Training Poisoning in Imperfect Information Games

DeepStack Architecture

This work explores how simple strategies in the game of Leduc Hold'em can be used to beat a sophisticated pokerAI, DeepStack. We first analyze, under unbiased training, how significantly DeepStack outperforms most traditional poker-playing strategy profiles employed by humans.

Simplified DeepStack Design For Training Poisoning Tests

We then consider the ability of an opponent to bias the training phase such that DeepStack is optimized to play against a particular strategy profile. Finally, by allowing for this biasing, we show that DeepStack can be defeated by a subset of strategy profiles if the player can change their strategy post-training. While DeepStack achieves nearly super-human performance, we conclude that DeepStack is susceptible to training poisoning.

Leduc Hold'em Poker

Training Poisoning in DeepStack

ROUND 2 BETTING

Semi-Rational & Irrational Players

Rocks Player Game Tree

Risk Profile 1 (Rocks): Has a Pair

```
Rules:

1st Bet

If Player == P1, then Call (if P2 raises then use P2 logic below)

If Player == P2:
```

Source: Moravčík, et. al (2017)

Results

	Player	Unbiased	Biased
1	Mild Adaptive Rocks	-11.4 ± 12	63.6 ± 28
2	Passive Rocks	-43.5 ± 20	-14.8 ± 38
3	Strong Adaptive Rocks	-3.7 ± 9.4	53.9 ± 29
4	Rocks	-1.5 ± 5.8	4.7 ± 18
5	Random Bluffer	$\textbf{-53.6}\pm30$	6 ± 34
6	Smart Bluffer	-35.8 ± 24	23.6 ± 32
Fable	2. Average Chips Per Game	on Biased vs.	Unbiased Train-

ing. The table reports means and 95% confidence intervals.

	Player	Unbiased	Biased		
1	Mild Adaptive Rocks	192	457		
2	Passive Rocks	328	620		
3	Strong Adaptive Rocks	152	468		
4	Rocks	93.9	296		
5	Random Bluffer	492	544		
6	Smart Bluffer	393	517		
Table 3. Standard Deviation of Chips Won					

_	Player	Unbiased	Biased
1	Mild Adaptive Rocks	0.371	0.291
2	Passive Rocks	0.455	0.434
3	Strong Adaptive Rocks	0.327	0.253
4	Rocks	0.418	0.331
5	Random Bluffer	0.586	0.466
6	Smart Bluffer	0.51	0.417

Table 4. Average Win Rate (Fraction of Rounds Winning > 0Chips) - Biased vs Unbiased

Source code: github.com/rawls238/LeducTrainingPoisoning/