File Systems I

COMS W4118

References: Operating Systems Concepts (9e), Linux Kernel Development, previous W4118s **Copyright notice:** care has been taken to use only those web images deemed by the instructor to be in the public domain. If you see a copyrighted image on any slide and are the copyright owner, please contact the instructor. It will be removed.

Typical file access patterns

- Sequential Access
 - Data read or written in order
 - Most common access pattern
 - E.g., copy files, compiler read and write files,
 - Can be made very fast (peak transfer rate from disk)
- Random Access
 - Randomly address any block
 - E.g., update records in a database file
 - Difficult to make fast (seek time and rotational delay)

Disk management

- Need to track where file data is on disk
 - How should we map logical sector # to surface #, track #, and sector #?
 - Order disk sectors to minimize seek time for sequential access
- Need to track where file metadata is on disk
- Need to track free versus allocated areas of disk
 - E.g., block allocation bitmap (Unix)
 - Array of bits, one per block
 - Usually keep entire bitmap in memory

Allocation strategies

- Various approaches (similar to memory allocation)
 - Contiguous
 - Extent-based
 - Linked
 - FAT tables
 - Indexed
 - Multi-Level Indexed

Key metrics

- Fragmentation (internal & external)?
- Grow file over time after initial creation?
- Fast to find data for sequential and random access?
- Easy to implement?
- Storage overhead?

Contiguous allocation

- Allocate files like continuous memory allocation (base & limit)
 - User specifies length, file system allocates space all at once
 - Can find disk space by examining bitmap
 - Metadata: contains starting location and size of file

Contiguous allocation example

directory

file	start length		
count	0	2	
tr	14	3	
mail	19	6	
list	28	4	
f	6	2	

Pros

- Easy to implement
- Low storage overhead (two variables to specify disk area for file)
- Fast sequential access since data stored in continuous blocks
- Fast to compute data location for random addresses.
 Just an array index

Cons

- Large external fragmentation
- Difficult to grow file

Extent-based allocation

- Multiple contiguous regions per file (like segmentation)
 - Each region is an extent
 - Metadata: contains small array of entries designating extents
 - Each entry: start and size of extent

Pros

- Easy to implement
- Low storage overhead (a few entries to specify file blocks)
- File can grow overtime (until run out of extents)
- Fast sequential access
- Simple to calculate random addresses

Cons

Help with external fragmentation, but still a problem

Linked allocation

- All blocks (fixed-size) of a file on linked list
 - Each block has a pointer to next
 - Metadata: pointer to the first block

block	pointer

Linked allocation example

Pros

- No external fragmentation
- Files can be easily grown with no limit
- Also easy to implement, though awkward to spare space for disk pointer per block

Cons

- Large storage overhead (one pointer per block)
- Potentially slow sequential access
- Difficult to compute random addresses

Variation: FAT table

- Store linked-list pointers outside block in File-Allocation Table
 - One entry for each block
 - Linked-list of entries for each file
- Used in MSDOS and Windows operating systems

FAT example

- Pros
 - Fast random access. Only search cached FAT
- Cons
 - Large storage overhead for FAT table
 - Potentially slow sequential access

Indexed allocation

- File has array of pointers (index) to block
 - Allocate block pointers contiguously in metadata
 - Must set max length when file created
 - Allocate pointers at creation, allocate blocks on demand
 - Cons: fixed size, same overhead as linked allocation
 - Maintain multiple lists of block pointers
 - Last entry points to next block of pointers
 - Cons: may need to access a large number of pointer blocks

block pointers

Indexed allocation example

Pros

- Easy to implement
- No external fragmentation
- Files can be easily grown with the limit of the array size
- Fast random access. Use index

Cons

- Large storage overhead for the index
- Sequential access may be slow.
 - Must allocate contiguous block for fast access

Multi-level indexed files

Block index has multiple levels

Multi-level indexed allocation (UNIX FFS, and Linux ext2/ext3)

Pros

- No external fragmentation
- Files can be easily grown with much larger limit compared to one-level index
- Fast random access. Use index

Cons

- Large space overhead (index)
- Sequential access may be slow.
 - Must allocate contiguous block for fast access
- Implementation can be complex

Advanced Data Structures

- Combine Indexes with extents/multiple cluster sizes
- More sophisticated data stuctures
- B+ Trees
 - Used by many high perf filesystems for directories and/or data
 - E.g., XFS, ReiserFS, ext4, MSFT NTFS and ReFS, IBM JFS, brtfs
 - Can support very large files (including sparse files)
 - Can give very good performance (minimize disk seeks to find block)

Free Space Management

- File system maintains free-space list to track available blocks/clusters
- Free bitmap stored in the superblock

0	1	2			n-1
				 •	

$$bit[i] = \begin{cases} 1 \Rightarrow block[i] \text{ free} \\ 0 \Rightarrow block[i] \text{ occupied} \end{cases}$$

- Linked free list in free blocks
 - Pros: space efficient
 - Cons: requires many disk reads to find free cluster of right size
- Grouping
 - Use a free index-block containing n-1 pointers to free blocks and a pointer to the next free index-block
- Counting
 - Free list of variable sized contiguous clusters instead of blocks
 - Reduces number of free list entries

Berkeley Fast File System (FFS) Layout

Inode and data block in cylinder group

After "mkdir testdir"

Hard links v. Symlinks

Two types of links

- Symbolic link
 - Special file, designated by bit in meta-data
 - File data is name to another file

Hard link

- Multiple directory entries point to same file
- All hard-links are equal: no primary
- Store reference count in file metadata
- Cannot refer to directories; why?