
Tel-Aviv University

The Raymond and Beverly Sackler Faculty of Exact Sciences

School of Computer Science

Example-Based Rendering

Thesis submitted towards a Ph.D. degree

by Iddo Drori

under the supervision of Prof. Yehezkel Yeshurun and Prof. Daniel Cohen-Or

July 2004



2

Abstract

This thesis focuses on synthesis by example. The key idea is using a given data set to synthesize

signals in various modalities and dimensions. The synthesis is based on a set of examples, rather than on

a physical model. The main unifying theme throughout this work is decomposing the examples into parts

and using the fragments to construct and compose a synthesized result. Such data driven approaches can

be classified according to the level of features or parts used, from local features through intermediate

level fragments to whole objects. This thesis focuses on the problems of decomposing, recombining,

and composing mid level parts, within a data driven approach.

Example-Based Image Synthesis and Shape Analysis: We introduce an example-based synthesis

technique that extrapolates novel styles for a given input image. The technique is based on separating the

style and content of image fragments. Given an image with a new style and content, it is first adaptively

partitioned into fragments. Stitching together novel fragments produces a coherent image in a new style

for a given content. The aggregate of synthesized fragments approximates a globally non-linear model

with a set of locally bilinear models. We show the result of our method for various artistic, sketch,

and texture filters and painterly styles applied to different image content classes. Next, we present a

framework for learning, representing and querying large data sets of shapes by multi-linear analysis of

level sets. Shape regions are represented by an implicit shape model that does not require dense point

correspondence and handles varying topology. We analyze a large training set of shape models by multi-

linear factorization of the tensor produced from their level sets. This allows to synthesize canonical

samples which are independent of any subset of factors, and to reduce dimensionality while maintaining

the variability of known factors. We demonstrate the applicability of our approach by analysis of a

multidimensional corpus of ceramics shapes and sketches of archaeological pottery.

Sound and Image Completion: We present a method for automatically filling in gaps of textural

sounds. Our approach is to transform the signal to the time-frequency space, fill in the gap, and apply



3

the inverse transform to reconstruct the result. The complex spectrogram of the signal is partitioned into

separate overlapping frequency bands. Each band is fragmented by segmentation of the time-frequency

space and a partition of the spectrogram in time, and filled in with complex fragments by example. We

demonstrate our method by filling in gaps of various types of textural sounds. We present a new method

for completing missing parts caused by the removal of foreground or background elements from an

image. Our goal is to synthesize a complete, visually plausible and coherent image. The visible parts

of the image serve as a training set to infer the unknown parts. Our method iteratively approximates

the unknown regions and composites adaptive image fragments into the image. Values of an inverse

matte are used to compute a confidence map and a level set that direct an incremental traversal within

the unknown area from high to low confidence. In each step, guided by a fast smooth approximation,

an image fragment is selected from the most similar and frequent examples. As the selected fragments

are composited, their likelihood increases along with the mean confidence of the image, until reaching

a complete image. We demonstrate our method by completion of photographs and paintings.

Video Compositing and Segmentation: Fusion of image sequences is a fundamental operation

in numerous video applications and usually consists of segmentation, matting and compositing. We

present a unified framework for performing these operations on video in the gradient domain. Our ap-

proach consists of 3D graph cut computation followed by reconstruction of a new 3D vector field by

solving the Poisson equation. We introduce new methods for fusing video smoothly and separating

foreground elements from a video background for compositing by defining smooth and sharp transition

constraints on a gradient video compositing equation. We demonstrate the applicability of smooth video

transitions by fusing pairs for video mosaics, video folding, and video texture synthesis, and demon-

strate the applicability of sharp video transitions by video segmentation, video trimap extraction and 3D

compositing into a new sequence. Our results demonstrate that our method maintains coherence of the

video matte and composite, and avoids temporal artifacts. Object segmentation in image sequences is

one of the fundamental problems in computer vision and graphics. This problem is usually addressed

either by discrete representations which are currently manifested by graph partitioning techniques, or by

continuous methods typically referred to as active contours. In this work we take a unified approach by

fitting splines to graph cuts. The strengths of this approach stem from the dual discrete and continuous

representations and from allowing the user to refine the result of the cut by fitting a new spline to it



4

and modifying its points. Segmentation of an object in video is performed by a series of updates to

the control points and computation of a minimum graph cut. Usually the graph cut results in a discrete

representation over which the user has no control, and which is not always our desired result. Therefore

our approach is to fit a spline to the resulting cut in key-frames. This allows the user to change the

control points of the spline and then perform additional iterations of cut computation.



5

Acknowledgements

I wish to thank my advisors Hezy Yeshurun and Daniel Cohen-Or for their wisdom and guidance

in this work. I wish to thank Michal Irani for inviting me to give talks on this work at the Weizmann

Institute. I wish to thank my wife Sharon for her support during the past four years that led to this

dissertation.

This work was supported in part by grants from the Israeli Ministry of Science and the Israeli

Academy of Sciences.



Contents

1 Introduction 15

1.1 Unifying theme and main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 16

I Image and Shape Analysis and Synthesis 20

2 Example-Based Style Synthesis 21

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Image manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Style synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Image decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2 Multi-dimensional search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.3 Fragment synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.4 Image reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Multilinear Shape Analysis using Level Sets 42

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Shape representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



CONTENTS 7

3.3 Multilinear analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.1 Flattening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.2 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.3 Truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Multilinear shape analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.1 Pottery shape analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

II Image and Sound Completion 57

4 Fragment-Based Image Completion 58

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Image completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Fast approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Confidence map and traversal order . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5.1 Adaptive neighborhood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 Compositing fragments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.7 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.9 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Spectral Sound Gap Filling 83

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Time-frequency representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Sound gap filling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.1 Frequency partition and synthesis order . . . . . . . . . . . . . . . . . . . . . . 87



CONTENTS 8

5.3.2 Time partition and spectral search . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.3 Spectral boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5 Url of auditory results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.6 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

III Video Operations in the Gradient Domain 94

6 Video Operations in the Gradient Domain 95

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.1.2 Poisson equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1.3 Video compositing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1.4 Video segmentation, matting and completion . . . . . . . . . . . . . . . . . . . 99

6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3 Gradient video operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3.1 Gradient video compositing equation . . . . . . . . . . . . . . . . . . . . . . . 103

6.4 3D Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.4.1 Discrete solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.5 Smooth transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.5.1 Appearance and motion cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.5.2 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.6 Sharp transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.6.1 Key-frame tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.6.2 Iterative graph-cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.6.3 Video matting and completion . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.7.1 Video compositing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



CONTENTS 9

6.7.2 Video trimap extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.7.3 Video matting and completion . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7 Interactive Object Segmentation by Fitting Splines to Graph Cuts 121



List of Figures

1.1 Image decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Visualization of adaptive neighborhoods overlayed completion result. . . . . . . . . . . 17

1.3 Spectrogram frequency and time partition. . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Image folding: (a) Input image. (b) Cut. (d) Result of gradient image compositing. . . . 18

1.5 Video trimap extraction: (a) Keyframe spline interpolation. (b) Initial slice of 3D graph

cut. (c) Result of iterative 3D graph cut. (d) Graph cut trimap. . . . . . . . . . . . . . . 19

2.1 A training set of painterly rendered images and an input from a Still Life by Paul

Cezanne form an image matrix. Each column consists of various styles of the same

image, and each row results from applying the same style to different images. The goal

is to synthesize the remaining images. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Quadtree image decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 The components of a search vector for a single content row are highlighted. Notice that

the extension of a uniform tile captures the edge. . . . . . . . . . . . . . . . . . . . . . 36

2.4 A set of natural images and artistic filters form an image matrix. The two images in

dry-brush on the left of the lower row, and the three images in poster-edges, fresco, and

paint-daubs on the right column were synthesized by our algorithm. . . . . . . . . . . . 37

2.5 A set of landscape images and sketch filters form an image matrix. The two images in

graphic-pen on the left of the third row, and the two images in charcoal and reticulation

on the right column were synthesized by our algorithm. . . . . . . . . . . . . . . . . . . 38



LIST OF FIGURES 11

2.6 A set of landscape images and artistic, texture filters form an image matrix. The images

in sponge and craquelure on the lower row, and the two images in water color on the top

right column were synthesized by our algorithm. . . . . . . . . . . . . . . . . . . . . . 39

2.7 A set of painterly rendered images and an input from a Still Life by Paul Cezanne form

an image matrix. The images in impressionist and expressionist style on the lower row,

and the two images on the top right column were synthesized by our algorithm. . . . . . 40

2.8 Comparison: (Left) Best space invariant linear filter. (Right) Result of our method. . . . 41

3.1 Shape representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Linear shape interpolation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Input tensor: 2 (prototype) ×2 (width) ×2 (convexity) ×322 (function value). . . . . . . 52

3.4 First to fourth rows: shapes independent of a single factor (indicated by *).Last row:

shapes independent of two factors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Archaeological ceramic profile and excavation sketch. . . . . . . . . . . . . . . . . . . . 54

3.6 Prototype shapes from the Abydos data set: (a) plate. (b) dish. (c) bowl. (d) pot. (e)

flask. (f) jar. (g) vase. (h) column. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.7 Shapes independent of one factor synthesized from Abydos data set core tensor and

mode matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.8 Sampling of Abydos data set for a single prototype: two shape factors from four dimen-

sional (8×3×4×1282) level set tensor. . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.9 Comparison: (Top) mean. (Bottom) Result of our method. . . . . . . . . . . . . . . . . 56

3.10 Sparse sampling of ceramics data set: three shape factors from four dimensional (10×
8×9×1402) level set tensor. Notice the varying shape topology. . . . . . . . . . . . . . 56

4.1 From left to right: the input image, and inverse matte that defines the removal of an

element, the result of our completion, and the region completed by our algorithm. . . . . 59

4.2 Completion process: confidence and color of coarse level (top row) and fine level (bot-

tom row) at different time steps. The output of the coarse level serves as an estimate in

the approximation of the fine level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Image completion pseudocode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



LIST OF FIGURES 12

4.4 (a) Input, C̄ + α : 100 lines are randomly sampled from a 512 by 512 image and su-

perimposed on a white background. (b-e) Y l
T (l) for l = 4, . . . ,1. (e) the result of our

approximation. (f) source image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 The input image in (a) is partly covered by a white text, while the rest of the image is

only visible through the text. The result of our approximation is in (b). The RMSE of

local neighborhoods in radius 4 is in (c) and the ground truth is in (d). . . . . . . . . . . 75

4.6 From left to right: inverse matte, visualization of confidence values on a logarithmic

scale, and level set, at two different time steps. . . . . . . . . . . . . . . . . . . . . . . . 76

4.7 (a-b) Input color and inverse matte. (c-d) The result of our completion, several matching

neighborhoods outlined with circles of the same color, the target center marked by a

cross. Our approach completes the smooth areas with large fragments, the textured

regions with smaller fragments, and the shoreline by searching in different scales. . . . . 76

4.8 Our approach completes structured texture in perspective by searching in different scales. 77

4.9 Our approach completes symmetric shapes by searching under rotations and reflections.

Completion consists of a total of 21 fragments, marked on the output image, with mean

radius of 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.10 An image (a) and its corresponding neighborhood size map (b), where brighter regions

mark larger neighborhoods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.11 (a) The Universal Studios globe. (b) Inverse matte. (c) Completed image. (d) Content

of the completed region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.12 Fragment compositing: matching fragments (top left), inverse matte (top right), and

Gaussian pyramids of the fragments alpha (center row). (t1) First term of Eq. 4.9. (t2)

Second term of Eq. 4.9. The output color and alpha of compositing (bottom right). . . . 78

4.13 Completion results for some photographs and well-known paintings. . . . . . . . . . . . 79

4.14 Comparison of completion result (c) with image inpainting (d) and texture synthesis (e). 80

4.15 Our approach is an image-based 2D technique and has no knowledge of the underlying

3D structures. (a) Input image. (b) The front of the train is removed. (c) The image as

completed by our approach. (d) Matching fragments marked on output. . . . . . . . . . 81



LIST OF FIGURES 13

4.16 Our approach does not handle cases in which the unknown region is on the boundary of

a figure as in (a). However, the known regions of this painting contain similar patterns,

and the search finds matches under combinations of scale and orientation in (b), and the

completion results in (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.17 Our approach does not handle ambiguities such as shown in (a), in which the missing

area covers the intersection of two perpendicular regions as shown above. (b) The same

ambiguity in a natural image. (c) The result of our completion. . . . . . . . . . . . . . . 82

4.18 A point of interest is specified with a white circle near the center of the image in (a). Our

result using the point of interest to complete the circularly symmetric shape is shown in

(c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1 Spectral gap filling of Jazz segment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Spectrogram magnitudes in consecutive gap filling steps. . . . . . . . . . . . . . . . . . 87

5.3 Spectrogram time partition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Spectral sound gap filling of natural sounds. . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5 Spectral sound gap filling of synthetic sounds. . . . . . . . . . . . . . . . . . . . . . . . 93

5.6 Limitation: spectral sound gap filling of music with vocals. . . . . . . . . . . . . . . . . 93

6.1 (a) Cut and paste. (b) Gradient compositing changes the color of the parachutes. (c)

Constraints from a single image results in a halo around the right parachute. (d) Con-

straints from both images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 (a) Input color. (b) Input mask in which foreground is in white, background in black,

and unknown as luminance. (c) Result of gradient matting. . . . . . . . . . . . . . . . . 98

6.3 (a-b) Input frames from a pair of time-lapse sequences. (c) Cut. (d) Result of gradient

video compositing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.4 (a) Input frame. (b) Projected tracker data and 3D spline. (c) Key-frame interpolation

and minimum graph cut. (d) Spline fitting to graph cut and its modification. . . . . . . . 100

6.5 Tracking: (a) Input frames. (b) Tracker data and 3D spline projected on frame. (c)

Closed 2D shape spline. (d) Binary mask. . . . . . . . . . . . . . . . . . . . . . . . . . 109



LIST OF FIGURES 14

6.6 Video trimap extraction: (a) Keyframe spline interpolation. (b) Initial slice of 3D graph

cut. (c) Result of iterative 3D graph cut. (d) Graph cut trimap. . . . . . . . . . . . . . . 110

6.7 Iterative graph-cuts: trimap extraction pseudocode. . . . . . . . . . . . . . . . . . . . . 115

6.8 Background video completion pseudocode. . . . . . . . . . . . . . . . . . . . . . . . . 115

6.9 (a-b) Pair of input images. (c) 2D minimum graph cut. (d) Result of gradient image

compositing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.10 Video mosaic: (a-b) Input frames from a pair of time-lapse sequences. (c) Result of

gradient video compositing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.11 Image folding: (a) Input image. (b) Cut. (d) Result of gradient image compositing. . . . 116

6.12 Spatial video folding: (a) Input frame. (b) Cut. (c) Result of gradient video compositing. 117

6.13 Spatial and temporal video textures: (a-b) Input frames from sequence pairs. (c) Cut.

(d) Result of gradient video compositing. . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.14 Video trimap extraction: (a) Keyframe spline interpolation. (b) Initial slice of 3D graph

cut. (c) Result of iterative 3D graph cut. (d) Graph cut trimap. . . . . . . . . . . . . . . 119

6.15 Video matting: frame from input video (left), and frame from resulting video matte (right).119

6.16 Temporal video folding: (a) Input frame. (b) Cut. (c) Result of gradient video compositing.120

6.17 Video matting and completion: (a) Frame from input video. (b) Graph cut trimap. (c)

Foreground estimation in unknown region. (d) Background completion of unknown

region. (e) Alpha matte. (f) Composite. . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.1 Object segmentation in video: (a) Input frame. (b) Projected tracker data and 3D spline.

(c) Key-frame interpolation and minimum graph cut. (d) Spline fitting to graph cut. (e)

Binary mask. (f) Composite on green screen. . . . . . . . . . . . . . . . . . . . . . . . 124

7.2 Comparison: Graph cut is shown in white. Our result of spline fitting with various

degrees of smoothness is shown in cyan. (Bottom) close up view. . . . . . . . . . . . . . 125



Chapter 1

Introduction

This thesis focuses on synthesis by example. In order to synthesize images, shapes, sounds, and video

we begin with a given data set. The synthesis is then based on a set of examples rather than on a physical

model. A main unifying theme throughout this work is that we decompose the examples into parts and

use the fragments to construct and compose a synthesized result. Such data driven approaches can be

classified according to the level of features or parts used, from local features through intermediate level

fragments [115] to whole objects. In this work we focus on the problems of decomposing, recombining,

and composing mid level parts.

Our motivation for using a data driven approach is that the underlying physical function is too

complex to model, whereas rich training data is readily available. The example based approach manifests

itself in the various methods. For example, images in novel styles are generated by using a training set

of images arranged as a matrix of style and content factors. We analyze shape factors by considering

a large organized training set of level set functions. Another example is image completion and sound

gap filling which reuse the known portions of the image or audio signal to fill in the missing regions.

Finally, the work on video compositing and segmentation provides the necessary building blocks for the

operations of recombining pieces of images and video volumes and extracting foreground parts.



Chap. 1: Unifying theme and main contributions 16

1.1 Unifying theme and main contributions

The unifying theme in this work is the decomposition and recombination of signals by example. We

focus on signals of one, two and three dimensions and of various modalities. In synthesizing images

in new styles by example, images are broken into overlapping patches. The idea is to approximate a

globally non-linear model by multiple locally linear models. The input image is decomposed into a set of

overlapping fragments of various sizes, and fragments of the training images are considered at multiple

positions, scales, and orientations. At the fragment level, similar fragments are approximately locally

linear. Composing the local fragments back into a full image approximates the globally non-linear model

by locally linear models. Our approach is to adaptively decompose the input image into fragments,

and then synthesize a coherent image by stitching together synthesized fragments that follow multiple

constraints. Taking an adaptive approach captures features at multiple scales and avoids drastic blocking

artifacts. We proceed in a multi-scale top-down fashion maintaining a quad-tree for the input image as

shown in Figure 1.1. The leaves of the tree correspond to elements that together cover the image. Each

element is extended to include overlapping boundaries. These boundaries form the constraints among

adjacent elements which are necessary to generate a coherent image. During image generation, elements

are traversed in an order that preserves coherence with previously synthesized regions. The key idea is to

apply the synthesis at the tile level, and such that the recomposition of their fragments is coherent. The

use of a multi-linear model is extended to handle shapes rather than images by representing collections

of shapes by their level sets.

Figure 1.1: Image decomposition.



Chap. 1: Unifying theme and main contributions 17

Figure 1.2: Visualization of adaptive neighborhoods overlayed completion result.

Interpolation methods can be used to fill in missing regions, relying on certain smoothness assump-

tions to estimate a function from samples. In this work we complete regions by compositing intermediate

scale image fragments. To capture structures of various sizes we take an adaptive approach, where frag-

ments have different sizes based on the underlying structure. The size of the neighborhood is determined

by the image statistics and spatial frequency as shown in Figure 1.2.

Filling gaps of sound is performed by segmenting the complex spectrogram into parts. We then apply

techniques used in texture and image synthesis for context-based sound synthesis. We adopt direct image

space methods for synthesizing a time varying audio signal by using the complex spectrogram. The

complex spectrogram of the signal is partitioned into separate overlapping frequency bands as shown

on the vertical axis of the left panel of Figure 1.3. Each band is fragmented by segmentation of the

time-frequency space and a partition of the spectrogram in time as shown on the horizontal axis of the

right panel of Figure 1.3, and filled in with complex fragments by example. At each step of filling

in a frequency band, a target fragment is defined with a causal region of overlap with the input and

previously synthesized regions. The spectral boundaries in the time-frequency space are irregular and

based on a local segmentation. To maintain a coherent sound stream, and motivated by our auditory

working memory, the time extents of each fragment are determined by the nearest times in the partition

of all previously (lower) synthesized frequencies with the greatest response inside the gap.

Video compositing focuses on recombining pieces of video volumes to create a whole coherent

video. It refines the compositing operation used in image and texture synthesis. In the case of multiple

image or video regions, compositing consists of sequentially partitioning the overlapping input by find-

ing a cut and then merging across the overlapping region. Image and video editing operations include



Chap. 1: Unifying theme and main contributions 18

Figure 1.3: Spectrogram frequency and time partition.

temporal transitions, placing a figure over a background, and seamlessly combining different image or

video regions. Texture synthesis commonly consists of searching for similar patches followed by merg-

ing them together. All these applications involve compositing as an essential step of the process. Image

and video composition focuses on recombining parts into a spatially and temporally coherent result.

Figure 1.4 demonstrates our method by spatially folding an image shown in (a), placing the left and

right portions of the image one over the other, computing a 2D minimum graph cut in the overlapping

region (b), and the resulting composite (c). Figure 1.5 shows a frame from the result of video trimap

extraction for a time-lapse sequence of a flower opening. The figure demonstrates the various steps of

our method: (a) keyframe spline interpolation, (b-c) iterative 3D graph cuts, and a frame of the resulting

trimap (d). We introduce operations for smooth and sharp transitions between videos and provide a 3D

formulation which reconstructs a temporally coherent output. It avoids temporal artifacts by spreading

the residual of a least squares solution over the entire video volume.

(a) (b) (c)

Figure 1.4: Image folding: (a) Input image. (b) Cut. (d) Result of gradient image compositing.



Chap. 1: Unifying theme and main contributions 19

(a) (b)

(c) (d)

Figure 1.5: Video trimap extraction: (a) Keyframe spline interpolation. (b) Initial slice of 3D graph cut.
(c) Result of iterative 3D graph cut. (d) Graph cut trimap.

Graph partitioning techniques are commonly used for object segmentation. We take a unified ap-

proach to object segmentation in video by fitting splines to graph cuts. The strengths of this approach

stem from the dual discrete and continuous representations and from allowing the user to refine the result

of the cut by fitting a new spline to it and modifying its points. Segmentation of an object in video is

performed by a series of updates to the control points and computation of a minimum graph cut.

In conclusion, this work presents a framework for synthesis by example. Our data driven approach

is centered around the decomposition of the signal into parts. It includes a search for similar parts,

operations on components, and finally composition of the parts into a coherent whole.



Part I

Image and Shape Analysis and Synthesis



Chapter 2

Example-Based Style Synthesis

We introduce an example-based synthesis technique that extrapolates novel styles for a given input

image. The technique is based on separating the style and content of image fragments. Given an image

with a new style and content, it is first adaptively partitioned into fragments. Stitching together novel

fragments produces a coherent image in a new style for a given content. The aggregate of synthesized

fragments approximates a globally non-linear model with a set of locally linear models. We show the

result of our method for various artistic, sketch, and texture filters and painterly styles applied to different

image content classes. This part appeared in proceedings of IEEE Conference on Computer Vision and

Pattern Recognition 2003 [35].

2.1 Introduction

Images and paintings can be regarded as a composition of content and style. An illustrative example

is shown in Figure 2.1, where the four images on the top left are examples consisting of two pairs

of images which have the same “content” and two pairs with the same “style”. Let pi represent the

different underlying content of each row i = 1, . . . ,m, and f j the different style operator of each column

j = 1, . . . ,n. Then the m×n matrix of images is A = (ai j) = f j(pi).

Problem statement: Given the sub-matrix of images A(1 : m− 1,1 : n− 1) as a small training

set, and the input image A(m,n) shown on the lower right of Figure 2.1, which has a different content

and a different style, the task of the algorithm is to complete the remaining images A(m,1 : n−1) and



Chap. 2: Introduction 22

A(1 : m− 1,n). Loosely speaking we would like to synthesize a new image that contains the same

content but with novel styles. In particular, the goal is to complete the image matrix and synthesize

images with the same content as the input image, with the styles of the images of the training set.

Synthesizing images in various styles by example is related to the problem known as image analogies

[63]: given training images f1(p1), f2(p1) in different styles, and another example image in one of the

known styles, f1(p2), the goal is to synthesize the example in the other known style f2(p2). In contrast,

we deal with a two-factor problem, since the image fn(pn) has both unknown content pn �= p1,p2 and

unknown style fn �= f1, f2. Notice that once any of the images in the image matrix is synthesized, the

remaining images can then be generated by analogy. In image analogies [63], the training set is used

as a look-up table, which shows explicitly the mapping between styles of a given pixel in a given local

content. Here we take a different approach: the training set is used to generate a model that factors style

and content, and then novel images are synthesized based on the computed model. Factorization of style

and content has been applied successfully to aligned images [52, 110]. However, in our setting there

is no natural correspondence between the training images of different content, as shown in the rows of

Figure 2.1, and no natural correspondence with the given input image, and thus the images cannot be

aligned. Moreover, the input image has a different content, and its style is not necessarily present in any

of the examples in the training set.

Separating style and content in the general case is a difficult problem. It has been successfully

applied to factors such as illumination, that can be approximated by a linear subspace [8]. The method

introduced in this work deals with models which are globally non-linear. The idea is to approximate

a globally non-linear model by multiple locally linear models. The input image is decomposed into a

set of overlapping fragments of various sizes, and fragments of the training images are considered at

multiple positions, scales, and orientations. At the fragment level, similar fragments are approximately

locally linear. Composing the local fragments back into a full image, approximates the globally non-

linear model by locally linear models. This property is maintained by an adaptive choice of fragments,

as will be described in detail below.

Building upon recent example-based image synthesis techniques [41, 49, 63, 80, 105, 110], our

approach is to adaptively decompose the input image into fragments, and then synthesize a coherent

image by stitching together synthesized fragments that follow multiple constraints. Taking an adaptive



Chap. 2: Previous work 23

approach captures features at multiple scales and avoids drastic blocking artifacts. It should be empha-

sized that this work takes into account image content that includes both stationary and local regions such

as textures, as well as non-stationary and global information present in general images. However, our

approach is limited to capturing styles that are local, and at the fragment level, the model is simple and

fixed.

2.2 Previous work

Many operations ranging from low-level vision tasks to high-end graphics applications have been effi-

ciently performed based on examples [7, 12, 17, 19, 21, 49, 50, 63, 64, 104, 110].

The idea of defining and factoring image style and content using a bilinear model was introduced

to computer vision by Freeman and Tenenbaum [52]. Given a training set of aligned face images of

different people under varying illumination, Tenenbaum and Freeman [110] refer to the identity of a

face as content whereas the illumination is considered as style. Style and content are factored pixel-wise

by fitting a symmetric bilinear model to the training images. Combinations of style and content are

synthesized from a new face image under novel illumination by changing the estimated parameters of

the new image.

Given a set of parameters describing facial expressions such as degree of happiness or surprise, along

with a relative motion field of the face, Beymer et al. [11, 12] use a regression function that estimates

a mapping from parameters to motion for synthesizing novel facial expressions from a set of labelled

training images.

Rather than defining individual filters by hand, Hertzmann et al. [63] automatically studied a map-

ping of spatially local filters from image pairs in pixel-wise correspondence, one a filtered version of

the other. A new target image is then filtered analogously to the training images. Pixels are rendered by

comparing their neighborhood, and those of a coarser level in a multi-resolution pyramid, to neighbor-

hoods of a training image pair. Considering the original image as output and taking its segmentation map

as input allows the texture to be painted by numbers [58]. A new image that is composed of the various

textures is synthesized by painting a new segmentation map. Swapping the output segmentation map

with the original input image results in example-based segmentation [17]. In our case, we cannot only



Chap. 2: Image manifolds 24

approximate a common representation for images by blurring and median filtering and then proceed by

analogy, as this results in the loss of image detail.

Freeman et al. [49, 50] derive a model used for performing super-resolution by example. The tech-

nique is based on examining many pairs of high-resolution and low-resolution versions of image patches

from several training images. Baker and Kanade [7] apply this technique restrictively, to a class of face

images. Given a new low-resolution face image its corresponding high-resolution image is inferred by

re-using the existing mapping between individual low-resolution and high-resolution face patches.

The term image quilting [41] was coined for describing the process of synthesizing a new image by

stitching together blocks of existing images. The technique focuses on handling boundaries between

blocks and is applied to texture synthesis. It enforces a constraint that the error between overlapping

blocks is minimal, and blocks are stitched along a minimum cost path [32] that is computed by dynamic

programming. The results depend on the size of a block, which varies according to the texture proper-

ties. Hierarchical pattern mapping [105] takes into account that patterns in a texture are often in many

different sizes. A 3D surface is progressively covered by texture patches of various shapes and sizes.

Starting from a large patch, it is split into smaller ones based on the texture fitting error with already

textured neighborhoods. By adding the constraint that the synthesized texture match an example image,

Ashikhmin [5] presented texture transfer, in which an example image is rendered with a training texture.

This technique was extended to color transfer [120], a special case of image analogies, by matching local

image statistics. In our setting, we cannot simply transfer color and texture from one style to another, as

applying properties of one style over the other could result in artifacts.

2.3 Image manifolds

A general mathematical perspective for describing the variability of images is to regard an image, which

is represented by a vector of pixel intensities, as a point in an abstract image space, and then to char-

acterize a set of images by a manifold in this high-dimensional image space [102]. The statistics of

natural images are correlated [44] and far from random. Recently, several researchers [8, 96] have in-

dependently shown that irradiance environment maps, for rendering Lambertian objects under distant

illumination, are well approximated by a nine-dimensional linear subspace. Thus, from any given view,



Chap. 2: Style synthesis 25

the appearance of an arbitrary Lambertian shape, under arbitrary distributed distant illumination, is ap-

proximately near a ten-dimensional manifold. By adding more parameters, the dimensionality of the

manifold increases, and it becomes highly complex and non-linear, although its dimensionality remains

far less than that of the image space.

In our work, we would like to be able to extrapolate between images in parameter space by moving

along such a manifold and extrapolating novel points. This requires addressing three issues: (i) The

manifold is complex and has a highly non-linear global structure, (ii) The “curse of dimensionality”; the

dimensionality of the image space is too high, and (iii) There is no natural correspondence between the

images. Classical approaches such as Principle Component Analysis or Multiple Discriminant Analysis,

that find projections that best represent or separate data in a least squares sense, are unsuitable for our

purposes since they require correspondence.

Our approach is based on the observation that although the manifold is globally non-linear, locally it

is approximately linear. This alleviates the problem of complexity of the manifold. It permits applying

simple local linear models as a good approximation of a global highly non-linear model. To reduce the

high dimensionality of the space and to overcome the lack of correspondence, the images are decom-

posed into multi-scale fragments. A fragment is defined as a connected region cut from an image tile.

The tiles are overlapping and their aggregation is an over-complete representation of the image. The key

idea is to apply the synthesis at the tile level, and in a way that the composition of their fragments into a

full image is coherent.

2.4 Style synthesis

As explained in the introduction, we would like to synthesize novel images based on the training set. Our

solution is based on adaptively decomposing the input image into fragments and applying the synthesis

locally. We construct a feature pyramid for each image to capture various features at multiple scales. The

training set constitutes an over-complete representation, considering fragments at all scales, positions,

and eight orientations. The input image is adaptively subdivided by a quad-tree whose leaves consist of

overlapping tiles that are traversed in Morton’s order [100]. Images are then synthesized from coarse to

fine where each level is based on a coarser level. This captures features at multiple scales and accelerates



Chap. 2: Style synthesis 26

the computations.

At each level, tiles are synthesized from a number of example tiles. The choice of these examples is

based on multiple constraints, which include the underlying image geometry. The extrapolated tiles are

then cut into fragments which together form a coherent tessellation of the novel image. In the following

we elaborate on each of these stages.

2.4.1 Image decomposition

We adaptively decompose the input image A(m,n) into overlapping tiles. Our algorithm proceeds in a

top-down fashion maintaining a quad-tree as shown in Figure 2.2 for the input image, where each of its

nodes represents an image tile (element), and its four children represent a partition of that element. The

leaves of the tree correspond to elements that together cover the image. Each element is extended to

include overlapping boundaries. These boundaries form the constraints among adjacent elements which

are necessary to generate a coherent image. During image generation, elements are traversed in an order

that preserves coherence with previously synthesized regions.

An adaptive subdivision requires a method for deciding whether an element should be split or not.

Our initial subdivision of the input is based on the luminance and color values across an element. If any

of the absolute differences between the maximum and minimum values is above a threshold δ, and the

minimum element size εmin has not yet been reached, then the element is recursively subdivided. In all

the results shown we set δ between 0.25 and 0.4, and εmin to 4 by 4 and 8 by 8.

This coarse subdivision is further refined at runtime in any of the following stages: (i) Multi-

dimensional search: if a suitable set of candidate tiles is not found; (ii) Fragment synthesis: if the

model fails to accurately reconstruct (validate) the input tile; and (iii) Image reconstruction: if the syn-

thesized fragments do not agree with previously synthesized regions. There is a trade off here since finer

elements meet the above conditions but do not capture large features.

2.4.2 Multi-dimensional search

An important part of the algorithm is the selection of a set of fragments which has a 2D (style and

content) embedding that reflects the relation among the training set images in the higher dimension. At

the same time, the synthesized fragments must agree with their neighbors. Moreover, in a single step,



Chap. 2: Style synthesis 27

the algorithm synthesizes a set of fragments, one for each style and content. Thus, a multi-dimensional

search must simultaneously take into consideration constraints from multiple tiles and boundary val-

ues. Boundaries are crucial in capturing geometric configurations and maintaining consistency with

previously synthesized regions.

A search vector is the concatenation of components from multiple origins, as illustrated in Figure

2.3. Formally, let A(i, j)l denote an image in row i and column j of the matrix, at scale l, where l = 0

is the coarsest level. Let Tp,ε,o denote an extended tile around position p, of size ε , in orientation o,

and similarly, let Bp,ε,o denote the corresponding boundary. Each search vector is a concatenation of the

boundaries B with previously synthesized fragments in styles j = 1, . . . ,n−1, and tile T in style n, and

the corresponding tiles at a coarser scale l −1, for l > 0,

Bp,ε,o(A(i,1)l), . . . ,Bp,ε,o(A(i,n−1)l),Tp,ε,o(A(i,n)l),

Tp
2 , ε

2 ,o(A(i,1)l−1), . . . ,Tp
2 , ε

2 ,o(A(i,n)l−1). (2.1)

Given the vector defined in Eq. (2.1), with input content i = m and upright orientation, we find its

nearest neighbors in each content row i = 1, . . . ,m−1, over each position, and orientation. This enforces

the same position p and orientation o, for the same content across different styles j = 1, . . . ,n, but allows

different positions and orientations for different contents i = 1, . . . ,m.

The above multi-dimensional search is applied at multiple scales over several features. Our algo-

rithm maintains a feature pyramid, created in a pre-processing stage, for each image in the matrix A. The

feature pyramid consists of color and luminance Gaussian pyramids, as well as four gradient pyramids

in the horizontal, vertical and two diagonal directions, and a Laplacian pyramid, which are derived from

the luminance values. Features are selected according to properties of the training set and the compo-

nent type. Color is effective for a rich training set, which contains a large distribution of samples for a

high dimensional search. Luminance is suitable for both the tiles (T ) and boundaries (B). In addition,

gradients and the Laplacian are effective features for tiles, but not used for thin boundaries. Gradients

are computed by the Sobel operator and are correspondingly isotropic for horizontal, vertical and di-

agonal edges. The Laplacian is invariant under rotations for increments of 45 degrees. In this work



Chap. 2: Style synthesis 28

we experimented with L1, L2 norms, normalized correlation coefficient, and ordinal measures [13] for

similarity of vectors. The normalized correlation coefficient is linearly invariant to contrast, and ordinal

measure is too expensive for our purposes. Therefore, we use the L1 and L2 norms depending on the

selected features.

The search vectors can be regarded as points in multi-dimensional space. Finding a best match is

then equivalent to finding the nearest-neighbor. Three main strategies of searching for nearest neighbors

are pre-structuring, partial distances, and pruning [39]. We use partial distances, which constitute a

monotonic non-decreasing function, and test intermediate distances twice. In order to further improve

matching performance, the search for a similar vector is performed hierarchically from coarse to fine.

The position of the best matching vector is successively refined based on the best position found at

a coarser level. The search is then confined to a window that decreases exponentially in size while

traversing the pyramid from coarse to fine. For a full pyramid, each search is logarithmic in the number

of pixels in the finest level times the number of features. We choose the coarsest level in the search for

each vector such that the size is at least εmin. Overall, the entire search is linear in the resolution of the

input image times the logarithmic factor in the number of training images, their resolution, the number

of orientations, and the number of features.

2.4.3 Fragment synthesis

In this section we describe the mathematical tool used to locally factor style and content of tiles and

synthesize novel fragments. We begin by briefly reviewing multilinear and bilinear forms, and factoring

equations for symmetric bilinear forms (the reader is referred to Tenenbaum and Freeman [110] for

detailed derivations).

A multilinear form on V n is a mapping f : V n → F which is linear in each argument, that is, for all

xi,x′i ∈V , and all λ ∈ F :

f (x1, . . . ,xi +x′i, . . . ,xn) = f (x1, . . . ,xi, . . . ,xn)+

f (x1, . . . ,x′i, . . . ,xn)

f (x1, . . . ,λ xi, . . . ,xn) = λ f (x1, . . . ,xi, . . . ,xn).



Chap. 2: Style synthesis 29

The special case of a 1-form is a linear mapping f (α x +βy) = α f (x)+β f (y). A 2-form is a bilinear

form. Defined on V ×W , it is a mapping f : V ×W → F which is linear in each argument, that is, for all

x,x′ ∈V , all y,y′ ∈W and all λ ∈ F:

f (x+x′,y) = f (x,y)+ f (x′,y)

f (x,y+y′) = f (x,y)+ f (x,y′)

f (λ x,y) = λ f (x,y) = f (x,λ y).

If f : V ×V → F is a bilinear form then the matrix M of f relative to the basis (v1, . . . ,vn) is given by

mi j = f (vi,v j). If x = ∑n
i=1 xivi and y = ∑n

i=1 yivi then the polynomial and matrix representations of the

form are:

f (x,y) =
n

∑
i, j=1

xiy jmi j = xtMy. (2.2)

A bilinear form is symmetric if f (x,y) = f (y,x) for all x,y ∈V , and in matrix form M = Mt .

As described above, a bilinear form maps two vectors x and y by a matrix M to a scalar, and

introducing subscripts for multiple vectors, matrices and scalars:

ai jk = xt
iMky j. (2.3)

Now consider the inverse problem. Given only a set of scalars ai jk, a bilinear model can be fitted by

minimizing the total squared error:

min
xi,Mk,y j

∑
i
∑

j
∑
k

(ai jk −xt
iMky j)

2. (2.4)

A solution consists of a set of bilinear forms, defined by matrices {Mk}, together with sets of vectors

{xi} and {y j}.

We use an iterative SVD method as presented in [110] for Eq. (2.4). An exact solution exists when

the number of vectors {xi} and {yi} equals their dimension. For example, for general matrices Mk, an

exact solution exists when choosing each set {xi} and {yi} to be a basis. For the special case of the

standard basis, the matrices are simply defined by the scalar values themselves Mk(i, j) = ai jk.



Chap. 2: Style synthesis 30

Next, we would like to estimate the two vectors u and v, derived from the established mappings

{Mk}, for another vector b:

bk = utMkv. (2.5)

The above is solved iteratively, where the initial guess for the vector v is the mean of the vectors yi,

and the superscript t denotes the vector transpose of a block matrix [110]:

u = ((Mv)t)−1b v = ((Mtu)t)−1b. (2.6)

Finally, the derivation above is applied to a style and content matrix of tiles. The tile positions,

orientations and scales are of the boundaries and tile in scale l in Eq. (2.1), for the best match in each

content row i = 1, . . . ,m−1, and the original search vector. The kth pixel value of a tile in content row

i and style column j is denoted as ai jk. The vectors xi and y j determine the style and content of each

tile. The vector b denotes the input tile, and its estimated style and content parameters are u and v. In

case the model fails to reconstruct (validate) the input tile, Eqs. (2.5,2.6), we first extend the number of

nearest neighbors considered in the search, and then refine the input subdivision.

Having estimated the style and content parameters u, v of the remaining row and column, the tile

matrix is completed by applying xiMkv and uMky j.

As explained, the multi-dimensional search is based on a number of selected features. However, after

the search finds a set of tiles, we consider only luminance, and color for a sufficiently varied training

set. Synthesis is performed in the perceptually-based (l,α ,β) color space [97]. This space minimizes

the correlation between channels, and so tile synthesis is performed separately for each channel. The

results are then transformed back to (r,g,b) values for display.

2.4.4 Image reconstruction

Prior to synthesis, the search for a set of tiles enforces that they match previously synthesized regions.

This is not sufficient to guarantee that the synthesized tiles match previously synthesized regions as

well. The error after synthesis is computed for the overlapping boundaries, over all features, across the

different styles. If it is proportional to the error before synthesis, then we repeat the synthesis process,

extending the number of nearest neighbors. If a small number of nearest neighbors is exhausted, then



Chap. 2: Style synthesis 31

the search and synthesis process is refined by recursively subdividing tiles. Once a set of matching tiles

is synthesized, we find the minimum cost path along the error surface of the overlapping boundaries by

dynamic programming [41], breaking ties by taking the center values.

Traversal of the entire input image guarantees a cover of the images in the mth row, but not of the

images in the nth column of A. The synthesized tiles of the nth column are transformed back to their

original orientation, and may appear at any image position according to the search. Thus, for each

scale l, after synthesizing images A(m, j)l for columns j = 1, . . . ,n− 1, the images A(i,n)l for rows

i = 1, . . . ,m− 1 are completed by extending image analogies. The roles of the training images and the

inputs are then reversed. The images of each row i < m serve separately as input, and the mth row serves

as the training images. Additional modifications, compared with image analogies [63], consist of (i)

adaptively decomposing the input, (ii) stitching together fragments instead of synthesizing pixels, and

(iii) searching for a simultaneous match of previously synthesized boundaries and candidate regions, in

multiple scales and across all styles as shown in Figure 2.3.

Since style synthesis is performed from coarse to fine we specify the initial conditions for the search

and synthesis, and the inductive step applied from each level to the next. First, if the coarsest level l = 0

in the pyramid consists of a single tile, then the search is empty, and the remaining tiles are synthesized.

Next, for l > 0, the image boundaries for each style in the remaining mth row are initialized, and the

coarser level l − 1 serves as an initial guess for the remaining nth column. In particular, for different

luminance across styles, after initializing A(m, j) with the target, linearly matching the histograms to

A(1 : m− 1, j) improves the result. In this case, A(i,n) is initialized with random samples of A(m : n).

For the same colors across styles, initializing A(i,n) with the mean of A(i,1 : n−1) yields comparable

results.

Finally, we consider two special cases: (i) A single content training row; The search is performed

under multiple constraints simultaneously, finding a single fragment for each image. Therefore instead

of extrapolation, the nearest neighbor is selected. Notice that if there is no underlying model across

the different content rows, then images in the same style and different contents are regarded as a single

image; and (ii) A single style training column; Content rows are considered as one image, and the search

finds a single fragment, selecting the nearest neighbor.



Chap. 2: Results 32

2.5 Results

We have experimented with our method with various sources and styles: (i) Artistic, sketch, and texture

filters from an image editing tool [1]; (ii) Painterly renderings generated by applying layers of curved

brush strokes [62]; and (iii) Real paintings. The filters and painterly styles were applied to a variety

of image classes from a database of stock photographs. The subjects of these photographs are varied

and include landscapes, buildings, people, products, and more. For all of these families of styles and

image content classes, our method produces visually plausible results. Computation times range from

one hour (Figure 2.5) to ten hours (Figure 2.4) for synthesizing a set of 256 by 256 images on a 1.8GHz

PC, running a Java implementation.

The transposed matrix in Figure 2.4 shows natural images in four different artistic styles, in each

row from top to bottom: poster edges, fresco, paint daubs and dry brush. The poster edges filter reduces

the number of colors in an image and accentuates edges with black lines. The fresco filter applies short

and rounded dabs creating a coarse style. The paint daubs filter paints an image with simple round

brush strokes. The dry brush filter simplifies an image by painting edges with round brush strokes and

reducing the range of colors. The two images in dry-brush on the left of the lower row, and the three

images in poster-edges, fresco, and paint-daubs on the right column were synthesized by our algorithm,

and are denoted by a thick frame.

The transposed matrix in Figure 2.5 shows landscape images in three different sketch styles: char-

coal, reticulation, and graphic-pen. The charcoal filter draws major edges in bold, while mid-tones are

sketched using diagonal strokes. The reticulation filter creates an image that appears clumped in the

shadow areas and lightly grained in the highlights. The graphic pen filter uses fine linear strokes to

capture image details. Only upright orientation was considered for synthesizing the images shown on

the right column, to capture the directional strokes of the graphic-pen. The two images in graphic-pen

on the left of the third row, and the two images in charcoal and reticulation on the right column were

synthesized by our algorithm. We compare our results with applying the filter directly to the original

images, as shown in the bottom row of Figure 2.5.

The matrix in Figure 2.6 shows landscape images. Each of the landscape images has a different

appearance. We applied three different artistic and texture styles: craquelure, sponge, and water-color.

The craquelure filter paints an image onto a relief surface, generating cracks that follow contours. The



Chap. 2: Comparison 33

sponge filter creates images with highly textured areas of contrasting color. The water-color filter sim-

plifies image details by saturating color at edges. The images in sponge and craquelure on the lower

row, and the two images in water color on the top right column were synthesized by our algorithm.

The matrix in Figure 2.7 shows images in two different painterly styles [62], impressionist and

expressionist, and a real painting. The impressionist style applies moderately curved brush strokes

without random jitter. The expressionist style paints an image with elongated brush strokes with random

color jitter. The input image is from a painting in a post-impressionist style. The images in impressionist

and expressionist style on the lower row, and the two images on the top right column were synthesized

by our algorithm.

2.6 Comparison

We have compared our approach for style synthesis with the best space invariant linear filter from an

image in the training set. To compute the optimal linear filter we solve for:

θ∗ = argmin
θ

1
k
‖b−Aθ||22,

where A is a matrix containing k rows each with pixels within a source patch, b is a column vector of

target pixels, and θ the filter parameter vector. This is equivalent to solving for:

θ∗ = argmin
θ

(θT R̃aaθ −2θT r̃ab),

where R̃aa = AT A
k estimates the auto correlation, and r̃ab = AT b

k estimates the cross correlation. The

solution is the parameter vector θ∗ = (R̃aa)−1r̃ab.

Notice that in our case the novel image is in a new style that is not present in the training images. The

comparison is shown in Figure 2.8, where the left column shows the result of the best space invariant

linear filter and the right column shows the result of our method. The top left image shows the result

using a filter computed from a style present in the training set to Craquelure and corresponds to Figure

2.6, whereas the bottom corresponds to Poster Edges in Figure 2.4. As observed, our method is better

suited for handling adaptive patches, whereas applying one style onto another creates artifacts.



Chap. 2: Conclusions 34

2.7 Conclusions

We have introduced a method for style synthesis that utilizes a training set of images. While the specific

implementation here is image synthesis, the main motivation is to explore the separability of content

and style, which can be viewed as a fundamental topic in image pattern analysis. Our method is based

on an adaptive scheme to synthesize local fragments of an image by extrapolating multiple fragments.

Future work will focus on problems with more than two factors, using a local multilinear model for

approximating highly complex factors of appearance, such as changing weather conditions.

Our approach is example-based, which means that its performance is dependent on the richness

of the available fragments in the training set. In addition, it is an image-based 2D method and does

not incorporate high-level information about the underlying scene. Although we have applied several

techniques for accelerating the search, our algorithm is still very slow. To speedup the search we would

like to apply geometric hashing, and then use larger training sets and consider tile deformations.

Finally, an interesting extension of this work is to 3D surface patches of 3D models. This will require

to partition a mesh into patches and incorporate mesh coordinates in the synthesis process.



Chap. 2: Conclusions 35

Figure 2.1: A training set of painterly rendered images and an input from a Still Life by Paul Cezanne
form an image matrix. Each column consists of various styles of the same image, and each row results
from applying the same style to different images. The goal is to synthesize the remaining images.



Chap. 2: Conclusions 36

Figure 2.2: Quadtree image decomposition.

T p
2 , ε

2
(A(i,1)l−1) T p

2 , ε
2
(A(i,n−1)l−1) T p

2 , ε
2
(A(i,n)l−1)

Bp,ε (A(i,1)l) Bp,ε (A(i,n−1)l) Tp,ε (A(i,n)l)

Figure 2.3: The components of a search vector for a single content row are highlighted. Notice that the
extension of a uniform tile captures the edge.



Chap. 2: Conclusions 37

Poster Edges

Fresco

Paint Daubs

Dry Brush

Figure 2.4: A set of natural images and artistic filters form an image matrix. The two images in dry-
brush on the left of the lower row, and the three images in poster-edges, fresco, and paint-daubs on the
right column were synthesized by our algorithm.



Chap. 2: Conclusions 38

Charcoal

Reticulation

Graphic Pen

Ground Truth

Figure 2.5: A set of landscape images and sketch filters form an image matrix. The two images in
graphic-pen on the left of the third row, and the two images in charcoal and reticulation on the right
column were synthesized by our algorithm.



Chap. 2: Conclusions 39

Sponge Craquelure Water Color

Figure 2.6: A set of landscape images and artistic, texture filters form an image matrix. The images in
sponge and craquelure on the lower row, and the two images in water color on the top right column were
synthesized by our algorithm.



Chap. 2: Conclusions 40

Impressionist Expressionist Cezanne

Figure 2.7: A set of painterly rendered images and an input from a Still Life by Paul Cezanne form an
image matrix. The images in impressionist and expressionist style on the lower row, and the two images
on the top right column were synthesized by our algorithm.



Chap. 2: Conclusions 41

Best space invariant linear filter Our method

Figure 2.8: Comparison: (Left) Best space invariant linear filter. (Right) Result of our method.



Chapter 3

Multilinear Shape Analysis using Level

Sets

This chapter provides a framework for learning, representing and querying large data sets of shapes by

multilinear analysis of level sets. Shape regions are represented by an implicit shape model that does

not require dense point correspondence and handles varying topology. We analyze a large training set

of shape models by multi-linear factorization of the tensor produced from their level sets. This allows

to synthesize canonical samples which are independent of any subset of factors, and to reduce dimen-

sionality while maintaining the variability of known factors. We demonstrate the applicability of our

approach by analysis of a multidimensional corpus of ceramics shapes and sketches of archaeological

pottery.

3.1 Introduction

Analysis and organization of large collections of shape classes is a fundamental problem in pattern

recognition. In this work we address the issues of shape representation, organization, and analysis of a

large data set, to enable efficient classification and retrieval.

Real-world data sets are relatively large and characterized by varying shapes that consist of both

smooth and highly curved regions. Point based shape representations require determining dense point

correspondence or a set of corresponding features that describe each shape. For a collection consisting



Chap. 3: Introduction 43

of a few hundred shapes and which requires scalability, it is not feasible to manually match the shapes

or find point-wise correspondence between them. In addition point-based shape representations are not

suitable for handling shapes of different or changing topology, or shapes with regions of high curvature.

We therefore use an implicit region-based shape model. The input shapes are encoded as binary images

and represented using a function in which the shape boundaries are a level set.

We aim at finding a unified representation that captures the relationships among different shapes

in the set while maintaining the information on the interaction between shape factors. In this regard,

approaches such as principle component analysis or multiple discriminant analysis find projections that

best represent or separate data in a least squares sense. In principle component analysis a set of random

variables is transformed linearly and orthogonally such that the new variables are uncorrelated. The first

few components account for a large proportion of the variance of the variables. Another view is as an ap-

proximation of the variance matrix by a matrix of lower rank. Therefore, principle component analysis

is used as a linear dimensionality reduction technique which identifies orthogonal directions of maxi-

mum variance in the original data, and projects the data into a lower dimensionality space formed by a

subset of the highest-variance components. However, representing each sample by a linear combination

of the basis is suitable for collections consisting of a single linear factor.

A general mathematical perspective for describing the variability of shapes is to regard a shape,

which is represented by a vector of implicit function values, as a point in an abstract shape space, and

then to characterize a set of shapes by a manifold in this high-dimensional shape space. In this work

we take a supervised approach and assume that multiple interesting or important factors of shape are

known. We therefore organize the data set into a multi-dimensional array, in which each axis represents

a specific factor or shape attribute, and each entry is an implicit function whose level set represents

shape. This defines a grid of points in the high-dimensional shape space, and the representation takes

into account the interactions between multiple factors as apposed to analysis of a single factor.

In a similar manner to which matrices correspond to bilinear forms, multi-dimensional arrays or

tensors correspond to general multi-linear forms, and are suitable for analysis and processing of multi-

dimensional data sets. Tensor decompositions are useful for multi-mode component analysis, compress-

ing multi-dimensional arrays, and clustering. For a large data set consisting of a multi-dimensional array

or tensor, multi-mode component analysis attempts to discover relations in the multi-way data set and



Chap. 3: Introduction 44

reduce each of the dimensions. This is realized by a decomposition of the tensor into tensor-matrix

products. This decomposition provides a multi-linear model of the collection. Each matrix in the de-

composition represents a linear model and their tensor-matrix composition is a multi-linear model of

interactions between them. In particular, one of the matrices involved in the decomposition represents

the eigenvectors as in PCA, and therefore this analysis supersedes a single factor linear model. Perhaps

more importantly, it allows representing canonical samples from the data set independent of any sub-

set of factors, paying attention to certain factors while being independent of others, which is key for

classification.

We demonstrate the applicability of our approach for the specific domain of archeological data of

pottery shapes which is characterized by multiple factors. In a general setting, this work is the first on

multi-linear analysis of shape data represented by level sets of functions.

3.1.1 Related work

Principle component analysis transforms a basis to an orthogonal coordinate system formed by eigen-

vectors of the covariance matrix. Application of PCA to a set of aligned face images, eigen-faces [114],

represents each face by a linear combination of basis images.

Based on the ideas developed by Osher and Sethian [87], Malladi et al.[82] use a level set approach

for modeling shape. Tasi et al.[111] apply PCA to a collection of signed distance representations of

shape for segmentation of medical images. Morphable models of 3D faces [16] and whole body scans

[2] morph between all meshes and textures in full correspondence by linear combinations. The weights

do not correspond to natural shape attributes as some attributes are related to shape measurements such

as the width or height, and others such as expression are not. Synthesis is performed by adding the

difference between two instances of the same shape with different values for a specific attribute. This is

not suitable for attributes that are invariant for each shape. Therefore a label is given for the markedness

of each attribute of each sample and a weighted sum is computed using these labels as weights assuming

that each attribute is a linear function.

The goal of local linear embedding (LLE) [99], Isomap [109], and Hessian LLE [34], is to recover a

low-dimensional parameterization of high-dimensional data. Recent application to continuous data such

as image sequences [92] allows analysis of the trajectory through these embedded spaces.



Chap. 3: Shape representation 45

There are various generalizations of data decomposition to multiple dimensions. A first type, pre-

sented by Tucker [112] for three-mode analysis is known as component analysis [81]. Kroonenberg

and de Leeuw [74] provide an alternating least squares algorithms for component analysis. Kapteyn

et al.[69] extend these to n-mode component analysis. Lathauwer et al.[78] present tensor notation

and foundations for approximations for tensor decompositions. A second generalization to multi-

mode arrays developed by Harshman [59], and by Caroll and Chang [24] is known as PARAFAC-

CANDECOMP. Kolda [73] explores different notions of orthogonality for tensor decomposition, such

as the rank-one approximation to higher order tensors presented by Zhang and Golub [124].

Applications of these tools are emerging in diverse fields ranging from pattern recognition, commu-

nications, medical imaging, computer vision, to data mining. In this regard, a challenge is to apply these

methods to large data sets and in this work we deal with data sets consisting of thousands to millions of

entries. Harshman [60] performs factor analysis of tongue shapes in which vocal-tract shapes are repre-

sented by a set of features. These features are displacement measurements of positions along reference

lines defined on tongue x-rays taken during vowel pronunciation. Tenenbaum and Freeman [110] use

bilinear models to factor style and content of warped letters and aligned face images, synthesizing novel

images based on the computed model. Davis and Gao [33] use three-mode component analysis for rep-

resenting and recognizing styles of human actions. Vasilescu and Terzopoulos [116] apply a multilinear

model as presented by Lathauwer et al.[78] to aligned face images. In this work we use a multilinear

model of entire functions whose level set is the shape as described in the following section.

3.2 Shape representation

Shapes are commonly represented by points describing their boundaries. An alternative is to represent

shape by a signed distance function, in which the shape boundaries are the zero level set as shown in

Figure 3.1. Formally, the level set of c is the set of points defined by {(x1, . . . ,xn) : f (x1, . . . ,xn) = c} ∈
Rn, and for n = 2 the level set is a level curve. The advantage of such a representation over a point-

based approach is the ability to handle varying topology, represent areas of high curvature, and analyze

a collection of roughly aligned shapes without dense pointwise or feature correspondence.

The Euclidean distance transform of a binary image is the distance between each pixel and the



Chap. 3: Shape representation 46

Figure 3.1: Shape representation.

nearest pixel of inverted value. The signed distance transform assigns negative values inside the shape

and positive values outside. For gray scale images, in which black pixels represent the inside of a shape

and white pixel the outside, there are also possible gray pixels on the boundary which is then detected

by comparing the value of each pixel and two of its neighbor to a threshold. Linear interpolation using

the distance transform is shown in Figure 3.2. A continuous implicit function enforcing a smoothness

constraint [113] is also suitable for our purposes.

Figure 3.2: Linear shape interpolation.



Chap. 3: Multilinear analysis 47

3.3 Multilinear analysis

We begin by briefly describing the necessary definitions and operations on multi-dimensional arrays or

tensors. The definitions are mode-k vectors, mode-k flattening, mode-k product, and k-rank (the reader

is referred to Lathauwer [77] for detailed derivations). We apply a multilinear model to a large data set

consisting of functions, each representing a shape by the zero level set [87] of the function.

Let A denote an n-dimensional d1 × d2 ×·· ·× dn array, or tensor of order n. The kth dimension of

A is dk, and an element of A is specified by ai1···in , where i j ∈ [1 . . .dk] for each j ∈ [1 . . .n]. In our case,

the tensor represents a collection of functions in which ∏n−1
k=1 dk < dn, where dn is the dimension of the

domain of the functions.

3.3.1 Flattening

The mode-k vectors of an n-dimensional d1 × d2 × ·· · × dn tensor A are the vectors of dimension dk

obtained by changing ik while fixing i1 . . . ik−1ik+1 . . . in, for a total of d1 · · ·dk−1dk+1 · · ·dn vectors. For

example, the columns of a matrix are mode-1 vectors and the rows are mode-2 vectors (and the time

spans of a video cube are mode-3 vectors).

The mode-k flattening of an n-dimensional d1×d2×·· ·×dn tensor A into a dk×(dk+1 · · ·dnd1 · · ·dk−1)

matrix Ak is defined by unfolding the tensor such that the dk dimensional mode-k vectors form the

columns of the mode-k flattening. For example, for a three dimensional array (yxz cube), which

is an order three d1 × d2 × d3 tensor A, the mode-1 flattening A1 is the matrix [A(:,1, :) · · ·A(:,d2, :

)]d1×(d2d3) (concatenating d2 slices of yz planes), the mode-2 flattening A2 is the matrix [A(:, :,1)T · · ·A(:

, :,d3)T]d2×(d3d1) (concatenating d3 slices of xy planes), and the mode-3 flattening A3 is the matrix

[A(1, :, :)T · · ·A(d1, :, :)T]d3×(d1d2) (concatenating d1 slices of xz planes).

3.3.2 Decomposition

The mode-k product ×k of an n-dimensional d1 ×d2 ×·· ·×dn tensor A by a r×dk matrix U is denoted

by A×k U and defined as the n-dimensional d1 ×dk−1 × r×dk+1 . . .×dn tensor B such that:

bi1...ik−1 jik+1...in =
dk

∑
ik=1

ai1...ik...inu jik (3.1)



Chap. 3: Multilinear shape analysis 48

for j ∈ [1 . . .r]. For a tensor A and matrices Up×p, Vq×q, the mode-p and mode-q products maintain

(A×p U)×q V = A×q (V×p U) = A×p U×q V, and for a matrix Vp×p the mode-p products satisfy

A×p U×p V = A×p UV.

The mode-k product B = A×k U is computed according to Bk = UAk, by multiplying U by the

flattened A and reorganizing the tensor B from its mode-k flattening Bk.

A tensor is decomposed into a multilinear model of factors defined by the tensor-matrix products:

A = C×1 U1 ×2 · · ·×n Un, (3.2)

where C is the core tensor, and U1, . . . ,Un are the mode matrices. Each mode matrix Uk is computed

by taking the left matrix of the SVD of the mode-k flattening Ak. For large rectangular matrices this is

performed efficiently by SVD of a multiplication by transpose, and with QR factorization by modified

Gram-Schmidt, according to dimensions.

The core tensor is then computed by the tensor-matrix products C = A×1 UT
1 ×2 · · ·×n UT

n by reor-

ganizing UT
1 A1(U2 ⊗·· ·⊗Un) which is the Kronecker tensor product.

3.3.3 Truncation

The k-rank of a tensor A is the dimension of the vector space generated by the mode-k vectors of A,

which is the rank of the mode-k flattening of A, and is denoted by Rk = rank(Ak).

3.4 Multilinear shape analysis

We provide an example illustrating the strengths of multilinear decomposition combined with an implicit

shape representation. Figure 3.3 shows a 2 × 2 × 2 array of functions where the indices appear in

parenthesis. The domain of each function is a 322 grid (a total of 8192 real values), defining a four

dimensional tensor 2×2×2×322. The factors are the prototype (column or jar), width (thin or fat) and

convexity (or concavity). This can be considered as a grid of points in a high-dimensional shape space

in which the level set of each implicit function is a point, and varying the value of the level set adds a

degree of freedom in the space.

The tensor decomposition allows to form canonical samples independent of any subset of factors.



Chap. 3: Multilinear shape analysis 49

This is demonstrated for a one and two factors in Figure 3.4 where the independent factors are de-

noted by an asterisk. The first row show independence of the second factor by computing the tensor

I2 = C×1 U1 ×3 U3 ×4 U4 and varying I2(i,1,k, :) for i,k ∈ 1,2. The second row shows independence of

the third factor resulting from computation of the tensor I3 =C×1 U1×2 U2×4 U4 and varying I3(i, j,1, :)

for i, j ∈ 1,2. The results take into account the interaction between factors and the remaining compo-

nents of the tensors contain the variability for the factors, as in principle component analysis. The last

row demonstrates dependence on a single factor, and is computed from the tensor I23 = C×1 U1 ×4 U4

by changing I23(i,1,1, :) for i ∈ 1,2. This allows paying attention to certain factors while being in-

variant of others which is important for classification. Total computation time is 19 seconds on a 1.8

GHz PC processor with 1GB of RAM, including the flattening, tensor decomposition and tensor-shape

computations.

3.4.1 Pottery shape analysis

Pottery is used for storage, processing, and transfer. Many vessels have multiple uses and each function

may require different attributes of shape, and therefore form and function are often linked. Archaeologist

use various methods to learn the function of vessels by analogy and inference. The methods are based

on extrinsic factors such as written records, location of archeological recovery, physical residues, and

usage, and on intrinsic factors such as decoration style and shape [98].

Ceramics can be characterized according to parts and their proportions. Three main components are

orifice, body and base. Secondary features include spout, handle, supports, flange, neck, collar, lip and

rim. Archaeological ceramic reports typically illustrate these using profiles with thickness as shown in

Figure 3.5 (left), and older excavation references use sketches as shown in Figure 3.5 (right).

Abydos data set analysis

A common classification scheme related to usage distinguishes between classes such as plate, dish, bowl,

jar and vase based on ratios of height and maximum diameter, with additional refinements. A coarser

classification divides vessels into flat and hollow, and differentiates based on volume. Additional vessel

shape classification schemes are based on contours, characteristic points on the silhouette, and solid

geometry [42].



Chap. 3: Multilinear shape analysis 50

The Abydos data set includes 491 sketches of ancient pottery from the Abydos excavation by Petrie

in 1902 [90]. The excavation manuscripts were scanned and manually preprocessed by cropping each

individual sketch, and applying a threshold. Of the 491 sketches we use 96 samples organized in a

8× 3× 4× (128)2 multidimensional array (a total of 1572864 real values). The first factor includes

the prototypes shown in Figure 3.6. Several functions of the two remaining factors, width and height,

for a single prototype are shown in Figure 3.8. Organization of the set is performed manually, in a

hierarchical fashion, each factor at a time, and requires a few manual comparisons within each factor, as

the notion of prototypes and largest and smallest value of an attribute are quite intuitive. The level set

functions of all the samples in the data set are pre-computed once and the tensor is then flattened for each

mode k = 1 . . .4. The tensor is then decomposed as described in Section 3.3.2 and additional tensors

are computed as shown in Figure 3.7. Computation time is 126 seconds for flattening all the modes, 13

seconds for computing the mode matrices, and 233 seconds for incrementally computing the core tensor

C. Computation of tensors independent of factors is performed by a tensor-matrix product of the core

with the dependent mode and is between 39 and 43 seconds for each tensor. This analysis supersedes

PCA as the columns of matrix U4 contain the eigen-shapes of level set functions which describe the

variation for the entire collection.

We have compared our method for shape analysis with the mean level sets over the independent

factors using the Abydos dataset. The top row of Figure 3.9 shows the mean denoted by µ over the

second and third factors given that the other two are fixed, as well as the mean over both of these factors

given the that first is constant. The bottom row shows our results which better preserve the features. The

independent factor is denoted by an asterisk and correspond to Figure 3.4.

Ceramics data set analysis

The types and appearance of vessels used in communities extend beyond function and shape. In con-

temporary communities, pottery may be classified into categories by its makers and users. These labels

are called folk classifications [71] and are based on shape characteristics such as width to height ratio,

neck position, emphasizing features such as handle and spout.

Our second data set includes 720 ceramics shapes [71] and the factors are the set of prototypes

with two independent and continuous shape variations. The level set functions of all the samples in the



Chap. 3: Conclusions and future work 51

data set form a four dimensional tensor 10× 8× 9× (1402) for a total of over 14 million real values.

This raw tensor is first stored in a file. Several samples of functions for three factors of the tensor are

shown in Figure 3.10. The tensor is then flattened and each mode-k flattened matrix for k = 1 . . .4 is

stored. The tensor is then decomposed and the core tensor computed incrementally, discarding the files.

Computation time is for flattening is between 270 and 313 seconds for each mode. Total computation

time is thirty minutes including the tensor decomposition, computation of mode matrices, core tensor,

and factor independent tensors.

3.5 Conclusions and future work

This work handles a large data set of shapes represented by a tensor of implicit functions for the first

time. This is a supervised approach as the data set is organized into a tensor according to known factors.

Therefore, future work will focus on unsupervised approaches such as clustering for automatically or-

ganizing the data set. This work opens extensions to surfaces and analysis of large 3D databases which

will require part-based representations and decompositions.



Chap. 3: Conclusions and future work 52

(111) (112)

(121) (122)

(211) (212)

(221) (222)

Figure 3.3: Input tensor: 2 (prototype) ×2 (width) ×2 (convexity) ×322 (function value).



Chap. 3: Conclusions and future work 53

(1*1) (1*2)

(2*1) (2*2)

(11*) (12*)

(21*) (22*)

(1**) (2**)

Figure 3.4: First to fourth rows: shapes independent of a single factor (indicated by *).Last row: shapes
independent of two factors.



Chap. 3: Conclusions and future work 54

Figure 3.5: Archaeological ceramic profile and excavation sketch.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.6: Prototype shapes from the Abydos data set: (a) plate. (b) dish. (c) bowl. (d) pot. (e) flask.
(f) jar. (g) vase. (h) column.



Chap. 3: Conclusions and future work 55

(21*) (5*1)

Figure 3.7: Shapes independent of one factor synthesized from Abydos data set core tensor and mode
matrices.

(211) (212) (213) (214)

(221) (222) (223) (224)

(231) (232) (233) (234)

Figure 3.8: Sampling of Abydos data set for a single prototype: two shape factors from four dimensional
(8×3×4×1282) level set tensor.



Chap. 3: Conclusions and future work 56

(2µ1) (12µ) (1µµ)

(2*1) (12*) (1**)

Figure 3.9: Comparison: (Top) mean. (Bottom) Result of our method.

(111) (115) (119) (511) (515) (519)

(131) (135) (139) (531) (535) (539)

(151) (155) (159) (551) (555) (559)

(171) (175) (179) (571) (575) (579)

Figure 3.10: Sparse sampling of ceramics data set: three shape factors from four dimensional (10×8×
9×1402) level set tensor. Notice the varying shape topology.



Part II

Image and Sound Completion



Chapter 4

Fragment-Based Image Completion

We present a new method for completing missing parts caused by the removal of foreground or back-

ground elements from an image. Our goal is to synthesize a complete, visually plausible and coherent

image. The visible parts of the image serve as a training set to infer the unknown parts. Our method

iteratively approximates the unknown regions and composites adaptive image fragments into the image.

Values of an inverse matte are used to compute a confidence map and a level set that direct an incre-

mental traversal within the unknown area from high to low confidence. In each step, guided by a fast

smooth approximation, an image fragment is selected from the most similar and frequent examples. As

the selected fragments are composited, their likelihood increases along with the mean confidence of the

image, until reaching a complete image. We demonstrate our method by completion of photographs

and paintings. This part was presented in SIGGRAPH 2003, and published in special issue of ACM

Transactions on Graphics [36].

4.1 Introduction

The removal of portions of an image is an important tool in photo-editing and film post-production.

The unknown regions can be filled in by various interactive procedures such as clone brush strokes, and

compositing processes. Such interactive tools require meticulous work driven by a professional skilled

artist to complete the image seamlessly. Inpainting techniques restore and fix small-scale flaws in an

image, like scratches or stains [65, 9]. Texture synthesis techniques can be used to fill in regions with



Chap. 4: Introduction 59

stationary or structured textures [40, 118, 41]. Reconstruction methods can be used to fill in large-

scale missing regions by interpolation. Traditionally, in the absence of prior knowledge, reconstruction

techniques rely on certain smoothness assumptions to estimate a function from samples. Completing

large-scale regions with intermediate scale image fragments remains a challenge.

Visual perceptual completion is the ability of the visual system to “fill in” missing areas [85] (par-

tially occluded, coinciding with the blind spot, or disrupted by retinal damage). While the exact mecha-

nisms behind this phenomenon are still unknown, it is commonly accepted that they follow some Visual

Gestalt [72] principles, namely, completion by frequently encountered shapes that result in the simplest

perceived figure [88]. Motivated by these general guidelines, we iteratively approximate the missing

regions using a simple smooth interpolation, and then add details according to the most frequent and

similar examples.

Figure 4.1: From left to right: the input image, and inverse matte that defines the removal of an element,
the result of our completion, and the region completed by our algorithm.

Problem statement: Given an image and an inverse matte, our goal is to complete the unknown

regions based on the known regions, as shown in Figure 4.1.

In this work, we present an iterative process that interleaves smooth reconstruction with the synthesis

of image fragments by example. The process iteratively generates smooth reconstructions to guide the

completion process which is based on a training set derived from the given image context.

The completion process consists of compositing image fragments and can be regarded as a “push-

background” process, in contrast to the “pull-foreground” processes associated with image matting. Our

completion approach requires a relevant training set and a degree of self-similarity within the input im-

age. It is an image-based 2D method that does not incorporate high-level information and can therefore

produce unnatural looking completions.



Chap. 4: Introduction 60

This chapter is organized as follows. After a survey of related work, we present an overview of the

entire completion process (Section 4.2), and then describe each component of the method in detail. We

introduce a fast approximation method (Section 4.3), and present a confidence map and traversal order

(Section 4.4). Next, we describe the search for similar fragments and their adaptive neighborhood size

(Section 4.5). In Section 4.6 we present the compositing of image fragments. Completion is performed

from coarse-to-fine, as described in Section 4.7. Finally we show the results of our method on various

photographs and paintings (Section 6.7), and discuss its limitations (Section 4.9).

4.1.1 Related work

Many operations ranging from low-level vision tasks to high-end graphics applications have been effi-

ciently performed based on examples:

Hertzmann et al. [63] study a mapping of spatially local filters from image pairs in correspondence,

one a filtered version of the other. A new target image is filtered by example. Pixels are assigned

values by comparing their neighborhood, and those of a coarser level in a multi-resolution pyramid,

to neighborhoods of a training image pair. Considering the original image as output and taking its

segmentation map as input allows texture to be painted by numbers [58]. A new image that is composed

of the various textures is then synthesized by painting a new segmentation map. Swapping the output

segmentation map with the original input image results in example-based segmentation [17].

Freeman et al. [51, 49] derive a model used for performing super-resolution by example. The tech-

nique is based on examining many pairs of high-resolution and low-resolution versions of image patches

from several training images. Baker and Kanade [6] apply this technique restrictively to the class of face

images. Given a new low-resolution face image, its corresponding high-resolution image is inferred by

re-using the existing mapping between individual low-resolution and high-resolution face patches.

The example-based image synthesis methods described above use a supervised training set of cor-

responding pairs. In our work, the examples provide the likelihood of a given context appearing in the

given image.

There is considerable work on texture synthesis, of which the most notable are based on Markov

Random Fields [40]. A new texture is incrementally synthesized by considering similar neighborhoods

in the example texture. These techniques synthesize texture which is both stationary and local [118].



Chap. 4: Introduction 61

Igehy and Periera [66] replace image regions with synthesized texture [61] according to a given mask.

Texture transfer [5] adds the constraint that the synthesized texture match an example image. This yields

the effect of rendering a given image with the texture appearance of a training texture. This technique is

extended to color transfer [120], a special case of image analogies, by matching local image statistics.

Efros and Freeman [41] introduce a simple and effective texture synthesis technique that synthesizes a

new texture by stitching together blocks of existing example texture. The results depend on the size of

a block which is a parameter tuned by the user that varies according to the texture properties. In this

work, we synthesize both local and global structures. To capture structures of various sizes, similarly to

hierarchical pattern matching [105], we take an adaptive approach, where fragments have different sizes

based on the underlying structure.

Image inpainting [9, 26] fills in missing regions of an image by smoothly propagating information

from the boundaries inwards, simulating techniques used by professional restorators. However, the

goals of image inpainting techniques and image completion are different. Image inpainting is suitable

for relatively small, smooth, and non-textured regions. In our case the missing regions are large, and

consist of textures, large-scale structures, and smooth areas. Recently, Bertalmio et al. [10] combine

image inpainting with texture synthesis by decomposing an image into the sum of two components.

Inpainting [9] is applied to the component representing the underlying image structure, whereas texture

synthesis [40] is separately applied to the component representing image detail, and the two components

are then added back together.

There are a number of approaches related to image completion in the Computer Vision literature, but

most of them focus on the edge and contour completion aspect of the problem. Edge completion methods

find the most likely smooth curves that connect edge elements, usually by minimizing a function based

on curvature [57]. Given a grid of points and orientations as elements, completion methods consider

the space of all curves between pairs of elements, and the pairwise interaction between elements. The

likelihood that any two elements are connected defines a field for each element, and completion is

performed by a summation over all fields [121]. Sharon et al. [103] take into account edge elements at

various scales, and use a multi-grid method to accelerate computations.

Our work is also related to photo-editing techniques. Oh et al.[86] incorporate some depth informa-

tion into photo-editing, whereas our method is a 2D image-based technique, which has no notion of the



Chap. 4: Image completion 62

underlying scene. Brooks and Dodgson [22] present an image editing technique that is based on texture

self-similarity, editing similar neighborhoods in different positions. Our method finds self-similarities

in the image under a combination of transformations: translation, scale, rotation and reflection.

4.2 Image completion

Figure 4.2: Completion process: confidence and color of coarse level (top row) and fine level (bottom
row) at different time steps. The output of the coarse level serves as an estimate in the approximation of
the fine level.

We assume that foreground elements or background regions are roughly marked with an image

editing tool, or a more accurate α channel is extracted using a matting tool. This defines an inverse

matte ᾱ that partitions the image into three regions: the known region, where ᾱi = 1; unknown region,

where ᾱi = 0; and, optionally, a gray region, where 0 < ᾱi < 1 for each pixel i, and “inverts” the common

definition of trimaps that are generated in the process of pulling a matte and foreground elements from

an image [27]. We require a conservative inverse matte that, at least, contains the entire extracted region.

As in digital image matting, the regions of the inverse matte are not necessarily connected. The inverse

matte defines a confidence value for each pixel. Initially, the confidence in the unknown area is low.

However, the confidence of the pixels in the vicinity of the known region is higher. The confidence



Chap. 4: Image completion 63

values increase as the completion process progresses.

Our approach to image completion follows the principles of figural simplicity and figural familiar-

ity. Thus, an approximation is generated by applying a simple smoothing process in the low confidence

areas. The approximation is a rough classification of the pixels to some underlying structure that agrees

with the parts of the image for which we have high confidence. Then the approximated region is aug-

mented with familiar details taken by example from a region with higher confidence.

All of these processes are realized at the image fragment level. A fragment is defined in a circular

neighborhood around a pixel. The size of the neighborhood is defined adaptively, reflecting the scale of

the underlying structure. Image completion proceeds in a multi-scale fashion from coarse to fine, where

first, a low resolution image is generated and then the results serve as a coarse approximation to the finer

level. For every scale we consider neighborhoods in level sets from high to low confidence. Figure 4.2

shows the confidence and color values at different time steps in each scale.

At each step, a target fragment is completed by adding more detail to it from a source fragment with

higher confidence. Typically, the target fragment consists of pixels with both low and high confidence.

The pixel values which are based on the approximation generally have low confidence, while the rest of

the fragment has higher confidence. For each target fragment we search for a suitable matching source

fragment, as described in Section 4.5, to form a coherent region with parts of the image which already

have high confidence. The search is performed under combinations of spatial transformations to extend

the training set and make use of the symmetries inherent in images. The source and target fragments are

composited into the image as described in Section 4.6. The algorithm updates the approximation after

each fragment composition. As fragments are added, the mean confidence of the image converges to

one, completing the image.

A high-level description of our approach appears in Figure 4.3. In the pseudocode, the following

terms are emphasized: (i) approximation, (ii) confidence map, (iii) level set, (iv) adaptive neighborhood,

(v) search, and (vi) composite. These are the building blocks of our technique. In the following sections

we elaborate on each in detail.



Chap. 4: Fast approximation 64

Input: image C, inverse matte ᾱ (∃ pixel with ᾱ < 1)

Output: completed image, ᾱ = 1

Algorithm:

for each scale from coarse to fine
approximate image from color and coarser scale
compute confidence map from ᾱ and coarser scale
compute level set from confidence map
while mean confidence < 1− ε

for next target position p
compute adaptive neighborhood N(p)
search for most similar and frequent source match N(q)
composite N(p) and N(q) at p, updating color and ᾱ
compute approximation, confidence map and update level set

Figure 4.3: Image completion pseudocode.

4.3 Fast approximation

A fast estimate of the colors of the hidden region is generated by a simple iterative filtering process

based on the known values. The estimated colors guide the search for similar neighborhoods, as de-

scribed in Section 4.5. Our completion approach adds detail by example to the smooth result of the

fast approximation. The process of approximating a given domain with values that “agree” with some

known values is known as scattered data interpolation. Typically, the assumption is that the unknown

data is smooth, and various methods aim at generating a smooth function that passes through or close to

the sample points. In image space methods, the approximation can be based on simple discrete kernel

methods that estimate a function f over a domain by fitting a simple model at each point such that the

resulting estimated function f̂ is smooth in the domain. Localization is achieved either by applying a

kernel K that affects a neighborhood ε , or by a more elaborate weighting function. A simple iterative

filtering method known as push-pull [54] is to down-sample and up-sample the image hierarchically

using a local kernel at multiple resolutions. In the coarser levels, the kernel filter affects larger regions

and the values of the samples percolate, yielding smoother data. When applied to finer resolutions, the

effect is localized and higher frequencies are approximated.

The above simple process is accelerated and refined by employing a multi-grid method. The image C



Chap. 4: Fast approximation 65

is pre-multiplied by the inverse matte C̄ =Cᾱ , and the approximation begins with C̄+α . Let l = L, . . . ,1

denote the number of levels in a pyramid constructed from the image. Starting from an image Y l=L
t=0 of

ones, the following operations are performed iteratively for t = 1, . . . ,T (l):

Y l
t+1 = (Y l

t α +C̄)(∗Kε ↓)l(↑ ∗Kε)l. (4.1)

Equation (4.1) consists of re-introducing the known values C̄, then l times down-sampling ↓ with

a kernel Kε , and l times up-sampling ↑ with a kernel Kε . It is applied repeatedly (subscript t is incre-

mented) until convergence Y l
t+1 = Y l

t .

Applying this process for l = L scales results in a first approximation Y L
t=T (L). Then (superscript l is

decremented) the known values are re-introduced, and the process is repeated for l −1 scales,

Y l−1
t=0 = Y l

t=T (l)α +C̄. (4.2)

For l = 1, the approximation is Y l=1
t=0 = Y l=2

t=T (2), and the following iterations are performed:

Y 1
t+1 = (Y 1

t α +C̄)∗Kε . (4.3)

The final output is C = Y 1
T (1).

As shown in Figure 4.4 the iterations applied to many levels (b-c), for large l, approximate the lower

frequencies, while the iterations applied to few levels (d) or a single scale (e) handle higher frequencies.

Table 4.1 summarizes the number of iterations, error, and computation time for each set of levels. The

running times are for a 512 by 512 image, shown in Figure 4.4. Note that in the completion process, the

bounding box of the unknown regions is typically much smaller, and decreases with each completion

step.

Figure 4.5(a) shows an input image where part of the image is hidden by text, while the rest of the

image is only visible through the text. The result of the approximation is shown in (b). The global

root mean square error of luminance values in [0,1] is 0.049. Our completion method is based on image

fragments, and therefore we are interested in the local error in a neighborhood around each pixel. This is

illustrated in (c), which shows the inverse of the RMSE of luminance neighborhoods of radius 4 around



Chap. 4: Confidence map and traversal order 66

(a) (b) (c)

(d) (e) (f)

Figure 4.4: (a) Input, C̄+α : 100 lines are randomly sampled from a 512 by 512 image and superimposed
on a white background. (b-e) Y l

T (l) for l = 4, . . . ,1. (e) the result of our approximation. (f) source image.

each pixel (37 samples). The source image is shown in (d).

4.4 Confidence map and traversal order

In our setting we assume an inverse alpha matte that determines the areas to be completed. The matte

assigns each pixel a value in [0,1]. We define a confidence map β by assigning a value to each pixel i:

βi =




1 if ᾱi = 1

∑ j∈N(i) g jᾱ 2
j otherwise,

(4.4)



Chap. 4: Confidence map and traversal order 67

# of levels # of iterations RMSE Time (sec.)

4 197 0.0690 4.2

3 260 0.0582 5.3

2 739 0.0497 13.7

1 1269 0.0470 22.9

Table 4.1: Statistics and running times for the approximation in Figure 4.4. The levels correspond to
Figure 4.4 (b-e), and the RMSE is of luminance in values [0,1]. Total computation time is 46.1 seconds
for a 512 by 512 image.

where N is a neighborhood around a pixel, g is a Gaussian falloff, and ᾱ is the inverse matte. The

map determines how much confidence to place in image information in each pixel as new information

is generated during the course of the algorithm’s progress, and is used for comparing and selecting

fragments (Section 4.5).

In each scale, the image is traversed in an order that proceeds from high to low confidence, while

maintaining coherence with previously synthesized regions. To compute the next target position from

the confidence map, we set pixels that are greater than the mean confidence µ(β) to zero and add random

uniform noise between 0 and the standard deviation σ(β):

vi =




0 if βi > µ(β)

βi +ρ[0,σ(β)] otherwise.
(4.5)

This defines a level set of candidate positions. At each iteration we retrieve the image coordinates of

the pixel with maximal value in Eq. 4.5. This determines the position of the next search and composite.

After compositing (Section 4.6), the set of candidate positions is updated by discarding positions in the

set that are within the fragment. Once the set of candidate positions is empty it is recomputed from the

confidence map. As the algorithm proceeds, the image is completed, µ(β) → 1 and σ(β) → 0. The

width of the zone from which the candidates for the next target position are selected, and the tolerance,

decrease as the image is completed.

Figure 4.6 shows, from left to right, the inverse matte, confidence map, and level set, at two different

time steps. The confidence map β is visualized on a logarithmic scale h(β) = lg(β + 1), with h = 1

shown in green, h ≤ 0.01 in purple, and 0.01 < h < 1 in shades of blue.



Chap. 4: Search 68

4.5 Search

This section describes a 2D pattern matching method that considers the confidence of each pixel, in

addition to the similarity of features used in traditional template matching. For each target fragment

T , we search for the best source match S over all positions x,y, five scales l, and eight orientations θ:

denoted as the parameter r = (l,x,y,θ). The algorithm adds detail to the approximated pixels (βi < 1)

by example without modifying the known pixels (βi = 1). The confidence map is used for comparing

pairs of fragments by considering corresponding pixels s = S(i) and t = T (i) in both target and source

fragment neighborhoods N. For each pair of corresponding pixels, let βs, βt denote their confidence,

and d(s, t) denote the similarity between their features. The measure is L1 and the features are color

and luminance for all pixels, and gradients (1st order derivative in the horizontal, vertical, and diagonal

directions) in the known pixels. We find the position, scale and orientation of the source fragment that

minimizes the function:

r∗ = argmin
r ∑

s=Sr(i),t=T (i),i∈N

(d(s, t)βsβt +(βt −βs)βt). (4.6)

The first term of this function, d(s, t)βsβt , penalizes different values in corresponding pixels with high

confidence in both the target and source fragments. The second term, (βt −βs)βt , rewards pixels with a

higher confidence in the source than in the target, while penalizing pixels with lower confidence in the

source than in the target, normalized by the target confidence. The goal of these two terms is to select

an image fragment that is both coherent with the regions of high confidence and contributes to the low

confidence regions.

Source fragments are first trivially rejected based on luminance mean and variance. We consider

a small set of k = 5 nearest neighbors according to Eq. 4.6 and take the most frequent, based on the

luminance statistics.

Figures 4.7, 4.8 and 4.9 show pairs of matching neighborhoods outlined by the same color. The

center of each target neighborhood is marked with a cross. A smaller or larger source neighborhood

than target means a match across different scales. Note that in the completed region in Figure 4.7 (d)

there are artifacts in the lower left portion, along the coast-line, where the dark and bright colors of

opposite sides of the large missing region meet.



Chap. 4: Compositing fragments 69

4.5.1 Adaptive neighborhood

An adaptive scheme to determine the size of the neighborhood is important for capturing features of

various scales. Our algorithm uses existing image regions whose size is inversely proportional to the

spatial frequency. We therefore tested several criteria to determine the adaptive size of a neighborhood

[53]. The first is the set of statistical moments of the luminance histogram of an element. If x is a

random variable denoting luminance values and p(xi) the corresponding histogram for k distinct values,

then the n-th moment of x about the mean m is µn(x) = ∑k
i=0(xi −m)n p(xi). The second is the measure

of uniformity of an element u = ∑k
i=0 p2(xi). The third is the average entropy e = −∑k

i=0 p(xi) lg p(xi).

Considering only a small number of radii 2 j for j = 1, . . . , l = 5 is a quantization of the neighborhood

size map. We have found that a simple contrast criterion, the absolute of difference between extreme

values across channels, yields results which are nearly as good as the other, more elaborate measures

that we have tried.

Allowing nearby matches of large smooth neighborhoods, while discarding nearby matches of

smaller textured neighborhoods avoids smearing artifacts. Searching in scale factors above 1 only for

large neighborhoods allows interpolation of smooth areas while avoiding blurring of detailed regions.

Figure 4.10 shows an image and its corresponding neighborhood size map. These values are updated

every completion iteration. Each pixel in (b) reflects an estimate of the frequencies in a neighborhood

around the corresponding pixel in (a). Regions with high frequencies are completed with small frag-

ments whereas those with low frequencies are completed with larger fragments.

4.6 Compositing fragments

We would like to superimpose the selected source fragment S over the target fragment T such that the

regions with high confidence seamlessly merge with the target regions with low confidence. Since we

give priority to the target, we need to compose the source fragment “under” the target fragment. Taking

the alpha values into consideration, we apply the compositing operator: T OVER S. To create a seamless

transition between T and S we apply this operator in frequency bands.

The Laplacian pyramid [23] can be used to smoothly merge images according to binary masks. The

color components C of each image A and B are decomposed into Laplacian pyramids L, and the binary



Chap. 4: Compositing fragments 70

masks M into Gaussian pyramids G. The Gaussian and Laplacian pyramids are separately multiplied

for each image at corresponding scales k, and then added, to form a Laplacian pyramid of the merged

image L(Cmerge), which is then reconstructed,

Lk(Cmerge) = Lk(CA)Gk(MA)+Lk(CB)Gk(MB). (4.7)

An alpha value in [0,1] is traditionally considered as either having partial coverage or as semi-transparent.

The alpha channel, commonly represented by 8 bits, is used for capturing fractional occlusion to com-

bine anti-aliased images. The classical associative operator for compositing a foreground element over

a background element, F OVER B, is:

Cout = CFαF +CBαB(1−αF) (4.8)

αout = αF +αB(1−αF).

Porter and Duff [93] pre-multiplied color by alpha, and the volume rendering ray casting integral is often

discretely approximated by a sequence of OVER operations.

We represent color and alpha values as matrices and plug Eq. 4.8 into Eq. 4.7 to get the Laplacian

OVER operator:

Lk(Cout) = Lk(CF)Gk(αF)+Lk(CB)Gk(αB)Gk(1−αF). (4.9)

The alpha values αout are obtained by setting CF = CB = 1 in Eq. 4.9.

The Laplacian OVER operator uses a wide overlapping region for the low frequencies and a narrow

overlap for the high frequencies. The OVER operator is traditionally used for compositing a figure over a

background, while maintaining sharp transitions according to alpha values. We use the Laplacian OVER

operator for compositing two similar fragments, one over the other, to create a smooth composite.

The output is a fragment R that is premultiplied, and is masked by a circular neighborhood. To insert

this result into the image, we multiply the previous approximated image by its inverse matte C̄ =Cᾱ , and

then put the fragment values R(C̄) into C̄ and R(ᾱ ) into ᾱ . In the following iteration the approximation

begins with these premultiplied values.

Fragment compositing is illustrated in Figure 4.12. The top row shows the matching neighborhoods



Chap. 4: Implementation 71

(left) and the inverse matte (right). The alpha values, Gk(αF) and Gk(αB), are shown in the center row.

The reconstructed color values of each intermediate term in Eq. 4.9 are shown on the bottom left. The

premultiplied color and alpha output are shown on the bottom right. The output is masked by a circular

neighborhood and quilted on the borders.

4.7 Implementation

Our implementation completes the image from coarse to fine. Aside from computational efficiency,

coarse-to-fine completion is important for capturing features at several scales. Starting with a coarse

scale corresponds to using a range of relatively large target fragments, and then using target fragments

that become gradually smaller at every scale, finer and finer details are added to the completed image.

The result of the coarse level Cl is up-sampled by bicubic interpolation and serves as an estimate for the

approximation of the next level:

f̂ l+1 = λ f̂ l+1 +(1−λ )(Cl ↑ ∗),

where λ = 0.5. The confidence values of the next level are also updated:

β l+1 = λβ l+1 +(1−λ )(β l ↑),

where the confidence values of the coarse level are β l = 1 upon completion.

The following are implementation details. We perform completion using two scales, with 192 by

128 and 384 by 256 resolution. To create a conservative inverse matte for the fine level, the inverse

matte of the coarse level is up-sampled by nearest neighbors and dilated. The approximation described

in Section 4.3 is a local process, and therefore performed in the bounding box of the unknown regions.

We use three scales L = 3 in Eq. 4.2, a Gaussian kernel with standard deviation 1 in Eq. 4.1, and

0.85 for the final pass in Eq. 4.3. It is wasteful to run the approximation until convergence since the

error diminishes non-linearly. First, we choose a representative subset of
√

N random positions in the

unknown regions, where N is the number of pixels. At each set of levels in Eq. 4.1 the approximation

stops when the
√

N
L−l+1 representative values converge. The search based on Eq. 4.6 is performed at five



Chap. 4: Results 72

scales with factors spaced equally between 0.75 and 1.25, at each x,y position, and eight orientations

(four rotations in increments of 90 degrees, and their four reflections). Compositing in Eq. 4.10 is

performed using at most three levels k in the Gaussian and Laplacian pyramids for the largest fragments.

The completion process terminates when µ(β) ≥ 1− ε , as described in the pseudocode in Figure 4.3,

and we set ε = 0.05.

4.8 Results

We have experimented with the completion of various photographs and paintings with an initial mean

confidence µ(β) > 0.7. The computation times range between 120 and 419 seconds for 192 by 128

images, and between 83 and 158 minutes for 384 by 256 images, on a 2.4 GHz PC processor. Slightly

over 90 percent of the total computation time is spent on the search for matching fragments. Note that

computation time is quadratic in the number of pixels.

Figure 4.1 shows a 384 by 256 image with µ(β) = 0.876. The image consists of various layers

of smooth and textured regions. Our method synthesizes textures of different scale and completes the

shorelines. Completion consists of 137 synthesized fragments (of them 26 for the coarse level), and total

computation time is 83 minutes (220 seconds for the coarse level).

Figure 4.11 shows a 384 by 256 image of the Universal Studios globe with µ(β) = 0.727. In the

center of the globe there are pixels which are used for completion. However, the color is contaminated

by the neighboring pixels of the globe. Marking these pixels as completely known in the matte creates

artifacts in the completed regions. An alternative is to assign values that are less than 1 to the corre-

sponding matte positions, as shown in (b). This way, these pixels are not totally discarded, and are taken

as strong hints to the location of the smooth area and the textured regions. Completion consists of 240

synthesized fragments (of them 57 for the coarse level), and total computation time is 158 minutes (408

seconds for the coarse level).

Figure 4.13 shows more results for 192 by 128 images with µ(β) > 0.87. Our approach completes

shapes, smooth and textured regions, and various layers of both, as well as transparency. Completion

requires between 20 and 53 synthesized fragments, with average neighborhood radii between 6 and 14.

Figure 4.14 compares our result of image completion (c) with image inpainting [9] (d) and texture



Chap. 4: Limitations 73

synthesis.

4.9 Limitations

Our approach to image completion is example-based. As such, its performance is directly dependent

on the richness of the available fragments. In all the examples presented, the training set is the known

regions in a single image, which is rather limited. The building blocks for synthesizing the unknown

region are image fragments of the known region. To utilize the training set, new fragments are synthe-

sized by combining irregular parts of fragments, applying combinations of transformations to fragments

(scale, translation, rotation, and reflection), and compositing fragments together.

To evaluate the performance of our method, we can use examples where the unknown region is

available, and quantify and measure the completion with respect to the ground truth. Specifically, we

can use the ground truth data for the search and reconstruct it in the composite, calculating the best alpha

for the blend that reconstructs the ground truth.

Our technique is an image-based 2D method. It has no knowledge of the underlying 3D structure in

the image. For example, in Figure 4.15, the front end of the train is removed. Our method completes the

image as shown in (c). The matching fragments of completion are shown in (d).

Note that even two fragments of the same part of an object may differ greatly under slight illumina-

tion changes and transformations. While this is obviously a notable limitation, it is also an advantage

as it is based on a simple mechanism, that does not require building models from a single image. An

alternative to an automatic image completion is to let the user manually build an image-based model

and apply photo-editing operations with some 3D knowledge as in [86].

Our image completion approach does not distinguish between figure and ground. This presents a

limitation for completion when the inverse matte is on the boundary of a figure, since both the figure

and background can be synthesized by example. For example, in Figure 4.16(a), the unknown region

meets the boundary of the figure of the apple. Our approach does not handle these cases. However,

note that the known regions of this painting contain similar patterns, and the search finds matches under

combinations of scale and orientation in (b), and the completion results in (c). Note the ghost artifact on

the right portion of the completed figure.



Chap. 4: Summary 74

Our approach does not handle ambiguities in which the missing area covers the intersection of two

perpendicular regions as shown in Figure 4.17.

Visual grouping and background-foreground separation are an open problem, usually addressed by

a subset of the Gestalt principles (proximity, similarity, good continuation, closure, smallness, common

fate, symmetry and pragnanz) [72]. These principles can be incorporated into a photo-editing tool, in

which it is practical to give the user some degree of control over the completion process, provided it

be done in a simple and intuitive fashion. By specifying a point of interest in the image or a direction,

the user can optionally favor symmetry, proximity, or the horizontal or vertical axis. This requires

adding bias to the search in Eq. 4.6 by a function of the horizontal or vertical distances between target

and source fragments, or by their distance to the point of interest. Guiding the traversal order requires

adding a wide Gaussian centered at a point or a soft directional gradient to Eq. 4.5. Figure 4.18 shows

completion using a point of interest located near the center of the image.

4.10 Summary

We have introduced a new method for image completion that interleaves a smooth approximation with

detail completion by example fragments. Our method iteratively approximates the unknown region

and fills in the image by adaptive fragments. Our approach completes the image by a composition of

fragments under combinations of spatial transformations.

To improve completion, future work will focus on the following: (i) Performing an anisotropic fil-

tering pass in the smooth approximation, by computing an elliptical kernel, oriented and non-uniformly

scaled at each point, based on a local neighborhood; (ii) Locally completing edges in the image based

on elasticity, and then using the completed edge map in the search; and (iii) Direct completion of image

gradients, reconstructing the divergence by the full multi-grid method.

In addition, we would like to extend our input from a single image to classes of images. Finally,

increasing dimensionality opens exciting extensions to video and surface completion.



Chap. 4: Summary 75

(a)

(b)

(c) (d)

Figure 4.5: The input image in (a) is partly covered by a white text, while the rest of the image is only
visible through the text. The result of our approximation is in (b). The RMSE of local neighborhoods in
radius 4 is in (c) and the ground truth is in (d).



Chap. 4: Summary 76

Figure 4.6: From left to right: inverse matte, visualization of confidence values on a logarithmic scale,
and level set, at two different time steps.

(a) (b)

(c) (d)

Figure 4.7: (a-b) Input color and inverse matte. (c-d) The result of our completion, several matching
neighborhoods outlined with circles of the same color, the target center marked by a cross. Our approach
completes the smooth areas with large fragments, the textured regions with smaller fragments, and the
shoreline by searching in different scales.



Chap. 4: Summary 77

Figure 4.8: Our approach completes structured texture in perspective by searching in different scales.

Figure 4.9: Our approach completes symmetric shapes by searching under rotations and reflections.
Completion consists of a total of 21 fragments, marked on the output image, with mean radius of 14.

(a) (b)

Figure 4.10: An image (a) and its corresponding neighborhood size map (b), where brighter regions
mark larger neighborhoods.



Chap. 4: Summary 78

(a) (b) (c) (d)

Figure 4.11: (a) The Universal Studios globe. (b) Inverse matte. (c) Completed image. (d) Content of
the completed region.

αF αB

(t1) (t2) Cout αout

Figure 4.12: Fragment compositing: matching fragments (top left), inverse matte (top right), and Gaus-
sian pyramids of the fragments alpha (center row). (t1) First term of Eq. 4.9. (t2) Second term of Eq.
4.9. The output color and alpha of compositing (bottom right).



Chap. 4: Summary 79

Figure 4.13: Completion results for some photographs and well-known paintings.



Chap. 4: Summary 80

(a) (b)

(c) (d) (e)

Figure 4.14: Comparison of completion result (c) with image inpainting (d) and texture synthesis (e).



Chap. 4: Summary 81

(a) (b)

(c) (d)

Figure 4.15: Our approach is an image-based 2D technique and has no knowledge of the underlying 3D
structures. (a) Input image. (b) The front of the train is removed. (c) The image as completed by our
approach. (d) Matching fragments marked on output.

(a) (b)

(c)

Figure 4.16: Our approach does not handle cases in which the unknown region is on the boundary of
a figure as in (a). However, the known regions of this painting contain similar patterns, and the search
finds matches under combinations of scale and orientation in (b), and the completion results in (c).



Chap. 4: Summary 82

(a) (b) (c)

Figure 4.17: Our approach does not handle ambiguities such as shown in (a), in which the missing
area covers the intersection of two perpendicular regions as shown above. (b) The same ambiguity in a
natural image. (c) The result of our completion.

(a) (b)

(c) (d)

Figure 4.18: A point of interest is specified with a white circle near the center of the image in (a). Our
result using the point of interest to complete the circularly symmetric shape is shown in (c).



Chapter 5

Spectral Sound Gap Filling

We present a new method for automatically filling in gaps of textural sounds. Our approach is to trans-

form the signal to the time-frequency space, fill in the gap, and apply the inverse transform to reconstruct

the result. The complex spectrogram of the signal is partitioned into separate overlapping frequency

bands. Each band is fragmented by segmentation of the time-frequency space and a partition of the

spectrogram in time, and filled in with complex fragments by example. We demonstrate our method by

filling in gaps of various types of textural sounds. This part appeared in proceedings of IEEE Interna-

tional Conference on Pattern Recognition 2004 [37].

5.1 Introduction

Automatically filling in gaps of sound and synthesizing textural sounds with similar characteristics to a

given input are important in many applications. Since accurate reconstruction of the gap is impossible,

the goal of our algorithm is to fill in the signal to produce a perceptually coherent output. In this work we

apply techniques used in texture and image synthesis for context-based sound synthesis. We adopt direct

image space methods for synthesizing a time varying audio signal by using the complex spectrogram.

The complex spectrogram is an invertible two-dimensional time-frequency representation resulting

from the short-time Fourier transform. In each time-frequency coordinate we consider both magnitude

and phase, as well as their gradients in time and frequency. Most of the work done in auditory signal

processing and scene analysis is based on time-frequency representations that use spectral properties



Chap. 5: Introduction 84

Input signal Input spectrogram magnitude

Output signal Output spectrogram magnitude

Figure 5.1: Spectral gap filling of Jazz segment.

of the signal within time windows. Additional motivation for representing sound in the time-frequency

space is that the ear transforms time oscillations into frequency-dependent nerve firings, and that roughly

speaking, sound is perceived in the frequency domain. More perceptually motivated, two-dimensional

representations that are based on the short-time Fourier transform, such as the mel-frequency cepstral

coefficients, are also suitable for our purposes.

Given an input sound signal with a gap as shown on the top left of Figure 5.1, the result of our gap

filling algorithm is shown on the lower left, and the corresponding spectrogram magnitudes are shown

on the right column.



Chap. 5: Time-frequency representation 85

5.1.1 Related work

The short-time Fourier transform is a well-established tool used in sound analysis and synthesis [3, 94].

It allows the reconstruction of a signal from its modified short-time Fourier transform [31, 56]. Recently,

various algorithms for texture and image synthesis were proposed and applied to the task of filling in

missing regions in images. In this work we aim at using similar approaches by transforming the real 1D

time signal into a complex 2D time-frequency space. This is performed by matching similar spectral

sound fragments and segmentation of the time-frequency space. Ullman et al.[115] emphasize the im-

portance of intermediate-level fragments for the tasks of visual classification and segmentation. Kwatra

et al.[75] perform image and video texture synthesis by finding the min-cut of a graph using a cost

function defined on edges between adjacent pixels. Bertalmio et al.[10] combine image inpainting with

texture synthesis by decomposing an image into the sum of two components. Inpainting is applied to

the component representing the underlying image structure, whereas texture synthesis is separately ap-

plied to the component representing image detail, and the two components are then added back together.

Fragment-based image completion [36] iteratively approximates the unknown regions and searches for

adaptive image fragments under combinations of spatial transformations. Completion is performed from

coarse to fine scales, proceeding from regions of high to low confidence. Criminisi et al.[30] fill in an

order that gives priority to high gradients. This is achieved in the former by multiplying the traversal

map by an adaptive neighborhood size map. Jia and Tang [68] first perform complete segmentation of

the input and then continue the segmentation boundaries of the missing regions by tensor voting.

5.2 Time-frequency representation

In this work we use the short-time Fourier transform despite its inherent limitations, namely; a uniform

partition of the time frequency plane, with single time resolution for different frequencies (an alternative

is a multi-resolution wavelet representation). The advantages of this representation for synthesis are its

simplicity - directly synthesizing the complex spectrogram using recent image space techniques, and

working with an invertible time-frequency representation that is robust to large modifications [94].

Given a sampled sound signal f (t), a symmetric window g(t) is translated by time x and modulated



Chap. 5: Sound gap filling 86

by frequency y, where gx,y(t) = eiytg(t − x), defining the continuous short-time Fourier transform by:

S f (x,y) = 〈 f ,gx,y〉 =
∫

f (t)g(t − x)e−iytdt. (5.1)

The window is normalized so that ‖gx,y‖ = 1, and multiplying the signal f (t) by g(t − x) localizes the

Fourier integral in the neighborhood of t = x. More specifically, we use a Hamming window g(t) =

0.54 + 0.46cos(2πt) with an overlap of 1
4 window size. The notation (x,y) represents (time,frequency)

emphasizing the image nature of the complex spectrogram. Let M(S f (x,y)) denote the spectrogram

magnitude, and let Φ(S f (x,y)) denote the phase. To reconstruct the signal from its complex spectrogram,

the inverse short-time Fourier transform is applied to each column, and the overlap-addition method

[94, 31] is used to recover the signal. This allows reconstructing spectrograms that have undergone

large modifications.

5.3 Sound gap filling

Our approach is to map the signal to the time-frequency space by the short-time Fourier transform, fill

in the gap, and apply the inverse mapping to reconstruct the result, as illustrated by:

f (t) �→ S f (x,y) −→
gap f illing

S f ′(x,y) �→ f ′(t)

The complex spectrogram of the signal is separated into overlapping frequency bands and parti-

tioned in time. Each frequency band is filled in by matching fragments and the synthesized result is

reconstructed. Gap filling proceeds by matching complex time-frequency fragments to the overlapping

regions of existing data from the input and synthesized signal. The criteria for matching fragments is

based on magnitude and phase and is performed separately in each frequency band while maintaining

coherence between overlapping bands. The complex time-frequency plane is filled in by fragments with

adaptive extent in time and frequency. In addition, each fragment forms irregular boundaries in the time-

frequency plane within causal neighborhoods, which are determined by local segmentation based on

magnitude and phase, and their gradients in both time and frequency. Once the complex time-frequency

plane is covered, we apply the inverse transform, and use the overlap-addition method to further blend



Chap. 5: Sound gap filling 87

Figure 5.2: Spectrogram magnitudes in consecutive gap filling steps.

together the fragments into a coherent output sound stream. Following is a detailed description of each

part of our algorithm.

5.3.1 Frequency partition and synthesis order

The complex spectrogram of the signal S f is partitioned into separate overlapping frequency bands Fk =

S f (:,bk). Low frequencies of most natural stimuli usually contain more energy than high frequencies and

therefore are less affected by noise. Therefore, gap filling of the complex spectrogram proceeds from low

to high frequency bands. Perceptual time-frequency representations use a logarithmic frequency scale.

Therefore, in our linear frequency scale, the frequency extents are spaced exponentially by multiplying

each one from low to high frequencies, such that |bk| = 2|bk−1|. Figure 5.2 shows the spectrogram



Chap. 5: Sound gap filling 88

Figure 5.3: Spectrogram time partition.

magnitudes M(S f ) in consecutive steps of the algorithm for the signal shown in Figure 5.1. Within each

frequency band Fk we consider fragments Tk = S f (a,bk) that overlap the known regions, and fill in each

frequency band from the known to unknown regions of the spectrogram.

5.3.2 Time partition and spectral search

The spectrogram is partitioned in time P(S f ) as shown in Figure 5.3 by summing the time gradient mag-

nitudes over all frequencies ∑y | ∂M(S f (x,y))
∂x | for each time x. At each step of filling in a frequency band

Fk, a target fragment Tk is defined with a causal region of overlap O(Tk) with the input and previously

synthesized regions. To maintain a coherent sound stream, the time extents a = [a1,a2] of each fragment

are determined by the nearest times in the partition of all previously (lower) synthesized frequencies

with the greatest response inside the gap. Motivated by our auditory working memory, the maximum

overlap in time is 250ms. We search the known complex spectrogram for source matches O(T ′
k ) within

the same frequency band, across all time intervals outside the gap. This is a linear one-dimensional

search in time which is very efficient. A fundamental task in sound analysis is the comparison of pairs

of local spectral representations, and several spectral distance and distortion measures were proposed

and analyzed [55]. The amplitude of natural sound signals can rapidly change over several orders of

magnitude. Therefore, the similarity of two spectral regions is based on the RMS logarithmic spectral



Chap. 5: Results 89

distortion [55] used in many speech recognition systems. We have also experimented with the the dis-

tortion measure 1
2 − 1

2
O(T )·O(T ′)

‖O(T )‖‖O(T ′)‖ ∈ [0,1] used in indexing [48, 25]. The features are the magnitude

and phase (M,Φ), separately normalized taking a weighted average. We find the best overlap match

O(T ′
k ), which in turn defines the best fragment match T ′

k . The time extents a′ of T ′
k are similarly updated

according to the partition P(S f ). The spacing between time extents a of Tk inside the gap are set to

match corresponding time extents a′ of T ′
k outside the gap, such that |a| = |a′|, which gives priority to

filling the gap with structured sound fragments partitioned in time.

5.3.3 Spectral boundaries

Incrementally, each matching fragment T ′
k fills in a portion of the spectral gap. Its spectral boundaries in

the time-frequency space are irregular and based on a local segmentation that determines which disjoint

parts to take from O(Tk) and O(T ′
k ). Locally, the boundaries between fragments define a spectral seg-

mentation with the input and previously synthesized regions. The distortion between spectral features,

both magnitude and phase, with priority to high gradient regions of magnitude and phase in time and

frequency [46], defines the spectral boundaries which are computed by dynamic programming. The

features are magnitude, phase, and their gradients in both time and frequency (M,Φ, ∂M
∂x , ∂M

∂y , ∂Φ
∂x , ∂Φ

∂y ).

Magnitude and phase information are separately divided by their respective normalized gradient magni-

tudes in time and frequency, and are approximated by central and forward differences.

Finally, the output is reconstructed from the filled in complex spectrogram, and the overlap-addition

method blends together the fragment boundaries to form a coherent output S f ′(x,y) �→ f ′(t).

5.4 Results

We have experimented with our algorithm for gap filling of various types of textural sounds. Compu-

tation time is O(nlogn) in the number of samples n, and is between 10 and 270 seconds for 44k and

357k samples, on a 1.8Ghz PC processor running Matlab. We use three separate frequency bands Fk,

a Hamming window of length 256 samples, and a gap size of n
8 samples positioned around the n

3 , n
2 , 2n

3

marks. Our algorithm fills in gaps in both abrupt and more continuous textural sounds.

Figure 5.1 shows the result of filling in a gap of a Jazz segment [101]. Figure 5.4 demonstrates



Chap. 5: Url of auditory results 90

the result of our gap filling algorithm for various types of natural sounds. In each row the input signal

is shown on the leftmost column, its spectrogram magnitude in the second column, the magnitude of

the spectrogram filled in by our algorithm in the third column, and the resulting signal in the rightmost

column. The first five rows demonstrate the results of gap filling of natural sounds. The top row shows

the result of filling in a gap of a rapidly changing bird song [29], and the second row the result of filling

in a gap of the sound of an elk. The third to fifth rows show the results of filling in a gap of a frogs’

vocalization [29] for various positions of the gap.

Figure 5.5 demonstrates the results of filling in synthetic sounds of a siren, engine, and music. Our

approach to sound gap filling is example-based and therefore its performance is limited to the richness

of the available fragments, as shown in the example of filling in a gap of a musical segment with vocals

[101] in Figure 5.6. Statistics for each sound in Figures 5.4 and 5.5 appear in Table 5.1.

Sound Samples (n) Rate (Hz) Gap (size,pos) Time (sec.)

Jazz segment 110250 22050 n
8 , n

2 57.1

Bird song 356929 22050 n
8 , n

2 270

Elk 109667 11025 n
8 , 2n

3 35.2

Frogs’ vocals 145217 16000 n
8 ,( n

3 , n
2 , 2n

3 ) 55.5,57.9,56.9

Siren 43951 16000 n
8 , n

2 9.9

Engine 134151 11025 n
8 , n

2 53.7

Blade Runner segment 250000 22050 n
8 , n

2 214.2

Chariots of Fire segment 125000 11025 n
8 , n

2 58.6

Music vocals 110250 22050 n
8 , n

2 65.4

Table 5.1: Statistics and running times for gap filling of sounds in Figures 5.1 and 4.13.

5.5 Url of auditory results

The sound files and auditory results are available at: http://www.cs.tau.ac.il/∼idrori/sounds.zip.

In addition they are available on a public free site: http://www.geocities.com/supplemental04audio/icpr/.

5.6 Future work

To improve the local segmentation we would like to fuse information from multiple candidate target

fragments by having each fragment vote on the segmentation. Additional applications include transfer-



Chap. 5: Future work 91

ring spectral attributes between pairs of signals by constrained synthesis, and extensions of this work to

spectral synthesis of image and volumetric data.



Chap. 5: Future work 92

Input f (t) M(S f )(x,y) M(S f ′)(x,y) Output f ′(t)

Figure 5.4: Spectral sound gap filling of natural sounds.



Chap. 5: Future work 93

Input f (t) M(S f )(x,y) M(S f ′)(x,y) Output f ′(t)

Figure 5.5: Spectral sound gap filling of synthetic sounds.

Input f (t) M(S f )(x,y) M(S f ′)(x,y) Output f ′(t)

Figure 5.6: Limitation: spectral sound gap filling of music with vocals.



Part III

Video Operations in the Gradient Domain



Chapter 6

Video Operations in the Gradient Domain

Fusion of image sequences is a fundamental operation in numerous video applications and usually con-

sists of segmentation, matting and compositing. We present a unified framework for performing these

operations on video in the gradient domain. Our approach consists of 3D graph cut computation fol-

lowed by reconstruction of a new 3D vector field by solving the Poisson equation. We introduce new

methods for fusing video smoothly and separating foreground elements from a video background for

compositing by defining smooth and sharp transition constraints on a gradient video compositing equa-

tion. We demonstrate the applicability of smooth video transitions by fusing pairs for video mosaics,

video folding, and video texture synthesis, and demonstrate the applicability of sharp video transitions

by video segmentation, video trimap extraction and 3D compositing into a new sequence. Our results

demonstrate that our method maintains coherence of the video matte and composite, and avoids temporal

artifacts.

6.1 Introduction

Compositing video and separating foreground video elements from a video background for compositing,

as well as background video completion, are operations required in the production of most modern mo-

tion pictures. Smoothly fusing parts of video is important for a number of applications: video mosaics,

video texture synthesis, and video folding by reusing parts of video footage. Separating foreground and

background is required for creating a video matte which is used for compositing elements into a new



Chap. 6: Introduction 96

background.

Compositing is the process of seamlessly combining multiple image or video regions. It is com-

monly used in creating mosaics, editing, and texture synthesis. Image and video mosaics are used in

applications in which there are multiple sources, each with a limited field of view or from a different

origin. The goal is to merge these sources to form a single mosaic. This is performed by first aligning

the sources by warping and then smoothly blending the overlapping regions. Image and video editing

operations include temporal transitions, placing a figure over a background, and seamlessly combining

different image or video regions. Texture synthesis commonly consists of searching for similar patches

followed by merging them together. These applications involve compositing as an essential step of the

process.

Natural matting is the problem of deriving alpha values around object boundaries by which back-

ground and foreground pixels are blended. The operations of compositing and matting are therefore

linked by the compositing equation which defines the color of a pixel as a convex combination of fore-

ground and background pixels. The input to video matting is the composite video and a trimap which

consists of three grayscale values denoting background, foreground and unknown video regions. Mat-

ting is derived from the compositing equation and requires background video completion and foreground

estimation as well as a trimap. Background video completion is the process of filling in missing regions

in video based on temporal and spatial information. Segmentation of a video into layers, compositing,

matting and completion are all inherently linked by their required input-output and usage. Computing

a trimap and background video completion, in turn, require rough segmentation of the foreground and

compositing of the completed video background.

6.1.1 Overview

Our approach is to work in 3D with video volumes in the gradient domain. Therefore, we represent the

compositing equation for video volumes and differentiate. Working in the gradient domain allows per-

forming local operations to get a global effect, as shown for the operations of compositing and matting

of images in Figures 6.1, 6.2.

The differentiation transforms the equation into differential coordinates and results in the gradient

video compositing equation. Next, we zero out terms in the equation according to the application,



Chap. 6: Introduction 97

(a) (b) (c) (d)

Figure 6.1: (a) Cut and paste. (b) Gradient compositing changes the color of the parachutes. (c) Con-
straints from a single image results in a halo around the right parachute. (d) Constraints from both
images.

whether it requires a smooth transition or sharp transitions between uniform regions. A new three-

dimensional vector field results from removing terms from the gradient video compositing equation.

This vector field is reconstructed to get the final result. Frame-by-frame gradient operations give rise

to strong temporal artifacts which are noticeable in video, and therefore, we extend the reconstruction

equations to three dimensions.

We develop and use several tools in this work. The first is 3D minimum graph cuts and the second

is reconstruction from a modified 3D vector field by solving the Poisson equation. The types of cuts and

iterations differ for the different applications of video fusion and separation. The new vector fields are

defined with respect to the cut, and the result of solving the 3D Poisson equation is a new video or matte

according to the application. In addition we use 3D splines to fit positions of tracker data and 2D splines

to mark regions around foreground elements in a few key-frames and interpolate between them. Finally,



Chap. 6: Introduction 98

(a) (b) (c)

Figure 6.2: (a) Input color. (b) Input mask in which foreground is in white, background in black, and
unknown as luminance. (c) Result of gradient matting.

motion estimation is used for the cut computation and in temporal background video completion.

Graph partitioning techniques are commonly used for image and object segmentation, for stitching

together aligned images to form mosaics, and for texture synthesis. The graph is partitioned into two

disjoint regions by a cut that runs through an error surface defined by pixels in the overlapping region

or through graph edges defined between adjacent pixels. Traditionally, the cost function that determines

the degree of dissimilarity between the two pieces is based on intensities and gradients.

In conjunction, a variety of operators such as blending, maximum, and bilinear functions are used

for merging image regions. Performing these operations in the spatial, frequency, or gradient domains

provides different effects. Inspired by the retinex theory [76] and its extensions [95], reconstructing an

image from its modified gradient field has been used for removing shadows from images [45], com-

pressing the dynamic range of images [43], and image editing operations [89]. Operating in the gradient

domain is especially suitable for compositing as it focuses on the different types of transitions between

regions.

6.1.2 Poisson equation

The Poisson equation allows reconstruction of a scalar function given a vector field and boundary con-

ditions. In our context, modification of the function is performed by modifying the gradient field and

the boundary conditions and then reconstruction of the result. The formulation can be viewed as a

least squares minimization. Local artifacts are avoided as the least squares solution distributes the error

throughout the reconstructed video.



Chap. 6: Introduction 99

6.1.3 Video compositing

Our approach to video compositing begins by applying a smoothness condition on the gradient video

compositing equation. We proceed by first cutting along overlapping sequences in regions where both

the motions do not conflict and the colors are similar. Instead of considering only similarity in appear-

ance, our criterion for computing the cut also takes into account motion by computing the error between

the motion in overlapping regions and the difference between their colors. Next, the video is recon-

structed from a new 3D vector field. This is important for alleviating the problem of fusing together

videos with varying appearance as shown in Figure 6.3 (a),(b). The seam in a 2D slice of a 3D spatial

cut between the two sequences shown in (c) is noticeable due to the different scenes and their illumina-

tion. Reconstruction of the merged 3D gradients fuses together the regions avoiding the discontinuities

as shown in (d). In images, feathering or multi-resolution blending [23] locally smooths the sharp tran-

sition. In image sequences temporal effects are enhanced, and therefore 3D gradient compositing is

important for maintaining the detail and the temporal coherence of the result.

(a) (b) (c) (d)

Figure 6.3: (a-b) Input frames from a pair of time-lapse sequences. (c) Cut. (d) Result of gradient video
compositing.

6.1.4 Video segmentation, matting and completion

Video segmentation begins by computing a rough binary mask, which is refined to a trimap that consists

of three grayscale values, and finally ends with an accurate alpha video matte in [0,1]. For the initial

binary mask, the user marks a point on the object and a set of points around the object in a single frame.

We then track the object forwards and backwards in time and fit a 3D spline to the tracker data as shown

in Figure 7.1 (b) projected onto a single frame. This is followed by refinement of key-frames using



Chap. 6: Introduction 100

closed 2D shape splines as shown in Figure 7.1 (c) in green. This serves as input to the next part of

our process which requires extracting a more accurate result. This is computed by iterative 3D graph

cuts that snap to the object boundaries. We iterate between steps of dilation and cut computation to find

the contour of the video element as shown in (c) overlaid in white. Usually the graph cut results in a

discrete representation over which the user has no control, and which is not always our desired final

solution. Therefore our approach is to fit a spline to the resulting cut in key-frames. This allows the user

to change the control points of the spline as shown in (d) and then perform additional iterations of cut

computation.

The resulting contour is dilated once more to form a video trimap which is refined by an accurate

computation of a video matte. The video matte is computed by using the 3D Poisson equation. This

requires completion of the video background and estimation of the foreground. Our approach to back-

ground video completion is using the temporal information present in video by searching forwards and

backwards in time spans for background pixels whose motion field is small, and filling in any remaining

foreground pixels by diffusion.

(a) (b)

(c) (d)

Figure 6.4: (a) Input frame. (b) Projected tracker data and 3D spline. (c) Key-frame interpolation and
minimum graph cut. (d) Spline fitting to graph cut and its modification.



Chap. 6: Related work 101

6.2 Related work

Porter and Duff [93] introduced compositing arithmetic for anti-aliased accumulation of separate ele-

ments with alpha into a single image. The associative over operator is used to composite a foreground

element over a background. A common approach used for integrating images to form a mosaic is feath-

ering [107], which weighs the contribution of pixels in overlapping regions as a bilinear function of

distance from the region boundary or cut. Burt and Adelson [23] introduced the Laplacian pyramid

to smoothly merge images according to a binary mask, resulting in a wide overlapping region for low

frequencies and a narrow overlap for fine details. The Poisson equation has been widely used in com-

puter vision. The idea of reconstructing an image from its modified gradient field was recently used for

recovering reflectance images [119], removing shadows from images [45], and introduced to computer

graphics by Fattal et al.[43] for compressing the dynamic range of images. Subsequently it was used for

image editing operations such as seamless blending [89, 79] by mixing image gradients. Perez et al.[89]

generalized the framework from rectangular domains to arbitrary patches by requiring Dirichlet bound-

ary conditions, and applied the maximum operator to gradients and suppressed small gradients.

Davis [32] stitched together images to form a mosaic by enforcing a constraint that the error between

overlapping regions is minimal. The images are stitched along a minimum cost path computed by Dijk-

stra’s algorithm. The cost function used to determine the cut is the difference between pixel intensities in

the overlapping regions normalized by the difference between extreme values. Efros and Freeman [41]

applied this method for stitching together texture blocks. The cost function is defined as the difference

between pixel intensities in the overlapping regions. A minimum cost path through the error surface is

computed by dynamic programming and is linear in the number of pixels. Kwatra et al.[75] performed

texture synthesis by finding the min-cut of a graph using a cost function defined on the edges between

adjacent pixels from the overlapping regions. Taking into account the spatial frequencies in the cost

function is especially important for perceptual masking. Dividing color by gradient magnitudes gives

priority to high gradient regions which provide a snapping effect.

Object segmentation in image sequences is one of the fundamental problems in computer vision.

This problem is usually addressed either by discrete representations which are currently manifested

by graph partitioning techniques, or by continuous methods typically referred to as active contours.

Active contours [70, 15] are used for segmentation by minimizing an energy function which consists



Chap. 6: Gradient video operations 102

of terms that guide the contour towards image features and prefer smooth boundaries. The snake is

sensitive to the initial contour and approaches the nearest local minimum. Mortensen and Barrett [84]

use dynamic programming for segmenting an object in an image and coined the term intelligent scissors.

Xu et al.[122] use iterative graph cuts for segmentation of an object from a background. The image is

represented by an adjacency graph, and the user defines a polyline which is dilated to form an initial

region around the object. The outer and inner boundaries of this region define the source and sink of

the graph and the computed minimum cut is iteratively dilated to form a new boundary region, until

converging to a global minimum. Irani et al.[67] and Wang and Adelson [117] use optical flow to

separate a video into layers. We apply 3D iterative graph cuts of a video volume to find the initial

segmentation of a foreground video element.

Mitsunaga et al.[83] take the derivative of the image compositing equation and assume relatively

small changes in the foreground and background regions to derive the relationship between image gra-

dients and matte gradients. Apostoloff and Fitzgibbon [4] learn the joint distribution between image

gradients and alpha gradients from a collection of image sequences. Yu et al.[123] perform mesh de-

noising by bilateral filtering [47] shifting vertex positions using the Poisson equation. Recently, Jian et

al. [106] use the Poisson equation for 2D matting and perform a set of local operations to refine the

resulting matte. We present a unified framework for performing different operations on video in the

gradient domain, and solve a 3D Poisson equation to extract a video matte avoiding temporal artifacts.

Chuang et al.[27] extend Bayesian image matting [28] to video and use optical flow to interpolate a

trimap. In contrast, we use an iterative 3D graph-cut approach to segment the foreground and com-

pute a trimap. We show the relationship between completion and compositing, and complete the video

background by motion estimation and diffusion.

6.3 Gradient video operations

We present a unified framework for performing operations on video in the gradient domain. We begin

by extending a single dot product c = a · b for a single pixel c and vectors a and b to multiple dot-

products, Cp = Ap ·Bp = ∑i Ai
pBi

p, one for each coordinate p = (x,y,z) of the video volume C. We then



Chap. 6: Gradient video operations 103

differentiate and work with differential coordinates:

∇ Cp = ∑
i

(∇ Ai
pBi

p +Ai
p∇ Bi

p). (6.1)

Finally we create a new vector field by modifying and setting terms to zero according to the desired

operation, and reconstructing the result.

6.3.1 Gradient video compositing equation

In the spatial domain the compositing equation defines the value of each pixel as a linear combination

of foreground and background:

C = α F +(1−α )B. (6.2)

In video compositing, C,F,B denote video volumes, α a 3D matte, 1 a volume of ones, and the

operations are point-wise multiplication, addition and subtraction between three-dimensional arrays.

Differentiating we get the 3D gradient video compositing equation:

∇ C = α ∇ F +(1−α )∇ B+ ∇ α (F −B). (6.3)

Our observation is that a smooth transition between foreground and background videos along the

3D matte boundaries yields:

∇ α (F −B) = 0,

G = α ∇ F +(1−α )∇ B, (6.4)

where G is a new vector field. The volume is then reconstructed from the new vector field by solving a

3D Poisson equation. Whereas in the inverse problem, a sharp transition between uniform foreground

and background yields:

α ∇ F +(1−α )∇ B = 0,

∇ C = ∇ α (F −B), (6.5)

which defines the relationship between video matte gradients and video gradients for uniform regions.



Chap. 6: 3D Poisson 104

6.4 3D Poisson

In this work we perform operations on video in the gradient domain. Frame-by-frame gradient composit-

ing and matting gives rise to strong temporal artifacts. We therefore extend the reconstruction equations

to three dimensions. Following the notation of [43], we search the space of all 3D potential functions for

a function V whose gradients are closest to G in the least squares sense; V should minimize the integral:

∫ ∫ ∫
F(∇ V,G)dxdydz, (6.6)

where

F(∇ V,G) = ‖∇ V −G‖2 (6.7)

= (
∂V
∂x

−Gx)2 +(
∂V
∂y

−Gy)2 +(
∂V
∂ z

−Gz)2.

According to the variational principle, a function V that minimizes the integral in Eq. 6.6 must satisfy

the Euler-Lagrange equation, that for three independent variables generalizes to:

∂F
∂V

− d
dx

∂F
∂Vx

− d
dy

∂F
∂Vy

− d
dz

∂F
∂Vz

= 0, (6.8)

which is a partial differential equation in V . Substituting F results in satisfying the Poisson equation:

∇ 2V = ∇ ·G, (6.9)

where

∇ 2 =
∂ 2V
∂x2 +

∂ 2V
∂y2 +

∂ 2V
∂ z2 (6.10)

is the three-dimensional Laplacian operator, and

∇ ·G =
∂Gx

∂x
+

∂Gy

∂y
+

∂Gz

∂ z
(6.11)

is the divergence of the vector field measuring the extent to which a point in the field is a source or sink.



Chap. 6: 3D Poisson 105

6.4.1 Discrete solution

To solve for V we consider Eq. 6.9 as a boundary value problem of the form Lφ = f , where L is

an operator, φ an unknown scalar field, and f a non-homogeneous term. When there is no analytical

solution, the domain is a discrete volume grid. Methods for solving the Poisson equation in 3D are well

known in scientific computation [20].

The divergence is approximated by the finite backward difference:

divG ≈ Gx(x,y,z)−Gx(x−1,y,z)

+ Gy(x,y,z)−Gy(x,y−1,z)

+ Gz(x,y,z)−Gz(x,y,z−1). (6.12)

The intensity gradient ∇ V is approximated by the finite forward difference:

∇ V (x,y,z) ≈ (V (x+1,y,z)−V (x,y,z),

V (x,y+1,z)−V (x,y,z),

V (x,y,z+1)−V (x,y,z)). (6.13)

The Laplacian is approximated using finite differences by a Taylor series expansion of each voxel.

We considering the six connected neighbors of each voxel and their three directions. Then expand in

the positive and negative directions to fourth order, add each pair of equations, solve for the second

derivative, and sum the solutions in each of the coordinates to get:

∇ 2V (x,y,z) ≈ V (x+1,y,z)+V (x−1,y,z)

+ V (x,y+1,z)+V (x,y−1,z)

+ V (x,y,z+1)+V (x,y,z−1)

− 6V (x,y,z). (6.14)

This results in a set of linear equations that in matrix form contains only seven non-zero elements

in each row. For compositing of video pairs the computation is performed on the entire volume and



Chap. 6: Smooth transition 106

therefore we use a 3D Poisson solver with multi-grid [20] on an entire regular domain. We solve Eq.

6.9 separately for each channel. For video matting the computation is performed only on video regions

corresponding to the gray area of the video matte and therefore we use a direct solver [108] on an

iregular grid. The boundary conditions are defined by the known (0 or 1) regions of the trimap. We

solve a linear system whose unknowns are voxels only in the gray region.

6.4.2 Boundary conditions

We apply two types of boundary conditions in 3D for the respective applications of smooth and sharp

transitions. Neumann boundary conditions specify the normal derivative of a function on a surface,

which in our case means that for compositing of video pairs the derivative on the volume boundary is

zero, and pad the volume boundaries. Dirichlet boundary conditions specify the value of a function on

a surface:

V |∂Ω = V ∗|∂Ω (6.15)

where V ∗ provides the values on the boundary ∂Ω. In our case this means that known matte voxels (0

or 1) constitute boundary conditions for neighbouring unknown voxels in the gray region of the trimap.

Dirichlet boundary conditions allow working with arbitrary 3D outlines.

6.5 Smooth transition

6.5.1 Appearance and motion cuts

To compute the vector field in Eq. 6.4 requires computing a mask which determines the contributions of

the gradients from the videos. Therefore, prior to reconstruction, our goal is to find a good criterion for

computing a cut between overlapping videos. We would like the cut to pass through areas where both

the motions do not conflict and the colors are similar. Therefore, in the overlapping region we look at

the error volume between both the colors and the motions. The matching cost between two overlapping

regions A and B in each 3D coordinate p is defined as:

cost(p) = λ ‖cA(p)− cB(p)‖+(1−λ )‖fA(p)− fB(p)‖, (6.16)



Chap. 6: Smooth transition 107

where c denotes color channels, f denotes motion field values, and λ a scalar that determines the balance

between color and motion.

The cut is followed by reconstructing a function from a 3D vector field. In this respect the motion

constraint is more elaborate than directly requiring that the gradients also agree along the cut by the

constraint ‖GA(p)− GB(p)‖. We use an optical flow technique of Black and Anandan [14] which

estimates the flow in a multi-scale fashion, from coarse to fine, to handle large motions. It uses robust

statistics to avoid large errors from outliers and allows for flow discontinuities.

6.5.2 Efficiency

Working with video, our goal is to limit the computation time of the entire compositing process to be

linear in the number of voxels. We have experimented with finding a minimum graph cut in two and

three dimensions [18] as shown in Figure 6.9 (c). However, when compositing pairs of video the cut

computation is performed on the entire video volume and therefore computation time is dependent on

the number of vertices times the number of edges in the graph, which is quadratic in the number of

voxels. A direct extension of image quilting [41] to 3D using dynamic programming would result in

a minimum cost 1D path in the volume. Using dynamic programming for each spatial or temporal 2D

slice separately would not preserve coherence, resulting in noticeable artifacts.

We therefore combine dynamic programming with a greedy heuristic, modifying the cost according

to adjacent slices. More specifically, in the initialization phase, the cost of each position is the sum of

three functions: (i) a function of appearance and motion as defined in Eq. 6.16; (ii) a function of the

matte which is the distance from the corresponding previous cut maintaining temporal coherence; and

(iii) a Gaussian function of position which avoids trivial cuts in the overlapping region by assigning a

penalty to voxels near the boundaries. In the update phase, this sum is added to the minimum over the

previous positions. We perform this computation for finding both spatial and temporal cuts. Temporal

cuts are found by rotating the inputs, performing the computation, and then rotating back the output. We

found the results of this approach to be sufficient for our purposes as it avoids extreme changes of the

cut, while maintaining linear computation time.



Chap. 6: Sharp transition 108

6.6 Sharp transition

Our approach for extracting a foreground video element consists of three stages: (i) key-frame tracking;

(ii) iterative graph-cuts; and (iii) matte extraction. First, the user marks a point on the object and a

region around the object in a key-frame. The position is tracked throughout the entire sequence and the

scale is estimated. Next we fit a 3D spline to the tracker data and define closed 2D splines around the

object in each key-frame. The splines are interpolated across the remaining frames resulting in a binary

mask. Next, we apply an iterative 3D graph cut algorithm for extracting a trimap from the binary mask,

and finally we extract an accurate 3D alpha matte from the trimap by completing the background and

estimating the foreground in the gray region, and then solving a 3D Poisson equation. The different

stages are characterized by the accuracy of data maintained in each stage: starting from a rough binary

mask, onto a more accurate trimap, and finally a fine 3D alpha channel used for 3D compositing.

6.6.1 Key-frame tracking

We would like to extract an object from an input sequence. First, the user marks a point on the object to

track and an area around it in a single frame. According to this point we track the object and estimate

its location in each frame to get an ellipse that denotes the change in scale in two orthogonal axes. Let

T denote the set of tracker positions in each frame. We fit a 3D spline to the tracker position as shown

projected onto a single frame in Figure 6.5 (b). Fitting the 3D spline is performed incrementally using a

greedy algorithm. We begin by fitting a 3D spline through all positions P = T . Next, in each iteration

of the algorithm we find a point q whose removal from the set P results in a new spline minimizing an

overall error between the tracker data T and the spline SP\q:

q∗ = argmin
q∈P

d(SP\q,T ) (6.17)

d(SP,T ) = ∑
t∈T

d(SP, t), (6.18)

where d(SP, t) is the distance between the 3D spline curve SP and a tracker point t according to the

L2 norm. Fitting is performed until reaching a minimum number of key-frames. This result is refined by

the user by adding key-frames and refining the 2D shape splines around the object as shown in Figure



Chap. 6: Sharp transition 109

(a) (b) (c) (d)

Figure 6.5: Tracking: (a) Input frames. (b) Tracker data and 3D spline projected on frame. (c) Closed
2D shape spline. (d) Binary mask.

6.5 (c). Each key-frame the user updates is propagated to the following frames. The output defines an

initial binary mask as shown in (d) for the iterative graph-cut algorithm which extracts a trimap.

6.6.2 Iterative graph-cuts

In order to extract the foreground object from a video and composite it onto a new background we need

to find a trimap that defines the foreground and background regions and an unknown region (where alpha

values are in [0,1]). Given a rough binary mask line around the object, we perform iterations of dilation

and computation of the minimum graph cut in the dilated region. Each iteration defines a more accurate

region and the cut typically converges between three to ten iterations depending on the accuracy of the

spline and the initial kernel size which is decreased in each iteration. The cut is computed by taking

the inner and outer vertices of the dilated region to be source and sink. This provides the cut with an

initial estimate of the object boundary which is refined in each iteration. This iterative process defines

a contour around the object. Nodes of the graph are created only in the boundary region, resulting in a

relatively small graph and efficient computation (rather than a regular graph of the entire volume with n3

nodes). The weights of vertical, horizontal and temporal edges are set to the absolute of color difference

divided by the sum of directional luminance gradient magnitudes.

Figures 6.6 demonstrates the various stages using our graph cut trimap extraction: The user marks

point on the object and a few points around the object in a key-frames. The object is tracked and a 3D

spline is computed through the tracker data. In addition 2D shape splines are computed through the point

around the object and interpolated between all key-frames as shown in (a). This defines an initial binary



Chap. 6: Sharp transition 110

(a) (b) (c) (d)

Figure 6.6: Video trimap extraction: (a) Keyframe spline interpolation. (b) Initial slice of 3D graph cut.
(c) Result of iterative 3D graph cut. (d) Graph cut trimap.

video mask which serves as an initial estimate to the 3D iterative graph cut algorithm. The boundary is

dilated to form a region in which a 3D minimum cut is computed as shown in (b). Dilation and minimum

cut computation are performed iteratively, as described in Figure 6.7, resulting in a contour around the

object shown in (c) which is once more dilated to form a video trimap shown in (d).

6.6.3 Video matting and completion

The trimap is used to compute an accurate video matte. We extract the matte by assuming that the

background and foreground are relatively smooth and setting the corresponding terms in the gradient

compositing equation to zero. The 3D gradients of the video are then proportional to the 3D gradients

of the matte. The scaling factor for each voxel in the unknown region is the difference between the

foreground and the background. The resulting matte is used to composite the video element onto a new

background or video.

To extract the matte we need to complete the video background B and estimate the foreground F only

in the unknown (gray) trimap regions. In this respect using a 3D video volume presents a clear advantage

over 2D matting. Temporal information is commonly used for video completion [91]. Approximating

camera motion with a global transformation by tracking a sparse set of features allows warping the



Chap. 6: Results 111

image sequence to a single reference frame, applying the inverse transformation after completion. We

utilize the temporal information present in image sequences by searching in temporal neighborhoods

along the missing volume. We search along time spans, forward and backward in time, to find the

nearest existing background in the same spatial coordinate whose flow magnitude is near zero. When

a foreground object cannot be filled in by pixels from a temporal neighborhood, for example, when

background information is unavailable or its temporal distance is too far, we perfom diffusion. We have

also found useful the temporal median computed over span points with no or little motion. Background

completion is described in pseudocode in Figure 6.8. The foreground video in the gray trimap region is

estimated by diffusion.

6.7 Results

6.7.1 Video compositing

We first demonstrate some 2D results of reconstructing an image from merged gradients of a pair of input

images with respect to a 2D minimum graph cut. The top row of Figure 6.9 (d) shows the reconstructed

result is coherent in both texture and color. The lower row of Figure 6.9 shows a pair of input images

with different skies and actors in the scenes (a-b). The third figure (c) shows the result of a 2D minimum

graph cut, and the rightmost figure (d) shows the result of gradient image compositing with respect to

(c). Gradient image compositing merges the sky seamlessly while maintaining the silhouettes around

the shield. Computation time is under a minute for a pair of 720 by 480 input images on a 1.8 GHz P3

processor, for both the quadratic 2D minimum graph-cut computation and for solving the 2D Poisson

equation using the full multigrid method.

We have experimented with compositing various pairs of sequences with varying geometric and

photometric differences from a database of video footage. The subjects of these sequences are varied

and include time-lapse, scenery, textures, and more. We set an equal balance between color and motion,

λ = 0.5, in computation of the cut. Total computation time of the entire video is between 30 and 60

seconds for input pairs of size between 1123 and 1483 on a 1.8 GHz P3 processor with 1GB of RAM. In

the following we show the spatial and temporal effects resulting from gradient video compositing. We



Chap. 6: Results 112

use video pairs to demonstrate the applicability and advantages of our compositing method for mixing,

extending and folding videos in space and time. These operations are commonly used in creating video

mosaics, in video editing, and video texture synthesis.

Video mosaics

Figure 6.10 shows frames from a pair of time-lapse image sequences from different sources (a-b), and a

frame from the result of gradient video compositing is shown in (c). Notice that while the cut is found

only in the overlapping region, the sequence is reconstructed from gradients on the entire domain to get

a single coherent time-lapse output. We applied our technique for temporally merging pairs of different

sequences which is used for extending videos in time and space for creating video mosaics.

Video folding

Figure 6.11 demonstrates the application of our method to folding an image by placing the left and right

portions of the image one over the other, computing a 2D cut in the overlapping region, and then re-

constructing the image from the merged gradients. Figure 6.12 shows the application of our method to

spatially folding a video by placing the left and right volumes one over the other, computing a 3D cut

in the overlapping volume, and reconstructing the video from a 3D vector field. We demonstrate com-

positing results for both static and moving cameras, as well as a scene with noisy snowfall background,

while maintaining temporal coherence of the output. Figure 6.16 shows the application of our method

to folding image sequences by cutting a temporal band to change the sequence duration. A 2D slice of a

3D temporal cut of the first and last sequence segments is shown in (c), and the result of gradient video

compositing in (d). This is used for folding videos in space and time.

Video textures

Figure 6.13 shows frames from different pairs of image sequences (a-b). A 2D slice of 3D spatial and

temporal cuts is shown in (c). Our method spatially and temporally composites the clouds, fire and

smoke textures, and mixes the water textures seamlessly as shown in (d). This is used to extend videos

in space and time for video textures.



Chap. 6: Results 113

In these results we demonstrate the compositing of pairs of sequences. For applications such as video

mosaics, editing, and texture synthesis this extends to multiple matching sequences. The sequences are

sequentially cut, storing each mask, and the resulting 3D gradient field is reconstructed once. This

ensures that the spatial and temporal appearance of the entire sequence is coherent.

6.7.2 Video trimap extraction

We have experimented with our method for video trimap extraction on various videos with uniform,

textured and complex backgrounds. Figure 6.14 shows a frame from the result of video trimap extraction

for a time-lapse sequence of a flower opening. The figure demonstrates the various steps of our method:

(a) keyframe spline interpolation, (b-c) iterative 3D graph cuts, and a frame of the resulting trimap (d).

6.7.3 Video matting and completion

We first demonstrate 3D gradient video matting on a simple sequence with noticeable transparencies. A

frame of a short sequence of a lioness is shown on the left of Figure 6.15 and a frame of the resulting

gradient video matte on the right. Notice the fine detail on the chin and whiskers. Two-dimensional,

frame-by-frame, gradient compositing and matting suffers from temporal artifacts and the advantage

of our video matting approach is that it is performed in 3D and therefore results in a consistent matte

which maintains temporal coherence. Figure 6.17 demonstrates the results of gradient video matting.

The sequence contains 192 frames of 192 by 112 resolution, and contains four user specified key-frames.

An input frame is shown in (a) and the corresponding graph cut trimap in (b). Foreground estimation

in the unknown trimap region is shown in (c) and video background completion of the unknown trimap

region in (d). The accurate video matte extracted by our 3D method is shown in (d) and a composite on

a new background in (e). Total computation time is 170 seconds, including seven graph cut iterations

and solving for 138565 unknowns in the matte computation.



Chap. 6: Conclusions 114

6.8 Conclusions

The contributions of this work include the introduction and use of the gradient video compositing equa-

tion for smooth and sharp transitions between videos. This is performed by cutting followed by recon-

struction of a 3D vector field, utilizing and maintaining the temporal coherence present in the video

and performing iterative 3D graph cuts for capturing the contours of foreground video elements. It is

based on extending the reconstruction of a vector field to 3D using the Poisson equation and considers

motion in the cut computation. We provide a 3D formulation which reconstructs a temporally coherent

output, avoiding temporal artifacts by spreading the reconstruction error of our least squares solution

over the entire video volume. Finally, our results show useful applications for video mosaics, folding,

video textures, compositing, video trimap extraction, video matting and background completion, within

a unified framework.



Chap. 6: Conclusions 115

Input: color video, binary foreground video mask

Output: foreground video trimap

Algorithm:

do
set mask boundary to gray
dilate gray boundary
compute 3D minimum graph cut in boundary
update new binary mask

until convergence

Figure 6.7: Iterative graph-cuts: trimap extraction pseudocode.

Input: color video, video trimap

Output: completed video background in gray trimap region

Algorithm:

compute optical flow
for each frame

for each unknown pixel
search time span from near to far

if background pixel and
flow magnitude near zero

assign color, update mask, and end search
if unknown pixels remain

fill in by diffusion

Figure 6.8: Background video completion pseudocode.



Chap. 6: Conclusions 116

(a) (b) (c) (d)

Figure 6.9: (a-b) Pair of input images. (c) 2D minimum graph cut. (d) Result of gradient image com-
positing.

(a) (b) (c)

Figure 6.10: Video mosaic: (a-b) Input frames from a pair of time-lapse sequences. (c) Result of gradient
video compositing.

(a) (b) (c)

Figure 6.11: Image folding: (a) Input image. (b) Cut. (d) Result of gradient image compositing.



Chap. 6: Conclusions 117

(a) (b) (c)

Figure 6.12: Spatial video folding: (a) Input frame. (b) Cut. (c) Result of gradient video compositing.



Chap. 6: Conclusions 118

(a) (b) (c) (d)

Figure 6.13: Spatial and temporal video textures: (a-b) Input frames from sequence pairs. (c) Cut. (d)
Result of gradient video compositing.



Chap. 6: Conclusions 119

(a) (b)

(c) (d)

Figure 6.14: Video trimap extraction: (a) Keyframe spline interpolation. (b) Initial slice of 3D graph
cut. (c) Result of iterative 3D graph cut. (d) Graph cut trimap.

Figure 6.15: Video matting: frame from input video (left), and frame from resulting video matte (right).



Chap. 6: Conclusions 120

(a) (b) (c) (d)

Figure 6.16: Temporal video folding: (a) Input frame. (b) Cut. (c) Result of gradient video compositing.

(a) (c) (e)

(b) (d) (f)

Figure 6.17: Video matting and completion: (a) Frame from input video. (b) Graph cut trimap. (c)
Foreground estimation in unknown region. (d) Background completion of unknown region. (e) Alpha
matte. (f) Composite.



Chapter 7

Interactive Object Segmentation by

Fitting Splines to Graph Cuts

Object segmentation in image sequences is one of the fundamental problems in computer vision and

graphics. This problem is usually addressed either by discrete representations which are currently man-

ifested by graph partitioning techniques, or by continuous methods typically referred to as active con-

tours. In this work [38] we take a unified approach by fitting splines to graph cuts. The strengths of

this approach stem from the dual discrete and continuous representations and from allowing the user to

refine the result of the cut by fitting a new spline to it and modifying its points. Segmentation of an

object in video is performed by a series of updates to the control points and computation of a minimum

graph cut. Usually the graph cut results in a discrete representation over which the user has no control,

and which is not always our desired result. Therefore our approach is to fit a spline to the resulting cut in

key-frames. This allows the user to change the control points of the spline and then perform additional

iterations of cut computation.

In order to extract an object from an input sequence the user first marks a point on the object and

an area around it in a single frame. The object position is tracked forwards and backwards in time and

the result is a set of discrete points (x,y,t). We fit a 3D spline to this set of points by a greedy algorithm.



Chap. 7: Interactive Object Segmentation by Fitting Splines to Graph Cuts 122

First, all of the discrete points are part of the spline. Next, in each iteration, we find the point whose

removal from the set results in a new spline minimizing the overall error between the tracker data and

spline. The error is global and measures the distance between the spline and the collection of points.

Fitting is performed until reaching a minimum number of key-frames. The result is refined by the user

by adding key-frames and modifying positions.

We use discrete and continuous representations for both object position and shape. After tracking

the object position in each frame and fitting a 3D spline, the user roughly marks the object shape in a

number of key-frames by points on a 2D closed spline. The last updated key-frame shape is propagated

forward in time as a starting point for the following frames which the user selects to modify. The user

can refine key-frame shapes by modifying spline points and applying rigid transformations. Shapes

in the remaining frames are initially interpolated from key-frames. Next, the 2D shape is refined by

iterative graph cuts.

Graph partitioning techniques are commonly used for object segmentation. We perform dilation on

the spline boundaries and compute the minimum graph cut in the boundary region. Voxels on the inner

boundary of the dilated region are connected to a source node and voxels on the outer boundary are

connected to a sink. The rest of the voxels in the dilated region are connected regularly. The weight

of each internal edge is inversely proportional to the gradient magnitude so that the resulting cut sticks

to edges and transition regions in the video. We compute a spline approximation to the discrete set

of data points resulting from the cut computation. We use a cubic B-spline representation and solve a

constrained minimization problem iteratively. The knots of the spline are located automatically, given

a single parameter which controls the tradeoff between the smoothness and closeness of fit. A small

value results in an accurate spline with many knots, whereas a large value results in a smooth weighted

least-squares polynomial with a few knots. Fitting is performed by computing successive least-squares

splines. At each iteration computation of spline knots is adaptive, adding more in regions in which

the function is difficult to approximate than where it is smooth. This gives a continuous representation

which the user can further refine by modifying the spline and then re-computing a new graph cut.

The process of interleaving a discrete cut computation and spline fitting is performed until the user is

satisfied with the mask. We have found this method of interaction to be simple and efficient, producing

a detailed mask using relatively few steps, benefiting from the advantages of both representations. We



Chap. 7: Interactive Object Segmentation by Fitting Splines to Graph Cuts 123

demonstrate the result of the process for an underwater image sequence by segmenting a fish. A frame

of the input is shown in (a). The projection of the tracker data and the 3D spline fitted to the data are

shown in (b). A user specified key-frame and the result of the iterative graph cut are shown in (c). A

new spline is fitted to the graph cut as shown in (d) and modified. The resulting mask is shown in (e)

and a composite on a green screen is shown in (f). Our approach to object segmentation has useful

applications in video compositing, matting and video completion.

We have compared our approach for object segmentation in video with graph cut segmentation on

an image sequence. Figure 7.2 show the graph cut result [122] in white compared with our result of

spline fitting in cyan. Notice the various degrees of smoothness shown in the close up images.



Chap. 7: Interactive Object Segmentation by Fitting Splines to Graph Cuts 124

(a) (b)

(c) (d)

(e) (f)

Figure 7.1: Object segmentation in video: (a) Input frame. (b) Projected tracker data and 3D spline. (c)
Key-frame interpolation and minimum graph cut. (d) Spline fitting to graph cut. (e) Binary mask. (f)
Composite on green screen.



Chap. 7: Interactive Object Segmentation by Fitting Splines to Graph Cuts 125

Figure 7.2: Comparison: Graph cut is shown in white. Our result of spline fitting with various degrees
of smoothness is shown in cyan. (Bottom) close up view.



Bibliography

[1] Adobe Systems Incorporated. http://www.adobe.com.

[2] Brett Allen, Brian Curless, and Zoran Popovic. The space of human body shapes: reconstruction

and parameterization from range scans. ACM Transactions on Graphics, 22(3):587–594, 2003.

[3] Jont B. Allen. Short term spectral analysis, synthesis, and modification by discrete Fourier trans-

form. IEEE Transactions on Acoustics, Speech, and Signal Processing, 25(3):235–238, 1977.

[4] Nicholas Apostoloff and Andrew Fitzgibbon. Bayesian video matting using learnt image priors.

In BMVA symposium on Spatiotemporal Image Processing, 2004.

[5] Michael Ashikhmin. Synthesizing natural textures. In ACM Symposium on Interactive 3D Graph-

ics, pages 217–226, 2001.

[6] Simon Baker and Takeo Kanade. Limits on super-resolution and how to break them. In IEEE

Conference on Computer Vision and Pattern Recognition, pages 372–379, 2000.

[7] Simon Baker and Takeo Kanade. Limits on super-resolution and how to break them. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 24(9):1167–1183, 2002.

[8] Ronen Basri and David Jacobs. Lambertian reflectance and linear subspaces. In IEEE Interna-

tional Conference on Computer Vision, volume 2, pages 383–390, 2001.

[9] Marcelo Bertalmio, Guillermo Sapiro, Vincent Caselles, and Coloma Ballester. Image inpainting.

In Proceedings of ACM SIGGRAPH 2000, pages 417–424. ACM Press, 2000.



BIBLIOGRAPHY 127

[10] Marcelo Bertalmio, Luminita Vese, Guillermo Sapiro, and Stanley Osher. Simultaneous structure

and texture image inpainting. IEEE Transactions on Image Processing, 12(8):882–889, 2003.

[11] David Beymer and Tomaso Poggio. Image representation for visual learning. Science, 272:1905–

1909, 1996.

[12] David Beymer, Amnon Shashua, and Tomaso Poggio. Example based image analysis and syn-

thesis. MIT AI Lab Technical Memo 1431, 1993.

[13] Dinkar N. Bhat and Shree K. Nayar. Ordinal measures for image correspondence. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 20:415–423, 1998.

[14] Michael J. Black and P. Anandan. The robust estimation of multiple motions: Parametric and

piecewise-smooth flow fields. Computer Vision and Image Understanding, 63(1):75–104, 1996.

[15] Andrew Blake and Michael Isard. Active Contours. Springer-Verlag, 1998.

[16] Volker Blanz and Thomas Vetter. A morphable model for the synthesis of 3d faces. In Proceedings

of ACM SIGGRAPH 99, pages 187–194, 1999.

[17] Eran Borenstein and Shimon Ullman. Class-specific, top-down segmentation. In European Con-

ference on Computer Vision, pages 109–124, 2002.

[18] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimization via graph

cuts. IEEE transactions on Pattern Analysis and Machine Intelligence, 23(11):1222–1239, 2001.

[19] Matthew Brand and Aaron Hertzmann. Style machines. In ACM Siggraph, pages 183–192, 2000.

[20] Achi Brandt. Multiscale scientific computation: Review 2001. In T.J. Barth, T.F. Chan, and

R. Haimes, editors, Multiscale and Multiresolution Methods: Theory and Applications. Springer

Verlag, 2001.

[21] Christoph Bregler, Michele Covell, and Malcolm Slaney. Video rewrite: driving visual speech

with audio. In ACM Siggraph, pages 353–360, 1997.

[22] Stephen Brooks and Neil Dodgson. Self-similarity based texture editing. ACM Transactions on

Graphics,, 21(3):653–656, 2002.



BIBLIOGRAPHY 128

[23] Peter J. Burt and Edward H. Adelson. Merging images through pattern decomposition. Applica-

tions of Digital Image Processing VIII, 575:173–181, 1985.

[24] J. D. Carroll and J. J. Chang. Analysis of individual differences in multidimensional scaling via

an n-way generalization of eckart-young decomposition. Psychometrika, 35:283–319, 1970.

[25] Wei Chai and Barry Vercoe. Structural analysis of musical signals for indexing and thumbnailing.

In Joint Conference on Digital Libraries, pages 27–34, 2003.

[26] Tony Chan and Jianhong Shen. Mathematical models for local nontexture inpainting. SIAM

Journal on Applied Mathematics, 62(3):1019–1043, 2001.

[27] Yung-Yu Chuang, Aseem Agarwala, Brian Curless, David H. Salesin, and Richard Szeliski. Video

matting of complex scenes. ACM Transactions on Graphics (TOG), 21(3):243–248, 2002.

[28] Yung-Yu Chuang, Brian Curless, David H. Salesin, and Richard Szeliski. A bayesian approach

to digital matting. In IEEE Conference on Computer Vision and Pattern Recognition, volume 2,

pages 264–271, 2001.

[29] Cornell Lab of Ornithology. http://birds.cornell.edu.

[30] Antonio Criminisi, Patrick Perez, and Kentaro Toyama. Region filling and object removal by

exemplar-based image inpainting. IEEE Transactions on Image Processing, 2004, to appear.

[31] Ronald E. Crochiere. A weighted overlap-add method of short-time Fourier analysis/synthesis.

IEEE Transactions on Acoustics, Speech, and Signal Processing, 28(1):99–102, 1980.

[32] James Davis. Mosaics of scenes with moving objects. In IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, pages 354–360, 1998.

[33] James W. Davis and Hui Gao. An expressive three-mode principal components model of human

action style. Image and Vision Computing, 21(11):1001–1016, 2003.

[34] David L. Donoho and Carrie Grimes. Hessian eigenmaps: Locally linear embedding techniques

for high-dimensional data. Proceedings of the National Academy of Sciences, 100(10):5591–

5596, 2003.



BIBLIOGRAPHY 129

[35] Iddo Drori, Daniel Cohen-Or, and Yehezkel Yeshurun. Example-based style synthesis. In IEEE

International Conference on Computer Vision and Pattern Recognition, volume 2, pages 143–

150, 2003.

[36] Iddo Drori, Daniel Cohen-Or, and Yehezkel Yeshurun. Fragment-based image completion. ACM

Transactions on Graphics (TOG), 22(3):303–312, 2003.

[37] Iddo Drori, Alon Fishbach, and Yehezkel Yeshurun. Spectral sound gap filling. In IEEE Interna-

tional Conference on Pattern Recognition, volume 2, pages 871–874, 2004.

[38] Iddo Drori, Tommer Leyvand, Daniel Cohen-Or, and Yehezkel Yeshurun. Interactive object seg-

mentation by fitting splines to graph cuts. In Siggraph Posters session, 2004.

[39] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. Wiley-Interscience,

2nd ed., 2001.

[40] Alexei Efros and Thomas Leung. Texture synthesis by non-parametric sampling. In IEEE Inter-

national Conference on Computer Vision, pages 1033–1038, 1999.

[41] Alexei A. Efros and William T. Freeman. Image quilting for texture synthesis and transfer. In

Proceedings of ACM SIGGRAPH 2001, pages 341–346. ACM Press, 2001.

[42] L. E. Ericson and E. G. Stickel. A proposed classification system for ceramics. World Archaeol-

ogy, 4(3):357–367, 1973.

[43] Raanan Fattal, Dani Lischinski, and Michael Werman. Gradient domain high dynamic range

compression. ACM Transactions on Graphics,, 21(3):249–256, 2002.

[44] David J. Field. Relations between the statistics of natural images and the response properties of

cortical cells. Journal of the Optical Society of America, 4(12):2379–2394, 1987.

[45] Graham D. Finlayson, Steven D. Hordley, and Mark S. Drew. Removing shadows from images.

In European Conference on Computer Vision, pages 823–836, 2002.

[46] Alon Fishbach. Primary segmentation of auditory scenes. In Proceedings of IEEE International

Conference on Pattern Recognition, pages 113–117, 1994.



BIBLIOGRAPHY 130

[47] Shachar Fleishman, Iddo Drori, and Daniel Cohen-Or. Bilateral mesh denoising. ACM Transac-

tions on Graphics (TOG), 22(3):950–953, 2003.

[48] Jonathan Foote. Automatic audio segmentation using a measure of audio novelty. In Proceedings

of IEEE International Conference on Multimedia and Expo, pages 452–455, 2000.

[49] William T. Freeman, Thouis R. Jones, and Egon Pasztor. Example-based super-resolution. IEEE

Computer Graphics and Applications, pages 56–65, 2002.

[50] William T. Freeman and Egon Pasztor. Learning low-level vision. In IEEE International Confer-

ence on Computer Vision, pages 182–189, 1998.

[51] William T. Freeman, Egon C. Pasztor, and Owen T. Carmichael. Learning low-level vision.

International Journal of Computer Vision, 40(1):25–47, 2000.

[52] William T. Freeman and Joshua B. Tenenbaum. Learning bilinear models for two-factor problems

in vision. In IEEE Conference on Computer Vision and Pattern Recognition, pages 554–560,

1997.

[53] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Prentice Hall, 2002.

[54] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. The lumigraph.

In Proceedings of ACM SIGGRAPH 96, pages 43–54. ACM Press, 1996.

[55] Robert Gray, Andres Buzo, Augustine Gray, and Yasuo Matsuyama. Distortion measures for

speech processing. IEEE Transactions on Acoustics, Speech, and Signal Processing, 28(4):367–

376, 1980.

[56] D. W. Griffin and J. S. Lim. Signal estimation from modified short-time Fourier transform. IEEE

Transactions on Acoustics, Speech, and Signal Processing, 32(2):236–243, 1984.

[57] Gideon Guy and Gerard Medioni. Inferring global perceptual contours from local features. IEEE

International Journal of Computer Vision, (1–2):113–133, 1996.

[58] Paul Haeberli. Paint by numbers: Abstract image representations. In Computer Graphics (Pro-

ceedings of ACM SIGGRAPH 90), pages 207–214. ACM Press, 1990.



BIBLIOGRAPHY 131

[59] R. Harshman. Foundations of the parafac procedure: Model and conditions for an explanatory

multi-mode factor analysis. UCLA Working Papers in phonetics, 16:1–84, 1970.

[60] R. Harshman, P. Ladefoged, and L. Goldstein. Factor analysis of tongue shapes. Journal of the

Acoustical Society of America, 62(3):693–707, 1977.

[61] David J. Heeger and James R. Bergen. Pyramid-based texture analysis/synthesis. In Proceedings

of ACM SIGGRAPH 95, pages 229–238. ACM Press, 1995.

[62] Aaron Hertzmann. Painterly rendering with curved brush strokes of multiple sizes. In ACM

Siggraph, pages 453–460, 1998.

[63] Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian Curless, and David H. Salesin. Image

analogies. In Proceedings of ACM SIGGRAPH 2001, pages 327–340. ACM Press, 2001.

[64] Aaron Hertzmann, Nuria Oliver, Brian Curless, and Steven M. Seitz. Curve analogies. In Pro-

ceedings of 13th Eurographics Workshop on Rendering, pages 233–245, 2002.

[65] Anil N. Hirani and Takashi Totsuka. Combining frequency and spatial domain information for

fast interactive image noise removal. In Proceedings of ACM SIGGRAPH 96, pages 269–276.

ACM Press, 1996.

[66] Homan Igehy and Lucas Pereira. Image replacement through texture synthesis. In IEEE Interna-

tional conference on Image Processing, volume 3, pages 186–189, 1997.

[67] Michal Irani, Benny Rousso, and Shmuel Peleg. Computing occluding and transparent motions.

International Journal of Computer Vision, 12:5–16, 1994.

[68] Jiaya Jia and Chi Keung Tang. Inference of segmented color and texture description by tensor

voting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, to appear.

[69] Arie Kapteyn, Heinz Neudecker, and T. Wansbeek. An approach to n-mode components analysis.

Psychometrika, 51:269–275, 1986.

[70] M. Kass, A. Witkin, and D. Trezopoulos. Snakes: Active contour models. International Journal

of Computer Vision, 1(4):321–331, 1987.



BIBLIOGRAPHY 132

[71] Willett Kempton. The Folk Classification of Ceramics: A Study of Cognitive Prototypes. Aca-

demic Press, 1981.

[72] Kurt Koffka. Principles of Gestalt Psychology. New York, Hartcourt, Brace and World, 1935,

1967.

[73] Tamara G. Kolda. Orthogonal tensor decompositions. SIAM Journal on Matrix Analysis and

Applications, 23(1):243–255, 2001.

[74] Pieter M. Kroonenberg and J. de Leeuw. Principal component analysis of three-mode data by

means of alternating least squares algorithms. Psychometrika, 45:69–97, 1980.

[75] Vivek Kwatra, Arno Schodl, Irfan Essa, Greg Turk, and Aaron Bobick. Graphcut textures: image

and video synthesis using graph cuts. ACM Transactions on Graphics (TOG), 22(3):277–286,

2003.

[76] Edwin H. Land and John McCann. Lightness and retinex theory. Journal of the Optical Society

of America, 1(61):1–11, 1971.

[77] Lieven De Lathauwer. Signal Processing Based on Multilinear Algebra. PhD thesis, Katholieke

Universiteit Leuven, 1997.

[78] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. On the best rank-1 and rank-

(r1,r2,...,rn) approximation of higher-order tensors. SIAM Journal on Matrix Analysis and Appli-

cations, 21(4):1324–1342, 2001.

[79] Anat Levin, Assaf Zomet, Shmuel Peleg, and Yair Weiss. Seamless image stitching in the gradient

domain. In Proc. of the European Conference on Computer Vision, to appear, 2004.

[80] Lin Liang, Ce Liu, Ying-Qing Xu, Baining Guo, and Heung-Yeung Shum. Real-time texture

synthesis by patch-based sampling. ACM Transactions on Graphics, 20(3):127–150, 2001.

[81] Jan R. Magnus and Heinz Neudecker. Matrix differential calculus with applications in statistics

and econometrics. Wiley series in probability and statistics, 1999.



BIBLIOGRAPHY 133

[82] Ravikanth Malladi, James A. Sethian, and Baba C. Vemuri. Shape modeling with front propa-

gation: A level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence,

17(2):158–175, 1995.

[83] Tomoo Mitsunaga, Taku Yokoyama, and Takashi Totsuka. Autokey: Human assisted key extrac-

tion. In Proceedings of ACM SIGGRAPH 95, pages 265–272, 1995.

[84] Eric N. Mortensen and William A. Barrett. Intelligent scissors for image composition. In Pro-

ceedings of ACM SIGGRAPH 95, pages 191–198, 1995.

[85] Alva Noe, Luiz Pessoa, and Evan Thompson. Finding out about filling-in: A guide to perceptual

completion for visual science and the philosophy of perception. Behavioral and Brain Sciences,

(6):723–748, 796–802, 1998.

[86] Byong Mok Oh, Max Chen, Julie Dorsey, and Fredo Durand. Image-based modeling and photo

editing. In Proceedings of ACM SIGGRAPH 2001, pages 433–442. ACM Press, 2001.

[87] Stanley Osher and James A. Sethian. Fronts propagating with curvature-dependent speed: algo-

rithms based on hamilton-jacobi formulations. Journal of Computational Physics, 79(1):12–49,

1988.

[88] Stephen Palmer. Vision Science. MIT Press, 1999.

[89] Patrick Perez, Michel Gangnet, and Andrew Blake. Poisson image editing. ACM Transactions

on Graphics (TOG), 22(3):313–318, 2003.

[90] William Matthew Flinders Petrie. Abydos Part I: Twenty-Second Memoir of the Egypt Exploration

Fund/Society. University College London Department of Egyptology, 1902.

[91] Pixeldust@. 2d3. http://www.2d3.com, 2003.

[92] Robert Pless. Image spaces and video trajectories: Using isomap to explore video sequences. In

IEEE International Conference on Computer Vision, pages 1433–1440, 2003.

[93] Thomas Porter and Tom Duff. Compositing digital images. In Computer Graphics (Proceedings

of ACM SIGGRAPH 84), pages 253–259, 1984.



BIBLIOGRAPHY 134

[94] Lawrence R. Rabiner and Ronald W. Schafer. Digital Processing of Speech Signals. Prentice-

Hall, 1978.

[95] Zia Rahman, Daniel J. Jobson, Glenn A. Woodell, and G. D. Hines. Multi-sensor fusion and

enhancement using the retinex image enhancement algorithm. In Visual Information Processing

XI Proceedings of SPIE, volume 4736, 2002.

[96] Ravi Ramamoorthi and Pat Hanrahan. A signal-processing framework for inverse rendering. In

ACM Siggraph, pages 117–128, 2001.

[97] Erik Reinhard, Michael Ashikhmin, Bruce Gooch, and Peter Shirley. Color transfer between

images. IEEE Computer Graphics and Applications, pages 34–40, 2001.

[98] Prudence M. Rice. Pottery Analysis. The University of Chicago Press, 1987.

[99] Sam Roweis and Lawrence Saul. Nonlinear dimensionality reduction by locally linear embed-

ding. Science, 290(5500):2323–2326, 2000.

[100] Hanan Samet. Applications of Spatial Data Structures. Addison-Wesley Publishing, 1989.

[101] Eric Scheirer and Malcolm Slaney. Construction and evaluation of a robust multifeature speech/-

music discriminator. In Proceedings of International Conference on Acoustic, Speech, and Signal

Processing, pages 1331–1334, 1997.

[102] Sebastian H. Seung and Daniel D. Lee. The manifold ways of perception. Science, 290:2268–

2269, 2000.

[103] Eitan Sharon, Achi Brandt, and Ronen Basri. Completion energies and scale. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 22(10):1117–1131, 2000.

[104] Peter-Pike Sloan, Charles Rose, and Michael Cohen. Shape by example. In ACM Symposium on

Interactive 3D Graphics, pages 135–143, 2001.

[105] Cyril Soler, Marie-Paule Cani, and Alexis Angelidis. Hierarchical pattern mapping. ACM Trans-

actions on Graphics,, 21(3):673–680, 2002.



BIBLIOGRAPHY 135

[106] Jian Sun, Jiaya Jia, Chi-Keung Tang, and Heung-Yeung Shum. Poisson matting. ACM Transac-

tions on Graphics, to appear, 2004.

[107] Richard Szeliski. Video mosaics for virtual environments. IEEE Computer Graphics and Appli-

cations, pages 22–30, 1996.

[108] TAUCS. A Library of Sparse Linear Solvers, Tel-Aviv University. http://www.tau.ac.il/ stoledo/-

taucs/, 2003.

[109] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A global geometric framework for

nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.

[110] Joshua B. Tenenbaum and William T. Freeman. Separating style and content with bilinear models.

Neural Computation, 12(6):1247–1283, 2000.

[111] Andy Tsai, Anthony Yezzi Jr., William Wells, Clare Tempany, Dewey Tucker, Ayres Fan, W. Eric

Grimson, and Alan Willsky. A shape-based approach to the segmentation of medical imagery

using level sets. IEEE Transactions on Medical Imaging, 22(2):137–154, February 2003.

[112] L. R. Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 31:279–

311, 1966.

[113] Greg Turk and James F. OBrien. Shape transformation using variational implicit functions. In

Proceedings of ACM SIGGRAPH 99, pages 335–342, 1999.

[114] Matthew Turk and Alex Pentland. Eigenfaces for recognition. Journal of Cognitive Neuro Sci-

ence, 3(1):71–86, 1991.

[115] Shimon Ullman, Michel Vidal-Naquet, and Erez Sali. Visual features of intermediate complexity

and their use in classification. Nature Neuroscience, 5(7):1–6, 2002.

[116] M. Alex O. Vasilescu and Demetri Terzopoulos. Multilinear subspace analysis of image ensem-

bles. In IEEE Conference on Computer Vision and Pattern Recognition, pages 93–99, June 2003.

[117] John Y. A. Wang and Edward H. Adelson. Representing moving images with layers. IEEE

Transactions on Image Processing, 3(5):625–638, 1994.



BIBLIOGRAPHY 136

[118] Li Yi Wei and Marc Levoy. Fast texture synthesis using tree-structured vector quantization. In

Proceedings of ACM SIGGRAPH 2000, pages 479–488. ACM Press, 2000.

[119] Yair Weiss. Deriving intrinsic images from image sequences. In Proceedings of International

Conference on Computer Vision, pages 68–75, 2001.

[120] Tomihisa Welsh, Michael Ashikhmin, and Klaus Mueller. Transferring color to greyscale images.

ACM Transactions on Graphics,, 21(3):277–280, 2002.

[121] Lance Williams and David W. Jacobs. Stochastic completion fields: A neural model of illusory

contour shape and salience. Neural Computation, 9(4):837–858, 1997.

[122] Ning Xu, Ravi Bansal, and Narendra Ahuja. Object segmentation using graph cuts based active

contours. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition,

pages 46–53, 2003.

[123] Yizhou Yu, Kun Zhou, Dong Xu, Xiaohan Shi, Hujun Bao, Baining Guo, and Heung-Yeung

Shum. Mesh editing with poisson-based gradient field manipulation. ACM Transactions on

Graphics (TOG), 2004.

[124] Tong Zhang and Gene H. Golub. Rank-one approximation to high order tensors. SIAM Journal

on Matrix Analysis and Applications, 23(2):534–550, 2001.


