServ dynamic properties brought to the management
architecture. Figure 4 shows the network topology in this
experiment, which we have implemented in the well known
GENI (Global Environment for Network Innovation, [15])

Figure 4. Network topology for our DoS experiment on GENI.

Victim

Second replication

First replication

N
A
M
E

First remote Rate_Limiter

Second remote Rate_Limiter

1st attack

Third attack

Monitor dissemination process

Second attack

Attack sources

Attack sources

Attack sources

N3N2N1

Third remote
Rate_Limiter

First
attack

FEMMINELLA LAYOUT 11/14/11 11:37 AM Page 29

IEEE Network • November/December 201130

experimental platform. The victim, an application server, is
protected by a NAME instance. The attack is a classic DoS
flooding attack, performed by a number of hosts in different
networks.

A lightweight NetServ service module, called Rate_Moni-
tor, is executed in the NAME itself and evaluates the rate of
incoming traffic and notifies the PA-PDP NAME module
(Fig. 3). When the attack starts (Fig. 5 at time t1), the local
Rate_Monitor notifies the NAME engine about the value of
the incoming rate above the alarm threshold. This information
reveals that the network has entered an unacceptable state.
The set of actions deemed necessary for leading the system to
an acceptable state are:
• Retrieval of a Rate_Limiter module from the NetServ

repository and its deployment on the local interface, in
order to protect the victim against the overwhelming service
requests.

• Deployment of a number of Rate_Monitor modules in the
NetServ nodes all around the NAME instance, so as to
identify the incoming attack directions and deploy addition-
al Rate_limiter modules on nodes where the observed value
of the incoming service requests are above a given thresh-
old.
The objective of the second action is twofold. First, any

attack direction can be identified and the attack can be faced
upstream. Second, in this way we relieve the network from the
traffic generated by the attackers (denial of network service).

In order to execute the second action, the NAME instance
starts sending NetServ PROBE messages toward all directions
from itself up to three IP hops, so as to identify the NetServ
nodes able to host and execute an instance of the Rate_Moni-
tor module (Fig. 5). The number of hops may be changed
according to network topology and management purposes.
Then, by using the NetServ deployment signaling, the NAME
engine deploys a Rate_Monitor module on the selected
nodes, which immediately start reporting incoming rate val-
ues. Note that in this phase the application server is protected
by the Rate_Limiter instance executed by the NAME itself.
On the basis of reported values, which are the portion of
interest of the new context, the Action Planner of the NAME
identifies the node N1 shown in Fig. 5 as the best candidate to
deploy a remote Rate_Limiter module, since it is the most
distant node (in terms of IP hops) from the NAME with an
incoming rate above the alarm threshold. Thus, by using the

NetServ signaling, the NAME can instantiate the Rate_Lim-
iter in N1. The Rate_Limiter module interacts with the
NAME, which receives reports of all deployed Rate_Monitor
modules, and changes the acceptable incoming rate threshold
dynamically, depending on the number and frequency of
detected requests. In this way, a further control loop is creat-
ed so that each management action enforced by the NAME is
dynamically adapted to possible context and state changes.

The runtime effects of this control action can be observed
in Fig. 6. Four charts, showing the normalized incoming rate
vs. time, are shown. In our experiments the target rate sup-
ported by the victim of the attack is equal to 30 SIP calls per
second. The incoming traffic rate is normalized to this value
and advertised by the NAME to the Rate_Limiter modules.
In the first three charts the ingress and egress rate of each
NetServ router in the network (N1, N2, N3 in Fig. 5) are
shown. The ingress interface is the one receiving the aggre-
gate malicious traffic, and the egress interface is the one
transmitting the unblocked portion of such traffic toward the
victim. The fourth chart shows the aggregate incoming rate
generated during the three attacks and the incoming rate at
the NAME interface. When, at time t1 (around t = 28.5s in
Fig. 6) the attack begins, the set of management actions iden-
tified by the NAME is executed and the rate of incoming ser-
vice request traffic to the NAME module is throttled to a
tolerable value. The time window used to detect attacks is 1s.
The effectiveness of the Rate_Limiter module is shown in
Fig. 6, in which the egress rate of N1 and the NAME ingress
rate start fluctuating around the target rate. In any case, the
NAME Rate_Limiter module is still running, just to protect
the server in case of additional sources of attack.

In the PEP module, the notification interval and the
allowed rate of incoming service requests can be adapted to
measured values, by applying the policies communicated by
the PA-PDP module on deployment.

At time t2 (t = 46s in Fig. 6), the attacker adds additional
sources of DoS packets in other networks, thus bypassing the
deployed shield. Nevertheless, since the NAME instance has
been executing the monitor and rate limiter module since
attack beginning, it can both protect the server and argue that
the previous remote counteracting action has been bypassed. If
the previously deployed Rate_Monitor modules are still active,
some of them start reporting values of the observed incoming
rate beyond acceptable values. This context information allows

Figure 5. Signaling flow in the GENI experiment.

Rate_Limiter deployed on NAME

NetServ signaling probe messages

Rate_Monitor deployed on N1 N2 N3

Rate_Monitor reports
Rate_Limiter deployed on N1

Rate_Monitor report: attack detected
Rate_Limiter deployed on N2

Rate_Monitor report: attack detected
Rate_Limiter deployed on N3

Attack detection time ΔT

ΔTΔt2

Δt1

Δt3
ΔT

t2

t3

t1

N3N2 AttackerAttackerAttacker N1

NAME
Victim

Attack
Control.

FEMMINELLA LAYOUT 11/14/11 11:37 AM Page 30

IEEE Network • November/December 2011 31

the NAME to identify the NetServ node N2 as the
best candidate to deploy another remote instance
of the Rate_Limiter module. If the lifetime of the
previously deployed Rate_Monitor modules has
expired, they are re-deployed. Again, Fig. 6 shows
that after the latter shield deployment, the incom-
ing rate at the NAME ingress interface and at the
N2 egress interface rate has been decreased to
acceptable values.

Finally, the attacker starts a further attack ses-
sion from another network at time t3 (t = 65.5s in
Fig. 6). The self-protecting procedure is repeated
again, thus deploying a further instance of the
Rate_Limiter on N3 that decreases the service
request rate once again to a value as close as pos-
sible to the target value. When the attack ends,
all the monitor and rate limiter instances are no
longer refreshed. Hence, they are automatically
removed, without any additional signaling.

In order to actually estimate the end of the
attack condition at the NAME, the remote moni-
tor modules track both forwarded and dropped
service requests, and report back the relevant
statistics.

From the network traffic charts shown in Fig. 6
it is also possible to extract the threat detection
and module deployment time for the DoS attack
by the NAME node. When the first attack comes
at t = t1 the total time taken Δt1 by the NAME is
about 2s to perform the following steps:
• Deploy a local Rate_Limiter.
• Discover the surrounding NetServ nodes.
• Deploy Rate_Monitor modules on all capable NetServ

nodes.
• Identify the node closest to the source of attack.
• Install the Rate_Limiter module on it.
When the second and third attacks come at t = t2 and t = t3,
respectively, the reaction times Δt2 and Δt3 of the system
decrease to around 1s, which is essentially the time window
used to detect attacks, since the Rate_Monitor modules are still
active and no node discovery and Rate_monitor installation are
needed. Only the attack detection, the identification of the
node closest to the source of attack, and the Rate_Limiter
deployment by the NAME Action Planner are executed. In
order to evaluate the scalability of the platform, we repeated
the experiment for different attack rates. For example, an
increase of 10 times the rate of the experiment illustrated, caus-
es a very small increase of Δt1, Δt2, and Δt3, below 10 percent.
This is due to the progressive filling of network buffers due to
the increased traffic load, which also delays signaling packets
and thus slightly expands management times. A further method
to improve scalability is to deploy the NAME instance in a
node not running PEP functions. In this way the decision func-
tions do not compete for computing resources with PEP func-
tions, even if an additional communication delay between the
NAME and the PEP modules has to be accounted for.

Clearly, this experiment is not an exhaustive analysis of
attack, monitor, and control actions. Our aim was to highlight
the potentials of NetServ in providing an effective platform
for the autonomic management of the Future Internet.

Conclusion
This article shows how the NetServ platform can be used for
implementing autonomic management architectures for the
Future Internet. The proposed management architecture fully
exploits the NetServ dynamic properties, which translates into

the capabilities of automatically deploying, configuring, and
removing at runtime both PDP and PEP modules on network
nodes, in order to provide network management with effective
autonomic capabilities. In fact, the usage of programmable
nodes able to host any service, made up by combining inferen-
tial, decisional, monitoring, and actuator modules, represents
a powerful instrument to implement autonomic network man-
agement functions.

In order to show the effectiveness of the proposed solution,
we have presented a case study that highlights how NetServ
allows deploying self-protecting network functions. In the
experiment, carried out on the GENI testbed, we show how
the proposed architecture is able to counteract a DoS attack
by selectively deploying monitoring and actuator modules at
runtime.

Finally, it is worth noting that the proposed solution is only
an example of the potential of the NetServ platform, since any
autonomic management architecture can be deployed as a ser-
vice in NetServ.

References
[1] Van Jacobson et al., “Networking Named Content,” CoNEXT 2009, Dec.

2009, Rome, Italy.
[2] K. Park, “The Internet as A Complex System,” K. Park and W. Willinger, Edi-

tors, The Internet as A Large-Scale Complex System, Oxford University Press,
2005.

[3] N. Blum et al., “Towards Standardized and Automated Fault Management
and Service Provisioning for NGNs,” J. Network and System Management,
vol. 16, no. 1, 2008, pp. 63–91.

[4] B. Jennings et al., “Towards Autonomic Management of Communications
Networks,” IEEE Commun. Mag., vol. 45, no. 10, Oct. 2007, pp. 112–21.

[5] N. Agoulmine et al., “Challenges for Autonomic Network Management,”
MACE 2006, Oct. 2006, Dublin, Ireland.

[6] J. O. Kephart and D. M. Chess, “The Vision of Autonomic Computing,” IEEE
Computer, vol. 36, no. 1, 2003, pp. 41–50.

[7] J. Strassner et al., “The Design of a New Policy Model to Support Ontology-
Driven Reasoning for Autonomic Networking,” J. Network and Systems Man-
agement, vol. 17, no. 1–2, 2009, pp. 5–32.

[8] L. Cheng et al., “Self-organising Management Overlays for Future Internet-
Services,” MACE 2008, Sept. 2008, Samos Island, Greece.

Figure 6. Runtime behavior of network traffic..

Time [s]
100

2

0N
or

m
al

iz
ed

 r
at

e

4

6

20

t1

30 40 50 60 70 80

Time [s]
100

2

0N
or

m
al

iz
ed

 r
at

e

4

6

20 30 40 50 60 70 80

Time [s]
100

2

0N
or

m
al

iz
ed

 r
at

e

4

6

20 30 40 50 60 70 80

Time [s]
100

2

0N
or

m
al

iz
ed

 r
at

e
4

6

20 30 40 50 60 70 80

N1 ingress interface
N1 egress interface

N3 ingress interface
N3 egress interface

N2 ingress interface
N2 egress interface

t1

t1

t1
t2

t3

t2 t3

t2

Attacker 1 Attacker 2 Attacker 3 NAME ingress interface

FEMMINELLA LAYOUT 11/14/11 11:37 AM Page 31

IEEE Network • November/December 201132

[9] B. Mathieu et al., “Self-Management of Context-Aware Overlay Ambient
Networks,” IFIP/IEEE IM 2007, May 2007, Munich, Germany.

[10] S. Balasubramaniam et al., “BiRSM: Bio-Inspired Resource Self-Manage-
ment for All IP-Networks,” IEEE Network, vol. 24, no. 3, 2010, pp. 20–25.

[11] S.S. Kim et al., “Towards Management of the Future Internet,” IFIP/IEEE IM
2009, June 2009, Long Island, NY, USA.

[12] H. Ballani and C. Francis, “CONMan: Taking the Complexity Out of Net-
work Management,” INM’06 Wksp., Sept. 2006, Pisa, Italy.

[13] The NetServ Project, http://www.cs.columbia.edu/irt/project/netserv.
[14] X. Fu et al., “NSIS: A New Extensible IP Signaling Protocol Suite,” IEEE

Commun. Mag., vol. 43, no. 10, 2005, pp. 133–41.
[15] The Global Environment for Network Innovations (GENI) project,

http://www.geni.net.

Biographies
MAURO FEMMINELLA (femminella@diei.unipg.it) received both the master degree
and the Ph.D. in Electronic Engineering from University of Perugia in 1999 and
2003, respectively. Since November 2006, he is assistant professor at the
Department of Electronic and Information Engineering, University of Perugia. His
current research interests focus on nano-scale networking and communications,
middleware platforms for multimedia services, location and navigation systems,
and network and service management architectures for the Future Internet.

ROBERTO FRANCESCANGELI (francescangeli@diei.unipg.it) is a Ph.D. candidate at
University of Perugia, Italy, advised by Professor Gianluca Reali. His research
interests focus on creation and tuning of advanced multimedia services and the
design of signaling protocols, both using open source technologies. He also
worked on multimedia signaling protocols and services over WiMAX. He is

currently responsible for the signaling and the GENI integration of NetServ, a
Java programmable router architecture for dynamically deploying in network
services.

GIANLUCA REALI (reali@diei.unipg.it) is an associate professor at the University of
Perugia, Department of Information and Electronic Engineering (DIEI), Italy, since
January 2005. He received the Ph.D. degree in Telecommunications from the
University of Perugia in 1997. From 1997 to 2004 he was researcher at DIEI. In
1999 he visited the Computer Science Department at UCLA. His research activi-
ties include resource allocation over packet networks, wireless networking, net-
work management, and multimedia services.

JAE WOO LEE (jae@cs.columbia.edu) is a Ph.D. candidate at Columbia Universi-
ty, advised by Professor Henning Schulzrinne. He leads the development of Net-
Serv, a Java-programmable router architecture for dynamically deploying
in-network services. Before joining academia, he held various positions in the
industry, and co-founded MyRisk.com, an online investment analytics company.
Currently he splits his time between his networking research and teaching under-
graduate CS courses, for which he received the Columbia University Presidential
Teaching Award in 2011.

HENNING SCHULZRINNE (hgs@cs.columbia.edu) is a Professor in the Department of
Electrical Engineering and chair of the Department of Computer Science at
Columbia University, New York. Ph.D. from the University of Massachusetts;
worked at Bell Laboratories, Murray Hill and GMD Fokus, Berlin. Research inter-
ests: Internet multimedia and telephony services, signaling, network quality of
service, scheduling, multicast, performance evaluation. Co-author of the Internet
standards-track protocols RTP, RTSP, SIP, GIST and LoST.

FEMMINELLA LAYOUT 11/14/11 11:37 AM Page 32

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

