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Abstract—Integer programming is a computationally
difficult problem in which a objective function must be
minimized inside a feasible region with the optimization
variables required to take on integral values. Amidst
various heuristics available for solving this problem, a
popular class of algorithms are ’cutting-plane’ methods,
which iteratively restrict the feasible region using informa-
tion from solving a sequence of linear programs instead.
At each iteration, these algorithm pick an additional
constraint which further restricts the feasible region. Such
choices are Markovian given the current set of constraint
and available options to restrict or ”cut” the region, and
hence lend themselves to formulation as a Markov Decision
Process. In this project, I replicate results that build on this
MDP assumption and formulate the choice of which region
to cut as a reinforcement learning problem, combining
the strength of SOTA linear program solvers and the
approximation power of supervised learning. I explore
some powerful RL techniques we have studied in class
as an alternative to evolutionary strategy training, and
report results on two policy gradient techniques. Noticing
that calls to simplex solvers are the main time-sink in
training, I further reflect on how we can use pre-training
or alternate formulations of the problem to improve the
sample efficiency of the learning task.

Index Terms—Reinforcement learning, Integer Pro-
gramming, Policy Gradient, Sequential Models, NP Com-
pleteness

I. INTRODUCTION AND BACKGROUND

A wide variety of optimization problems that are
useful to humans can be formulated as linear programs,
an optimization problem with linear objective functions
and affine constraints. Indeed, such problems are relevant
in the domains of networks and flows, game theory,
robotics and so on. The standard form of the linear
program can be expressed as follows, and any linear
program can be modified so that it is represented in such
form (with the variable in bold the vector of optimization
parameters):

max c · x
s.t. Ax ≤ b

x ≥ 0

(1)

This problem can be solved with a worst case
exponential-time algorithm, Simplex, of which highly
emperically efficient implementations are available, as
well as less used linear time algorithms, such as Interior
Point Methods. Integer programming is the hard ”cousin”
of linear programming, where the optimization variable
x must further be consisting only of integer entries. This
makes the problem far harder, as the search space is
highly narrowed (the integers form 0 percent the reals)
and has been shown to be NP-complete by reduction
from generalization of zero-one equations (ZOE). A
trivial way to form an approximation of the solution
is by removing the integral constraint, quickly solving
the linear program in polynomial time and rounding
the required output: however emperically this can lead
to catastrophic results in higher dimensions and it is
very easy to break any algorithm that relies solely on
a particular schema of rounding.

To this end, cutting plane methods come up with a
better strategy to use the simplicity of solving linear
programs. Given an integer program, they obtain the
corresponding linear program without the integral con-
straints and solve for it. However, instead of rounding the
solution, they use it to find the optimization variables
on which the solution to the linear program violates
the integral constraint and crafts a series of candidate
constraints that would prevent such a case from occuring,
esentially candidate ’chops’ that bring one closer to the
solution. A cut is chosen from the set of candidate cuts
and then combined with the former constraints to make
a new, refined linear program which can be solved again
and the process repeated until all variables are integral.
Given that multiple optimization variables can violate
the integral rule at any stage, the set of candidate cuts is
usually large. The choice of cuts taken at any stage can
be critical in how quickly the algorithm converges and
hence choosing such cuts is an important problem.

Classic NP complete approximation approaches to
improve on simple random choices could include branch
and bound methods that backtrack upon making an
arbitrary poor choice, or use a heuristic to make a
locally optimal decision. In this project, we will instead



make use of the context available through the chosen
constraints and the optimization problem itself in making
this choice at every stage, formulating the iterative clas-
sification as a Markov Decision Process and presenting
a reinforcement learning solution.

II. METHOD DESCRIPTION

[1] sets up the crucial RL formulation for this task,
with a state space S, an action space A, a reward
function R and a transition model to move between
states at different timeteps st, st+1 ∈ S conditioned on
a particular action at ∈ A. In short, S is formed by the
set of available constraints at any given stage for an LP
in standard form, the set of possible candidate cuts, the
optimal solution to the linear program corresponding to
the integer program (current linear relaxation) and the
object function coefficients which stay constant across
timesteps. A is composed of the set of indexes for
the available candidate cuts at each timestep, with an
action choosing a particular index. The transition is using
at, forming a new integer program with all constraints
from st and the additional chosen cut moved to the
constraints set. This is then solved to create the next
state st+1. Throughout my experiments, I have used the
reward cTxLP ∗ (t+ 1)− cTxLP ∗ (t) from [1] aka the
instant decrease in solution from the cut: the larger this
is the more constraining the new cut and hence more
useful.This reward is always non negative as a new cut
lessens the feasible region and allows access to fewer
regions on the objective function. The goal is to learn
a probabilistic policy π : S 7→ P(A). This description
translates to the following general pseudocode of my
algorithm:

• Initialize a trainer that handles all neural networks
and deploys them for training or evaluation.

• For num iter iterations:
– For num episode trajectories:
∗ collect episode

– combine episodes
– train models

In the following section I will detail the collect
episode, combine episodes and train models proce-

dures for simplicity but the overall algorithm will follow
the structure shown above. The same structure can be
found in my example.py code submitted to courseworks,
with models and further details found in policy.py.

III. EXPERIMENTS

All results reported share the following common
tropes. The moving average is calculated over 100

episodes and not calculated for the first 20 iterations
until atleast 100 episodes have been amassed. Unless
otherwise noted, experiments are run with 5 trajectories
unrolled using the current policy at each iteration: hence
20 iterations are required for the first moving average
report and then a report is made over each of the
next iterations. All experiments use a learning rate of
0.01 for both the policy and where applicable for the
value baseline. Unless otherwise noted, a discount factor
γ = 0.99 is used in all settings. All experiments are run
for a variable number of total iterations as indicated by
the varying number of steps on the x axis of the graphs.
Experiments are run on a single Tesla T4 GPU with
CUDA enabled and trajectories are rolled out on policy
using Python’s concurrent futures library.

A. Random runs

In each of the graph with more than two plots, drawn-
pond run shows the random policy moving average
result on hard config and graceful-music run shows the
random policy moving average result on easy config.
Random policy is simulated by drawing the action cho-
sen from a uniform distribution (no prior) at each stage.

B. Vanilla Policy Gradient

We know that we seek an optimal strategy for finding
the best cuts. In class we studied the two basic class
of algorithms that help us achieve this: q-learning based
methods and policy gradient based methods. While both
seek to estimate some kind of model for the environment,
the focus on environment modelling is more on the Q/TD
learning side of methods, where we must estimate a value
for every state, action pair (using dynamic programming
or function approximation) and then greedily choose a
policy according to that. In policy gradient, we instead
parametrize the policy and directly optimize it, making
these methods useful in the continuous space. In the
problem at hand, the space is indeed continuous: it is
additionally not a constant dimension state/action space,
and hence Q-learning based methods are likely a bad
choice for this. While it is complicated to estimate the
policy gradient because of joint modelling need for the
stationary distribution of states and because of the need
to select actions, we know from class that we can use
the policy gradient theorem [2] to use this, and this is
what i leverage here.

∇θJ(θ) = Eπ[Qπ(s, a)∇θ log πθ(a|s)]

Consider the relevant procedure for this algorithm:
collect episode



• Sample initial A, b, cuts a, cuts b, c0 from allowed
variables in given config.

• Pad A, b, cuts a, cuts b to the required max length
(here set to 111) with 0x ≤ 0 trivial equations so
that these can be later concatenated

• while not done or while max < max length of
episode:

– Use current policy π to get probability distri-
bution over actions given state

– Zero out all the 0x ≤ 0 probabilities and
renormalize so that they are never chosen and
used as false learning symbol

– Sample an action from the resultant distribu-
tion. Step on the provided Gurobi environment,
and observe the reward and the next state as a
result

This process closely follows algorithm 1 in [1]
with additional padding. Please refer to function unroll
episodes in policy.py for details. Then we encounter the
following combine episodes strategy.

combine episodes
• Stack all A, b, cuts a, cuts b, c0 from an episode

along one dimension
• Stack all A, b, cuts a, cuts b, c0 from all episodes

along another dimension

Note that it is our padding scheme that allows this to
work. Finally, the train strategy is as follows:

train
• For given batch of A, b, cuts a, cuts b, concatenate

A, b and cuts a, cuts b
• Run LSTM + dense policy on the concatenated

values. Note that the LSTM aggregates over the
dimension of number of variables (60 in our case).
The dense model and LSTM both use num episodes
* max episode length as batch size.

• Perform the attention mechanism from [1]
• Using Monte Carlo estimates of rewards as Qs, and

probabilities from the attention operation, evaluate
and aggregate the policy gradient. Directly optimize
this using backpropagation.

Please note the following hyperparams for the policy:
the LSTM is a uni-directional LSTM with unit input
size and a single layer with hidden size 61 (as per size of
given problem A+b). We unroll the LSTM for sequeence
length 60, as much as the number of variables in the
optimization problem. The dense network is a 2 layer
network that maps from the last hidden state of the
LSTM with 2 layers of 64 dimensions each and tanh
non linearities. Please see the Policy class in policy.py
for further details.

Fig. 1. Vanilla Policy Gradient: Easy and Hard Moving Average

Please consider 1 for the result on this experiment.
astral-puddle is on hard config, while swift-sea is on
easy config. We observe that hard config indeed yields
less reward than easy config, and that while hard config
achieves a maximum of about 0.7 in moving average
over 100 episodes, easy config achieves about 0.8.

C. Using context embeddings

In this process, we retain all aspects from (A) except
that we also include the optimization multipliers in the
policy for context. I do this by using a separate single
layer Dense layer from the number of variables (60) to
the output size of the dense network from above (64). I
then add the context from c0 to the encoded [A, b] and
[cuts a, cuts b] before the attention pass.

Please look at 2, 3, 4, 5 for experimnts. The first plot
shows a basic run with this method: different-dawn is
hard config, bright-microwave is easy config. As you
can see the performance is increasing even at the end of
the run and the performance for hard and easy configs is
closer on this one and both significantly outperform the
random baseline. The second plot is easy config only, and
does extensive hyperparam tuning for the results- include
learning rates and gamma: this achieves a max moving
average of about 0.9, which is the highest expected
given our constraints. The third of these plots repeats the
experiment on longer runs to ensure a plateau is found
with cerulean-eon the hard config and solar-forest the
easy config. The final plot is an evaluate only plot, with
the moving average window lessened to increase noise
of the plot on the fully trained best model. As you can
see, this still outperforms the random config even with
the additional variance and achieves above 1.2 reward
performance on both easy (sunny-violet) and hard config
(scarlet-jazz) in some cases.

D. Actor Critic

This replaces the given train procedure with an actor
critic method. In class, we learned that additionally



Fig. 2. Context embedding basic results: Easy and Hard Config
Moving Average

Fig. 3. Context embedding Tuned Hyperparams: Easy Config Moving
Average

Fig. 4. Context embedding Long Run results: Easy and Hard Moving
Average

Fig. 5. Context embedding + vanilla policy gradient moving average
reported with smaller window to compare noise against random
baseline performance

Fig. 6. Actor Critic: Easy and Hard Moving Average

learning the value function can help reduce the variance
in gradients achieved during training via baselining. I
use a value function which is very similar to the policy
encoders (LSTM + dense) as we want a function which
is still invariant to optimization variable order and builds
context. Additionally, I also used a context embedding
for the value function as in estimating the value of the
state it will be important to consider relation of feasible
region to the optimization function. The value function
is trained using MSE loss, and is used to replace the
monte carlo estimates with advantage estimates from the
value function, closely following the pseudocode in lab4.
Please see the class Value in policy.py for details.

6 shows the results on actor critic. While we still out-
perform baselines, I did not see an emperical advantage
from using this method except that the reward curves
seem a bit more smoothened (perhaps as a result of lower
gradient variance). Here, easy config is ruby-leaf and
hard config is upbeat-butterfly.

E. Smaller batching

One of the redundancies in my code is my use of
padding while collecting the trajectories. This compli-
cates the min/max normalization on piazza (as 0 is found
for minimum always-hence my initial implementation
did not have scale invariance) and adds unnecessary
latency to the code. Additionally, my code as it stands
does not scale well to GPU training because I use a very
large batch size in passing all trajectories from a single
iteration (and all their timesteps) through the model at
once- which is enabled through the padding. This can
lead to fluctuating gradients in Adam optimizer and also
CUDA OOM errors unless a very large GPU such as
the T4 is used. To scale my results better and allow for
the use of (min-max) normalization [This scales every
A, b, cuts a, cuts b] using the min and max digit found
in each], I implement a smaller batch based actor critic,
which encodes every single episode independently. For



Fig. 7. Smaller batching with actor critic

Fig. 8. Smaller batching with actor critic + normalize

this option, no padding is used and the variable size A,
b, cuts a, cuts b are instead all added to a list and
passed to the training procedure, where a for loop is used
and the variable sized constraints are abstracted into the
batch size. The code for this is tenuous but comparably
fast, and can be found by following the if smaller

batch and if not smaller statements in policy.py
and example.py. Most parametrizations of policies stay
the same with the exception being the forward pass in
the value function accounting for the variable number of
constraints.

7 shows the moving average for this experiment
without normalization. The only noticeable difference is
that the highest value is reached earlier (Recall that the
first result shown is the moving average for the first 20
episodes and this has already reached a high number
compared to other plots). cool-star is hard config and
bumbling-gorge is easy config.

8 shows the moving average for the experiment with
normalization. The results are similar, except that the
moving averagee is still climbing at the time of termi-
nation quickly, and can be expected to grow. treasured-
dawn is the easy config and northern-energy is the hard
config. A high of 0.85 and 0.75 is achieved respectively
over about 100 episodes.

After this point, this is all additional information

and further work/suggestions so the 4 page limit is
hopefully met

F. Exploring alternate sequential models

In this approach, we have used LSTM [3] to encourage
sequential coverage over the 60 different variables and
the aggregation of information across them. In [1], the
LSTM was more a means to aggregate information from
and jointly learn over problems of different sizes but the
task presented to us was more centered on similar prob-
lem sizes and so I still deployed LSTM with the hope that
empirical risk minimization method would generalize to
larger or smaller problems without access to the same
in the training distribution (the model architecture still
allows for a forward pass on larger instances). However,
it would be better if such a sequential model could be
used that allows for a more focused learning of instances
of the same size. Another thing that was crucial in [1]
was the focus on attention [4] to build certain invariance
into the model. Attention means that the sequence in
which the embeddings are accessed does not affect the
choice of the action at that stage. But it is reasonable
to hope that such a attention-scheme and associated
invariance is built earlier on in the model. The need for
such invariance is well explored in the natural language
processing community, where it might be important that
certain aspects of the sentence are attended to more, and
context must be bidirectional. To this end, we can tap
into the literature on the hugely successful transformers
[5] models that have been used for various multimodal
tasks from video classification to language entailment
and have shown potential in working with raw data
with spatial organization in addition to perceptual data,
such as physical trajectories. Essentially, transformers
can be interpreted as graph neural networks [6] and this
interpretation allows for a pass on any kind of data,
as long as the corresponding tokenization and attention
mechnanism is modified akin to required ”message pass-
ing”. These would have the following utility:

1) Bidirectional context and multi-head attention: Us-
ing transformers would move the attention mech-
anism far ahead and allow different variables to
attend over each other in different subspaces, per-
haps leading to stronger geometric acquisition

2) More amenable to pretraining tasks (see G.): trans-
formers are typically pretrained and then general-
ize well to downstream tasks: while we can do
the same with LSTMs transformers are SOTA and
proven in this space.

3) Explicitly train to build certain invariance: We
would like our equations to be invariant to both



the order of the constraints as well as the variables
inside of it. Certain variants of transformers (such
as Set Transformers [7] are useful in such regard).

While I set up the configurations and code required to
build a modified BERT variant [8] using the Hugging-
Face library [9] I had trouble running this on a single
GPU even for a shallow config and my request for quota
increase of Google Cloud was denied so I was not able
to verify this promising direction. The configuration I
used was a 2-layer, 2 -head BERT model which upon
receiving a set of constraints padded them with [PAD]
tokenized embeddings on one side and attached a [CLS]
token on the other side. I was planning to train the model
jointly with the rest of the RL scheme and connecting
the output of the [CLS] token with the fully connected
layers.

G. Further ideas

An extension of this work, which is heavily based
on policy gradient approaches, could be improved upon
by drawing on literature from integer programming and
NP completeness, as well as reinforcement learning.
Namely, I was considering the following goals as the
most pertinent next steps given more time.

1) Opportunities to build stronger invariances during
learning to similar optimization problems using
contrastive learning [10]

2) Opportunities to re-purpose failed states with a
different role to improve the experience replay
using Hindsight Experience Replay [11].

For 1) we notice that we have desired the likes of scale
and permutation invariance throughout our training task.
However, we would also like our method to be invariant
to different formulations of the same integer program.
For example, different formulations could include non
standard forms, forms with slack variables, eliminating
equalities and inequalities, strong surrogate relaxations
etc, in addition to scale and permutation. One way of
formulating this could be to add a reward penalty at each
time step for violating such invariance. Aka, we could
create ”equivalent” integer programs at each stage of the
markov decision process and add a penalty associated
with the difference in the actions that they predict,
forcing representations to align. Contrastive learning
with positives and negatives is amenable to this kind
of approach and has been used for RL tasks before [12].

For 2) we hope to use some sort of goal metric to add
supervision and additional conditioning while learning
the policy. At each stage of the current formulation we
are solving some approximation of the integer program,
so one idea is to use the scale of the approximation as the

goal. Emperically, most of the trajectories found during
training do not reach ”done” stage and this method
allows us to repurpose existing states by conditioning
them as successful ”done” stage for the approximation
achieved at that stage. This is likely useful for other NP
complete formulations that are written as IP as well.

IV. DISCUSSION AND CONCLUSION

We can see that using policy gradient techniques,
we can achieve a reasonable reward for the integer
programming problem, and hence this is a promising
direction to take and further improve on. From the
graphs, we achieve roughly 30 percent of the best
possible groundtruth results on the best runs, which is
what is expected in this case. We notice that actor critic
improves policy gradient by reducing variance, and that
there are some benefits to using the optimization problem
as a context embedding for the choice of cuts. We
also notice that an alternate formulation of the problem
without 0 padding allows us to use normalization and
build scale invariance into the model as well as make the
problem feasible on GPUs of lower memory, in addition
to improving results marginally. We notice that given
more time and resource, extensive hyperparameter tuning
can significantly improve results (as with the context em-
bedding results). Given more time and compute resource,
also, I would love to explore the transformer and self-
supervised directions outlined above.
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VI. APPENDIX

Please find the corresponding absolute rewards
achieved for the last episode in each iteration correspond-
ing to the moving average results presented in the main
paper.

A. Absolute rewards for all experiments

Fig. 10. Basic Context Embedding: Reward

Fig. 11. Tuned Context Embedding: Reward

Fig. 12. Actor Critic: Reward

Fig. 13. Smaller batch method: Reward


