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Example Problems Over Graphs

* Polynomial
—  Minimum Spanning Tree (MST)
— Single-Source Shortest Paths (SSP)

* NP-hard
— Traveling Salesman Problem (TSP)
— Vehicle Routing Problem (VRP)



TSP Time Complexity

« Approximation algorithms and optimality gaps

NP-hard problem
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Linear time approximation with optimality gap close to 1

Method Runtime Complexity | Runtime (ms) | Speedup | Optimality Gap
Gurobi (Exact) NA 3,220 2,752.1 1
Concorde (Exact) NA 254.1 217.2 1
Christofides O(n?) 5,002 4,275.2 1.029
LKH O(n*?) 2,879 2460.7 1
2-opt O(n? 30.08 25.7 1.097
Farthest O(n?) 8.35 7.1 1.075
Nearest O(n?) 9.35 8 1.245
S2V-DQN O(n?) 61.72 52.8 1.084
GPN O(nlogn) 1.537 1.3 1.086
Ours O(n) 1.17 1 1.074
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Running Time Complexity

« Graph attention is quadratic
« Attention approximation is linear and independent of data
» Practical GPU memory bottleneck
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Running Time Complexity

 Verification problems for NP-hard problems have polynomial time
complexity.

« Polynomial vs. NP-hard problems:

— Fast type-1 process: polynomial problems on graphs can be
solved using GNN'’s without reinforcement learning or search

— Slow type-2 process: NP-hard problems require RL or search
 GNN’s can be used directly for verification
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Minimum Spanning Tree (MST)

Given connected and undirected graph G = (V, E, W)

Find tree T = (Vr, E1) with Vr =V, Er C E minimizing sum of
edge weights Wr C W.

Greedy algorithms with time complexity O(|E|log|V]):
Boruvka, Prim, Kruskal
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Single-Source Shortest Paths (SSP)

« Given connected and directed graph G = (V, E, W) and
source vertex.

« Find shortest paths from source to all other vertices.

* For SSP with nonnegative weights: Dijkstra’s algorithm
complexity O(|V|log|V| + |E|) using a heap.

* For general SSP: Bellman-Ford runs in O(|V||E]).

* Floyd—Warshall algorithm solves SSP between all pairs of
nodes with cubic time complexity O(|V|*3)
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Traveling Salesman Problem (TSP)

« Graph G =(V, E, W)

* V represents list of cities

« W represents distances between each pair of cities.

* Find shortest tour visiting each city once and returns to start.
 NP-hard problem.
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Vehicle Routing Problem (VRP)

« Given M vehicles and graph G = (V, E) with |V| cities

* Find optimal routes for vehicles.

« Each vehicle m € {1, .., M} starts from same depot node, visits
subset V(m) of cities, and returns to depot node.

* Routes of different vehicles do not intersect except at depot;
together, the vehicles visit all cities.

« Optimal routes minimize longest tour length of any single route.

TSP is special case of VRP for one vehicle.



Learning Graph Algorithms as Single Player
Games

* Represent problem space as search tree.

« Leaves of search tree represent all (possibly exponentially
many) possible solutions to problem.

« Search traverses tree, choosing path (guided by MCTS+NN)



Learning Graph Algorithms as Single Player
Games
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Learning Graph Algorithms as Single Player
Games

 I|nitial state: represented by root node, may be empty set, a
random state, or other initial state.

« Each path from root to a leaf consists of moving between
nodes (states) along edges (taking actions) reaching a leaf
node (reward).

« Actions: adding or removing a node or edge.

« Reward (or cost): value of solution, for example sum of
weights or length of tour.
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State
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Actions

« Add or remove node or edge
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Line Graph

* Problem: problems involve both actions on nodes and edges.

« Solution: use edge-to vertex dual (line graph)
Perform actions on nodes.
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Graph

. G=(V,E)
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Line Graph: Edge-to-Vertex Dual

« Each edge in primal graph corresponds to node in line graph
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Graph

« Edges in primal graph
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Line Graph: Edge-to-Vertex Dual

« Correspond to nodes in line graph
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Line Graph: Edge-to-Vertex Dual

Two nodes in line graph are connected if corresponding edges
In primal graph share a node.

Edge weights in primal graph become node weights in line
graph.
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Tree
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Line Graph
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Line Graph: Edge-to-Vertex Dual

Two nodes in line graph are connected if corresponding edges
In primal graph share a node.

Edge weights in primal graph become node weights in line
graph.
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Learning Graph Algorithms as Single Player
Games
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State




Food for Thought: Learning to Learn to Learn..

learning an algorithm,
that has a state, which
includes a graph, etc.




Actions
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« Add/remove nodes/edges.
Problem State Action Reward
MST G = (V,E),G* = (V*, E*),W, T T =T U {e} = (I(T) + ek, W(e)) (Eq. 4)
ssP G =(V,E),G* = (V*,E*),W,Q; Qi = Q; U{e} — = (1(Q0) + Teco, W(®)
TSP G=(V,E),V = {r(1),..,7(8)} V=VU{r(i+1)} — SV Ivey = Veqgn 2 a5
VRP G = (V,E), Vm = {7(d), 7m(2), -, Tm D}, M | Vi = Vin U{rm(+ 1)} | —

max V., 5 N B I
me{l,..,.M} iEV;(m)” m (2) . (241) 2}
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Reward

« Objective function

Problem State Action Reward

MST G = (V,E),G* = (V*,E*)\W, T T =TuU{e} = (I(T) +Tecn, W(e)) (Eq. 4)

SSP G = (V,E),G* = (V*,E*),W, Q; Q; = @y U {e} »Y L (1(20) + Teco, W(e)

TSP G = (V, E)aV ={r(1),..,7(4)} V= VU{T('I:"_l)} _ZL 1 ”VT(?.) 7-(7,+1)||2(Eq 5)

VRP G=(V,E —rn — d), Tm(2), .., Tm (2)}, M Vm, — Vrr m (2 1 - i) ; b
(V2 B), Vi = {r(d), 7m (2), -, Tm (i)} ULrmGHDY | - max 5 IV me(1,+1)||z}
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Unified Framework B

G = (V,E)|G* = (V*, E*),

c e/ aAnasld

Problem State Action Reward
MST G = (V,E),G* = (V*, E*),W, T T =T U {e} = (I(T) +Tecn, W(e)) (Eq. 4)
SSP G = (V, E),G* = (V*,EB*), W, Q; Q; = QiU {e} -2V (1(Q0) + Teco, W)
TSP G = (V, E),V = {r(1),..,7(9)} V= VU{T(i"_l)} _ZL‘:/IJ “VT(z) _vT(i+l)||2(Eq- 5)
VRP G=(V,E ,Vm — d), Tm(2), .., Tm (4}, M Vm, — Vrn U m(t+1 - Ime V. iy — Vo, (4 p
( ) {r(d), Tm(2), - Tm (9)} {rin(E + 1)} me {1, M} ieV;(vn)” ) m('+l)||2}




Optimization

Rapidly growing field
Leading architecture
Outer loop: RL / search
— Inner loop: GNN’s

NP-hard Problem
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Machine Learning for Combinatorial

Method

Type

Towers of Hanoi

AlphaZero: Recursive MCTS + LSTM [52]

Model-based, Given model

Integer Programming

RL + LSTM [62]

Model-free, Policy-based

Minimum Dominating Set (MDS) RL + Decision Diagram [13] Model-free, Value-based
RL + GNN [72] Model-free, Policy-based
Maximum Common Subgraph (MCS) | DQN + GNN [6] Model-free, Value-based
Maximum Weight Matching (MWM) | DDPG [23] Model-free, Policy-based
Boolean Satisfiability (SAT) MPNN [57] Supervised, Approximation
RL + GNN [72] Model-free, Policy-based
Tree search + GCN [39] Model-based, Given model
Graph Coloring RL + GNN [72] Model-free, Policy-based
AlphaZero: MCTS + LSTM [30] Model-based, Given model
Maximum Clique (MC) RL + GNN [72] Model-free, Policy-based

Tree search + GCN [39]

Model-based, Given model

Maximum Independent Set (MIS)

Tree search + GCN [39]
AlphaZero: MCTS + GCN [2]

Model-based, Given model
Model-based, Given model

Minimum Vertex Cover (MVC)

Q-Learning + GNN [19]
DQN, Imitation learning [59]

Model-free, Value-based
Model-free, Value-based

RL + GNN [72] Model-free, Policy-based

Tree search + GCN [39] Model-based, Given model
Maximum Cut (MaxCut) Q-Learning + GNN [19] Model-free, Value-based

DQN + MPNN [8] Model-free, Value-based

PPO + CNN, GRU [11]

Model-free, Actor-Critic

Traveling Salesman Problem (TSP)

Pointer network [66]

GCN + Search [31]

Q-Learning + GNN [19]
Hierarchical RL + GAT [44]
REINFORCE + LSTM with attention [47]
REINFORCE + attention [20]

RL + GAT [36]

DDPG [23]

REINFORCE + Pointer network [10]
RL + NN [45]

RL + GAT [14]

AlphaZero: MCTS + GCN [51]

Supervised, Approximation
Supervised, Approximation
Model-free, Value-based
Model-free, Policy-based
Model-free, Policy-based
Model-free, Policy-based
Model-free, Policy-based
Model-free, Policy-based
Model-free, Policy-based
Model-free, Actor-Critic
Model-free, Actor-Critic
Model-based, Given model

Knapsack Problem

REINFORCE + Pointer network [10]

Model-free, Policy-based

Bin Packing Problem (BPP)

REINFORCE + LSTM [29]
AlphaZero: MCTS + NN [38]

Model-free, Policy-based
Model-based, Given model

Job Scheduling Problem (JSP)

RL + LSTM [16]

Model-free, Actor-Critic

Vehicle Routing Problem (VRP)

REINFORCE + LSTM with attention [47]
RL + LSTM [16]

Model-free, Policy-based
Model-free, Policy-based

RL + GAT [36] Model-free, Policy-based
RL + NN [43] Model-free, Policy-based
RL + GAT [25] Model-free, Actor-Critic
Global Routing DQN + MLP [40] Model-free, Value-based

Highest Safe Rung (HSR)

AlphaZero: MCTS + CNN [71]

Model-based, Given model
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Generalization on Graphs

1. From small to large graphs
2. Between different types of random graphs
3. From random to real-world graphs
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Generalization on Graphs

« From small to large random regular graphs
* Training on 100 node graphs
« Testing on 100/250/500/750/1000 node graphs
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Generalization on Graphs

« From small to large random regular graphs
* Trained on graphs with 100 nodes, tested on 250 nodes
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Generalization on Graphs

 From random graphs to real world graphs
« Trained on random Euclidean graphs with 100 nodes

TSPLIB Exact RL Approx.

Inst Concorde Ours GPN S2V-DQN | Farthest 2-opt Nearest
eil51 426 439 485 439 448 452 514
berlin52 7,542 7,681 8,795 7,734 8,121 7,778 8,981
st70 675 684 701 685 729 701 806
eil76 538 555 591 558 583 597 712
pr76 108,159 112,699 118,032 111,141 119,649 125276 153,462
rat99 1,211 1,268 1,472 1,250 1,319 1,351 1,565
kroA100 21,282 21,452 24,806 22,335 23,374 23,306 26,856
kroB100 22,141 22,488 24,369 22,548 24,035 23,129 29,155
kroC100 20,749 21,427 24,780 21,468 21,818 22,313 26,327
kroD100 21,294 21,555 23,494 21,886 22,361 22,754 26,950
kroE100 22,068 22,267 23,467 22,820 23,604 25,325 27,587
rd100 7,910 8,243 8,844 8,305 8,652 8,832 9,941
eill01 629 650 704 667 687 694 825
1in105 14,379 14,571 15,795 14,895 15,196 16,184 20,363
prl07 44,303 44,854 55,087 44,780 45,573 46,505 48,522
pri24 59,030 59,729 67,901 61,101 61,645 61,595 69,299
bierl127 118,282 | 120,672 134,089 123,371 127,795 136,058 129,346
ch130 6,110 6,208 6,457 6,361 6,655 6,667 7,575
prl36 96,772 98,957 110,790 100,185 104,687 103,731 120,778
prl44 58,537 60,492 67,211 59,836 62,059 62,385 61,651
ch150 6,528 6,729 7,074 6,913 6,866 7439 8,195
kroA150 26,524 27,419 30,260 28,076 28,789 28,313 33,610
kroB150 26,130 27,165 29,141 26,963 28,156 28,603 32,825
pr152 73,682 79,326 85,331 75,125 75,209 71,387 85,703
ul59 42,080 43,687 52,642 45,620 46,842 42,976 53,637
rat195 2,323 2,384 2,686 2,567 2,620 2,569 2,762
d198 15,780 17,754 19,249 16,855 16,161 16,705 18,830
kroA200 29,368 30,553 34,315 30,732 31,450 32,378 35,798
kroB200 29,437 30,381 33,854 31,910 31,656 32,853 36,982
ts225 126,643 | 130,493 147,092 140,088 140,625 143,197 152,494
tsp225 3,916 4,091 4,988 4,219 4,233 4,046 4,748
Mean Opt. Gap 1 1.032 1.144 1.045 1.074 1.087 1.238
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Generalization on Graphs

 From small random graphs to large real world graphs
« Trained on random Euclidean graphs with 100 nodes

TSPLIB Exact RL Approx.

Instance Concorde Ours GPN S2V-DQN | Farthest 2-opt Nearest
pr226 80,369 86,438 85,186 82,869 84,133 85,306 94,390
gi1262 2,378 2,523 5,554 2,539 2,638 2,630 3,218
pr264 49,135 52,838 67,588 53,790 54,954 58,115 58,634
a280 2,579 2,742 3,019 3,007 3,011 2,775 3,311
pr299 48,191 53,371 68,011 55,413 92110 52,058 61,252
lin318 42,029 45,115 47,854 45,420 45,930 45,945 54,034
rd400 15,281 16,730 17,564 16,850 16,864 16,685 19,168
1417 11,861 13,300 14,684 12,535 12,589 12,879 15,288
pr439 107,217 126,849 137,341 122,468 122,899 111,819 131,258
pcb442 50,778 55,750 58,352 59,241 57,149 57,684 60,242
Mean Opt. Gap 1 1.095 1.331 1.106 1.105 1.096 1,252
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Conclusions

« Approximation with linear running time complexity and
optimality gaps close to 1

« (Generalizations on graphs

 Unified framework for approximating combinatorial
optimization problems over graphs
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