File Systems |

COMS W4118

References: Operating Systems Concepts (9e), Linux Kernel Development, previous W4118s
Copyright notice: care has been taken to use only those web images deemed by the
instructor to be in the public domain. If you see a copyrighted image on any slide and are the
copyright owner, please contact the instructor. It will be removed.

Typical file access patterns

e Sequential Access

— Data read or written in order

* Most common access pattern
— E.g., copy files, compiler read and write files,

— Can be made very fast (peak transfer rate from disk)

* Random Access
— Randomly address any block

* E.g., update records in a database file

— Difficult to make fast (seek time and rotational delay)

Disk management

* Need to track where file data is on disk

— How should we map logical sector # to surface #, track
#, and sector #?

* Order disk sectors to minimize seek time for sequential
access

e Need to track where file metadata is on disk

* Need to track free versus allocated areas of disk

— E.g., block allocation bitmap (Unix)
* Array of bits, one per block
* Usually keep entire bitmap in memory

Allocation strategies

e \Various approaches (similar to memory allocation)
— Contiguous
— Extent-based
— Linked
— FAT tables
— Indexed
— Multi-Level Indexed

* Key metrics
— Fragmentation (internal & external)?
— Grow file over time after initial creation?
— Fast to find data for sequential and random access?
— Easy to implement?
— Storage overhead?

Contiguous allocation

* Allocate files like continuous memory
allocation (base & limit)

— User specifies length, file system allocates space
all at once

— Can find disk space by examining bitmap

— Metadata: contains starting location and size of
file

Contiguous allocation example

//_\\ directory
ﬁ/ fle start length
O 2 | 3] | count 0O 2

f tr 14 3
4 | 5| G| mail - 5
8] o[1o 111 list 28 4
tr f 6 2

12 [13[_[14[15[|

16 117 18 |19 |
mail
20|l 212223 |

24 |25 |26 _|27[|
list
28| 129 130 _[31_]

~ 4
.

Pros and cons

* Pros
— Easy to implement

— Low storage overhead (two variables to specify disk
area for file)

— Fast sequential access since data stored in continuous
blocks

— Fast to compute data location for random addresses.
Just an array index

* Cons
— Large external fragmentation
— Difficult to grow file

Extent-based allocation

* Multiple contiguous regions per file (like
segmentation)

— Each region is an extent

— Metadata: contains small array of entries
designating extents

* Each entry: start and size of extent

Pros and cons

* Pros
— Easy to implement

— Low storage overhead (a few entries to specify file
blocks)

— File can grow overtime (until run out of extents)
— Fast sequential access
— Simple to calculate random addresses

* Cons
— Help with external fragmentation, but still a problem

Linked allocation

* All blocks (fixed-size) of a file on linked list
— Each block has a pointer to next

— Metadata: pointer to the first block

block pointer

N
S
o] 10 21 3[]
41 516 707

Linked allocation example

directory
file start end
jeep 9 25

8] PI1o[2]11[]
1213114 J15[]

16 [17[_18[[19[|

20[]21 2[123[]

24[]25 -1'26 [127[]

28 |29 [80[|31[|

- 7

Pros and cons

* Pros
— No external fragmentation

— Files can be easily grown with no limit

— Also easy to implement, though awkward to spare
space for disk pointer per block

* Cons
— Large storage overhead (one pointer per block)
— Potentially slow sequential access
— Difficult to compute random addresses

Variation: FAT table

e Store linked-list pointers outside block in File-
Allocation Table

— One entry for each block
— Linked-list of entries for each file

* Used in MSDOS and Windows operating
systems

FAT example

directory entry

test eoe 217
name start block

—» 217 618

339 -

618 339 le——

no. of disk blocks -1

FAT

Pros and cons

* Pros
— Fast random access. Only search cached FAT

* Cons
— Large storage overhead for FAT table
— Potentially slow sequential access

Indexed allocation

* File has array of pointers (index) to block

— Allocate block pointers contiguously in metadata
* Must set max length when file created
* Allocate pointers at creation, allocate blocks on demand
* Cons: fixed size, same overhead as linked allocation

— Maintain multiple lists of block pointers
e Last entry points to next block of pointers
e Cons: may need to access a large number of pointer blocks

block pointers — L

Indexed allocation example

.,
N -
o] 11 20 33

4 5

7/

8[| QQQSHH
12[J13[11aN15]

16

18|

20 |21 22

24[]25[

26 127]

28 |29 |30 31 [|

~ .o

directory
file index block
jeep 19

Pros and cons

* Pros
— Easy to implement
— No external fragmentation
— Files can be easily grown with the limit of the array
size
— Fast random access. Use index

* Cons
— Large storage overhead for the index

— Sequential access may be slow.
* Must allocate contiguous block for fast access

Multi-level indexed files

* Block index has multiple levels

B P
/
N
AN T~
AN
N
\\
\\
outer-index

index table data blocks

Multi-level indexed allocation

UNIX FFS, and Linux ext2/ext3

direct blocks

BLKSIZE/4

BLKSIZE/4)?

Double
Indirect

(BLKSIZXE/4)?

Triple Double
Indirect Indirect

Pros and cons

* Pros
— No external fragmentation

— Files can be easily grown with much larger limit
compared to one-level index

— Fast random access. Use index

* Cons
— Large space overhead (index)

— Sequential access may be slow.
* Must allocate contiguous block for fast access

— Implementation can be complex

Advanced Data Structures

* Combine Indexes with extents/multiple cluster sizes
* More sophisticated data stuctures

* B+ Trees
— Used by many high perf filesystems for directories and/or data
— E.g., XFS, ReiserFS, ext4, MSFT NTFS and ReFS, IBM JFS, brtfs
— Can support very large files (including sparse files)
— Can give very good performance (minimize disk seeks to find block)

3 | 5

T
1 2 w S| Dyl G /7
T T Tl
d1d2 d3d4 d5d6d7

Free Space Management

* File system maintains free-space list to track available blocks/clusters

* Free bitmap stored in the superblock
O 1 2 n-1

1 = block]i] free

bit[i] =] . free-space list head
0 = block[i] occupied

* Linked free list in free blocks

— Pros: space efficient

— Cons: requires many disk reads to find free cluster of right size

* Grouping
— Use a free index-block containing n-1 pointers to free blocks
and a pointer to the next free index-block

20 |21[]22F 123[|

* Counting
— Free list of variable sized contiguous clusters instead of blocks 28[J2o[J30[Ja1[]
— Reduces number of free list entries e

Berkeley Fast File System (FFS) Layout

disk drive partition partition partition
file system cylinder group 0 cylinder group 1 B cylinder group n
| ||
boot block(s) <J P - B
super block fs;];cr =
i- lock :
block | 8 |imode] bloc i-nodes data blocks
info | map |bitmap
copy
P TR - _
s i Tl o
7 “ T
i-node i-node e i-node

Inode and data block in cylinder group

directory blocks and data blocks -

i-node
number

i-node
number

25

After “mkdir testdir”

- directory blocks and data blocks -

i-node array

directory directory
block block

2549 | testdir

26

Hard links v. Symlinks

* Two types of links

— Symbolic link
» Special file, designated by bit in meta-data
* File data is name to another file

— Hard link
* Multiple directory entries point to same file
e All hard-links are equal: no primary
 Store reference count in file metadata
e Cannot refer to directories; why?

