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What’s in a Label?

Ishaan Chandratreya, Katon Luaces
Columbia University

Language Models for Labels

Recent work (Chen et al,2021) argues that the representation of the label space

plays a critical role in a supervised learning problem in addition to the
representation of the input space. They investigate this in context of image
classification and endorse (|) high dimensional and (ll) high entropy labels for:

|. Strong adversarial robustness of representation
2. Quicker convergence of models with fewer samples

We systematically attempt to reproduce their work and reach the conclusions:
|. Label space manipulation seems to have tangible impact on training dynamics
2. Claimed dependence is inconsistent as multiple parameters are co-dependent

As such we note this area as a promising direction for further investigation, and
propose a systematic study of label representations to stress-test and expand the
claims of (Chen et al, 2021) on the quicker convergence with fewer samples claim.
As such we will train only on 10% of the CIFAR-10 dataset throughout.

If the label associated with a classification task carries a semantic meaning, then

embeddings trained on this semantic meaning can be used as a potential label space.

Chen et al, 2021 experiment with BERT and Glove embeddings.

We briefly consider predicting a set of such self-supervised pre-text task labels as a

vector and note that they tend to have strong performance. Please note that the
BERT and CLIP embeddings are zero-centered and scaled with std. deviation.

Embedding Pretext details Dimensions Best Val. 600
Glove Matrix Fact. on Word-Context 50 76.92
Word2Vec CBOW, Skip-Gram 100 76.84
CLIP Multimodal Retrieval 512 77-92
BERT Language cloze, Sentence Prediction 768 78.14
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s L How much do Label Representations Matter for Image Classification?
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Model

Gaussian Random Projections

Theorem: Johnson-Lindenstrauss: Given 0 < £ < 1, a set X of m points in RN, and a

number n > 81n(m)/¢?, there is a linear map f : RN — R" such that:

(1—e)llu—o|* < [If(u) - f@)I* < 1 +e)|lu—o|?

forall u,v € X.

Dimensionality: We sample from ~N(0, 0.1* 1) Gaussians of various dimensions.

Rotations: We apply gaussian projections  ®
to the standard one-hot label system to get
random rotations.VVe use both the same
dimension and the min. JL dimension.

Type Best Val. 600 Best Val. 100

Val Percent
B 8 & 8 8

Category (Regression) 40.64 12.52
Same Dim 53.16 13.15 1

Min. JL D1rn 12:93 11:97 0 II I

o

Label Distribution EntroEies

512
Dimension

1024

We draw 512 dimensional labels with each element
sampled independently to measure the impact of
changing differential entropy. Contrary to [Chen et.
al], we notice a negative trend:
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A more general framework to preserve label-label relationships will make use of
the implicit semantic distance between features rather than rely on the label to
have a reasonable language realization.

Here we use contrastive learning to do “double work” to test this: in order to
see if it helps for a label space to be organized as such, we:

|. Learn a image representation where image embeddings are separated by label

2. Form a label embedding for each label using the corresponding image
embeddings and solve a supervised learning problem from the image itself

To learn the image representation, we can simply use data augmentation to get
positives and treat all others as negatives, or we can use the labels to mine
positives and negatives.We choose to use SimCLR and Supervised Contrastive
Learning (SupCon), each from the respective family of methods.

1(i.5) = — log exp(z;, 2;/T) vt () Z log e exp(zz 2p/T)

Zk 1kt €XP(2i, 25/ T) A(i) exp(z; - 21/7)

Then with the learnt encoder f, the correspondlng Iabel representation becomes:

= ey 3 iz
Z] ll[yJ = Z] J=ly;=1
We then calculate a label-label representation matrix and further use this with
MDS (metric and non-metric) to learn embeddings of the labels in lower
dimensions while preserving the relative distances between the labels. These sets

of labels are then used for 10% data CIFAR-10 prediction as before.
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The outcome of the previous experiment seems to
emphasize that order matters more than distances.
Such ordinal constraints might be realized via many
forms of hierarchy (and hence be more general):

I. Hypernymy (E.g. mammal < canine < husky)
2. Entailment (E.g. ’sphere drop” < “it rolled”).

In an embedding, an ordinal constraint can be
enforced via a max-margin push-pull loss:

Yupep E(#,0) + L ey max(0,a — E(w', ')

Here, the energy measures the violation of the
relationship. Some methods we implement include

Method Energy
OE (Vendrov et al.2016) || max(0,v —u)||5
EC (Ganea et al. 2018) max(0,e(u,v) — (u))

We trained OE and EC using the paper spec and use
them for 10% CIFAR Prediction.The results plot the

val. accuracy against the number of epochs trained
for OE/EC
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Further Directions

Direction Current Deficit Solution
Seeding dependence High variance in low-dim. exp. = More seeds with more compute
More Labels CIFAR 10 Restriction CIFAR100/Mini-ImageNet
Geometry Euclidean restrictive for hierarchy Extension Survey in Paper
Probabilistic Embeddings Space "Crowding" Extension Survey in Paper
Metric Learning on labels Require access to labels Learn from label space




