
1

Memory Management II

Virtual Memory

2

Virtual memory idea

q OS and hardware produce illusion of disk as
fast as main memory, or main memory as large
as disk

q Process runs when not all pages are loaded in
memory
§ Only keep referenced pages in main memory
§ Keep unreferenced pages on slower, cheaper backing

store (disk)
§ Bring pages from disk to memory when necessary

Page table with virtual memory

3

Page 0
Page 1

Page 2

Page 3

Page 0

Page 1

Page
table

Physical
Memory

Virtual
Memory

0

1

2

3

1

2

Page 2

Page 3

Disk

4

Handling page fault by demand paging

Page fault handler

q Handles both swapped-out pages and
illegal access

q Illegal access
§ User mode accessing kernel space
§ Write access on read-only region
§ SIGSEGV or possibly Copy-On-Write

q Legal but page currently swapped out
§ Demand paging

5

6

Paging strategies

q Demand paging: load page on page fault
§ Process starts with no pages loaded

q Request paging: user specifies which pages
are needed
§ Requires users to manage memory by hand

q Pre-paging: load page before it is
referenced
§ When one page is referenced, bring in next one

Working set

q With pure demand paging:

q Pre-paging tries to smooth out bursts

7

Thrashing

q What if we need more pages regularly than
we have?
§ Page fault to get page
§ Replace existing frame
§ But quickly need replaced frame back

q Leads to:
§ High page fault rate
§ Lots of I/O wait
§ Low CPU utilization
§ No useful work done

q Thrashing: system busy just swapping pages

8

9

Page replacement

q When no free pages available, must select
victim page in memory and throw it out to disk

q Page replacement algorithms
§ Optimal: throw out page that won’t be used for

longest time in future
§ Random: throw out a random page
§ FIFO: throw out page that was loaded in first
§ LRU: throw out page that hasn’t been used in

longest time

9

Evaluating page replacement algorithms

q Goal: fewest number of page faults

q A method: run algorithm on a particular string
of memory references (reference string) and
computing the number of page faults on that
string

q In all our examples, the reference string is
1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

10

Optimal algorithm

q Throw out page that won’t be used for longest
time in future

1 2 3 4 1 2 5 1 2 3 4 5
1 1

2
1
2
3

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
5

1
2
3
5

1
2
3
5

1
2
3
5

4
2
3
5

4
2
3
5

6 page faults

Problem: difficult to predict future!

11

Fist-In-First-Out (FIFO) algorithm

q Throw out page that was loaded in first

1 2 3 4 1 2 5 1 2 3 4 5
1 1

2
1
2
3

1
2
3
4

1
2
3
4

1
2
3
4

5
2
3
4

5
1
3
4

5
1
2
4

5
1
2
3

4
1
2
3

4
5
2
3

10 page faults

Problem: ignores access patterns

12

Fist-In-First-Out (FIFO) algorithm
(cont.)

q Results with 3 physical pages

1 2 3 4 1 2 5 1 2 3 4 5
1 1

2
1
2
3

4
2
3

4
1
3

4
1
2

5
1
2

5
1
2

5
1
2

5
3
2

5
3
4

5
3
4

9 page faults

Problem: fewer physical pages è fewer faults!

à Known as Belady’s Anomaly
13

14

Ideal curve of # of page faults v.s. # of
physical pages

15

Belady’s Anomaly in FIFO algorithm

Least-Recently-Used (LRU) algorithm

q Throw out page that hasn’t been used in
longest time. Can use FIFO to break ties

1 2 3 4 1 2 5 1 2 3 4 5
1 1

2
1
2
3

1
2
3
4

1
2
3
4

1
2
3
4

1
2
5
4

1
2
5
4

1
2
5
4

1
2
5
3

1
2
4
3

5
2
4
3

8 page faults

Advantage: with locality, LRU approximates Optimal

16

Implementing LRU: hardware

q A counter for each page

q Every time page is referenced, save system
clock into the counter of the page

q Page replacement: scan through pages to find
the one with the oldest clock

q Problem: have to search all pages!

17

18

Implementing LRU: software

q A doubly linked list of pages

q Every time page is referenced, move it to the
front of the list

q Page replacement: remove the page from back
of list
§ Avoid scanning of all pages

q Problem: too expensive
§ Requires 6 pointer updates for each page reference
§ High contention on multiprocessor

19

LRU: concept vs. reality

q LRU is considered to be a reasonably good
algorithm

q Problem is in implementing it efficiently

q In practice, settle for efficient
approximate LRU
§ Find a not recently accessed page, but not

necessarily the least recently accessed
§ LRU is approximation anyway, so why not

approximate even more

Clock (second-chance) algorithm

q Goal: remove a page that has not been
referenced recently
§ good LRU-approximate algorithm

q Idea
§ A reference bit per page
§ Memory reference: hardware sets bit to 1
§ Page replacement: OS finds a page with reference

bit cleared
§ OS traverses all pages, clearing bits over time

20

21

Clock algorithm implementation

q If ref bit
is 1, clear
it, and
advance
hand

q Else return
current
page as
victim

Clock algorithm example

1 2 3 4 1 2 5 1 2 3 4 5

10 page faults

Advantage: simple to implement!

1 1 1
2

1
1

1
2
3

1
1
1

1
2
3
4

1
1
1
1

1
2
3
4

1
1
1
1

1
2
3
4

1
1
1
1

5
2
3
4

1
0
0
0

5
1
3
4

1
1
0
0

5
1
2
4

1
1
1
0

5
1
2
3

1
1
1
1

4
1
2
3

1
0
0
0

4
5
2
3

1
1
0
0

22

23

Clock algorithm extension

q Problem of clock algorithm: does not
differentiate dirty v.s. clean pages

q Dirty page: pages that have been modified and
need to be written back to disk
§ More expensive to replace dirty than clean pages
§ One extra disk write (about 5 ms)

Clock algorithm extension (cont.)

q Use dirty bit to give preference to dirty pages

q On page reference
§ Read: hardware sets reference bit
§ Write: hardware sets dirty bit

q Page replacement
§ reference = 0, dirty = 0 à victim page
§ reference = 0, dirty = 1 à skip (don’t change)
§ reference = 1, dirty = 0 à reference = 0, dirty = 0
§ reference = 1, dirty = 1 à reference = 0, dirty = 1
§ advance hand, repeat
§ If no victim page found, run swap daemon to flush

unreferenced dirty pages to the disk, repeat

24

25

Summary of page replacement algorithms

q Optimal: throw out page that won’t be used for longest time
in future
§ Best algorithm if we can predict future
§ Good for comparison, but not practical

q Random: throw out a random page
§ Easy to implement
§ Works surprisingly well. Why? Avoid worst case
§ Cons: random

q FIFO: throw out page that was loaded in first
§ Easy to implement
§ Fair: all pages receive equal residency
§ Ignore access pattern

q LRU: throw out page that hasn’t been used in longest time
§ Past predicts future
§ With locality: approximates Optimal
§ Simple approximate LRU algorithms exist (Clock)

Current trends in memory management

q Virtual memory is less critical now
§ Personal computer v.s. time-sharing machines
§ Memory is cheap è Larger physical memory

q Virtual to physical translation is still useful
§ “All problems in computer science can be solved using

another level of indirection” David Wheeler
q Larger page sizes (even multiple page sizes)

§ Better TLB coverage
§ Smaller page tables, less page to manage
§ Internal fragmentation: not a big problem

q Larger virtual address space
§ 64-bit address space
§ Sparse address spaces

q File I/O using the virtual memory system
§ Memory mapped I/O: mmap()

26

