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Automatic Machine Learning: Learning to Learn

Input: dataset, well defined task, performance criteria.

Goal: find best solution of task with respect to dataset.



Motivation: Dual Process Iteration and Self Play

Dual process theory: Thinking fast and slow, Daniel Kahneman (2002 Nobel Prize in Economics).

Expert iteration: Thinking fast and slow with deep learning and tree search, Anthony et al., NIPS 2017.

AlphaZero, self-play: Mastering chess and Shogi by self-play with a general reinforcement learning algorithm, 
Silver et al., NIPS 2017.

Single player AlphaZero with sequence model: AlphaD3M.

Single player AlphaZero, backwards: Solving the Rubik's cube without human knowledge, McAleer et al., 5.2018.

Min-max optimization, Nash equilibrium: Dual Policy Iteration, Sun et al., 5.2018.



Motivation: Dual Process Theory

Autonomous

Does not require working memory

Involves mental simulation and decoupling

Requires working memory

Type 1

Type 2



Dual Process Theory: Simple Analogy

Q: What is 34 squared?



Dual Process Theory: Simple Analogy

30 x 30 = 900

34 x 34 = 34 x 30 + 34 x 4 34 x 30 = 30 x 30 + 4 x 30 34 x 4 = 30 x 4 + 4 x 4

Type 1

Type 2

4 x 4 = 1630 x 4 = 1204 x 30 = 120



Dual Process Theory: Simple Analogy

A: 1156



Dual Process Theory: Simple Analogy

Q: Second time, what is 34 squared?

A: 1156 right away, since its now type 1, so we’ll keep the network which knows this 
rather than previous network.

Q: Next, what is 34^4, use 34 squared etc.

Dual process iteration with self play.



Neural Network

Data NN

Stochastic Gradient Descent, forward and backward passes

Iterative type 1 architecture



Thinking fast and slow with deep learning and tree search, Anthony et al., NIPS 2017.

Expert Iteration

NN Tree 
Search



Tree search cannot be efficiently replaced by type 1 NN’s: Learning to search with 
MCTSnets (Guez et al, ICLR 2018).

Humans use NN’s for type 2, slowly.

Type 2



Mastering chess and shogi by self-play with a general reinforcement learning 
algorithm, Silver et al., NIPS 2017.

AlphaZero

NN MCTS NN MCTS
self play



AutoML Methods

Differentiable programming: End-to-end learning of machine learning pipelines with differentiable primitives 
(Milutinovic et al, AutoDiff 2017). Type 1 process only.

Bayesian optimization, hyperparameter tuning: Autosklearn (Feurer et al, NIPS 2015), AutoWEKA (Kotthoff 
et al, JMLR 2017), 

Tree search of algorithms and hyperparameters, multi-armed bandit: Auto-Tuned Models (Swearingen et al, 
Big Data 2017)

Evolutionary algorithms: TPOT (Olson et al, ICML 2016) represent machine learning pipelines as trees, 
Autostacker (Chen et al, GECCO 2018) represent machine learning pipelines as stacked layers.



Data Driven Discovery of Models (D3M)

DARPA D3M project: infrastructure to automate model discovery.

Goal: solve any task on any dataset specified by a user.

1. Broad set of computational primitives as building blocks.
2. Automatic systems for machine learning, synthesize pipeline and hyperparameters to solve a 

previously unknown data and problem.
3. Human in the loop: user interface that enables users to interact with and improve the automatically 

generated results.

Pipelines: pre-processing, feature extraction, feature selection, estimation, post-processing, evaluation.



AlphaD3M Single Player Game Representation



AlphaD3M Iterative Improvement



Neural Network

Type 1: Optimize loss function by stochastic gradient descent.

Optimize network parameters θ: make predicted model S match real world model R, and predicted 
evaluation v match real evaluation e.



Type 2 using Type 1: MCTS calling NN action value function

Q(s,a): expected reward for action a from state s

N(s,a): number of times action a was taken from state s

N(s): number of times state s was visited

P(s,a): estimate of neural network for probability of taking action a from state s

c: constant determining amount of exploration

Monte Carlo Tree Search



Pipeline Encoding

Our architecture models meta data, task and entire pipeline chain as state rather than individual primitives.



AlphaD3M vs. SGD Performance on OpenML

SGD baseline: classification with feature selection



AlphaD3M vs. SGD for Different Estimators

Comparison of normalized AlphaD3M performance t and SGD baseline performance b, by estimator.



Comparison of AutoML Methods on OpenML



AlphaD3M Running Time Comparison

AlphaD3M implementation utilizes 4 Tesla P100 GPU’s for NN.

Each experiment runs 10 times computing mean and variance.



Conclusions

Automatic machine learning: competitive performance, order of magnitude faster than existing methods.

First single player AlphaZero game representation.

Meta learning by modeling meta-data, task, and entire pipelines as state.
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