
Learning to Solve Combinatorial
Optimization Problems on

Real-World Graphs in Linear Time

Iddo
Drori

Brandon
Kates

William
Sickinger

Anant
Kharkar

Brenda
Dietrich

David
Williamson

Madeleine
Udell

1 2 3

1,2,3 233 2 22Qiang
Ma

3 Suwen
Ge

3 Eden
Dolev

3

Example Problems Over Graphs

• Polynomial
– Minimum Spanning Tree (MST)
– Single-Source Shortest Paths (SSP)

• NP-hard
– Traveling Salesman Problem (TSP)
– Vehicle Routing Problem (VRP)

• NP-hard problem
• Approximation algorithms and optimality gaps
• Linear time approximation with optimality gap close to 1

TSP Time Complexity

• Graph attention is quadratic
• Attention approximation is linear and independent of data
• Practical GPU memory bottleneck

Running Time Complexity

Running Time Complexity

• Verification problems for NP-hard problems have polynomial time
complexity.

• Polynomial vs. NP-hard problems:
– Fast type-1 process: polynomial problems on graphs can be

solved using GNN’s without reinforcement learning or search
– Slow type-2 process: NP-hard problems require RL or search

• GNN’s can be used directly for verification

Minimum Spanning Tree (MST)

• Given connected and undirected graph 𝐺 = (V, E, W)

• Find tree T = (VT, ET) with VT = V, ET ⊂ E minimizing sum of
edge weights WT ⊂ W.

• Greedy algorithms with time complexity O(|E|log|V|):
Boruvka, Prim, Kruskal

Single-Source Shortest Paths (SSP)

• Given connected and directed graph G = (V, E, W) and
source vertex.

• Find shortest paths from source to all other vertices.
• For SSP with nonnegative weights: Dijkstra’s algorithm

complexity O(|V|log|V| + |E|) using a heap.
• For general SSP: Bellman-Ford runs in O(|V||E|).
• Floyd–Warshall algorithm solves SSP between all pairs of

nodes with cubic time complexity O(|V|^3)

Traveling Salesman Problem (TSP)

• Graph G = (V, E, W)
• V represents list of cities
• W represents distances between each pair of cities.
• Find shortest tour visiting each city once and returns to start.
• NP-hard problem.

Examples

TSP250 TSP500 TSP750 TSP1000

Vehicle Routing Problem (VRP)

• Given M vehicles and graph G = (V, E) with |V| cities
• Find optimal routes for vehicles.
• Each vehicle m ∈ {1, .., M} starts from same depot node, visits

subset V(m) of cities, and returns to depot node.
• Routes of different vehicles do not intersect except at depot;

together, the vehicles visit all cities.
• Optimal routes minimize longest tour length of any single route.
• TSP is special case of VRP for one vehicle.

Learning Graph Algorithms as Single Player
Games

• Represent problem space as search tree.
• Leaves of search tree represent all (possibly exponentially

many) possible solutions to problem.
• Search traverses tree, choosing path (guided by MCTS+NN)

Action

State

Reward

Learning Graph Algorithms as Single Player
Games

Reinforcement Learning

Learning Graph Algorithms as Single Player
Games

• Initial state: represented by root node, may be empty set, a
random state, or other initial state.

• Each path from root to a leaf consists of moving between
nodes (states) along edges (taking actions) reaching a leaf
node (reward).

• Actions: adding or removing a node or edge.
• Reward (or cost): value of solution, for example sum of

weights or length of tour.

Action

State

Reward

State

Actions

• Add or remove node or edge

Line Graph

• Problem: problems involve both actions on nodes and edges.

• Solution: use edge-to vertex dual (line graph)
Perform actions on nodes.

Graph

• G = (V, E)

• Each edge in primal graph corresponds to node in line graph

Line Graph: Edge-to-Vertex Dual

• Edges in primal graph

Graph

• Correspond to nodes in line graph

Line Graph: Edge-to-Vertex Dual

• Two nodes in line graph are connected if corresponding edges
in primal graph share a node.

• Edge weights in primal graph become node weights in line
graph.

Line Graph: Edge-to-Vertex Dual

Tree

Line Graph

Line Graph: Edge-to-Vertex Dual

• Two nodes in line graph are connected if corresponding edges
in primal graph share a node.

• Edge weights in primal graph become node weights in line
graph.

Learning Graph Algorithms as Single Player
Games

Action

State

Reward

Action

State

Reward

State

Action

State

Reward

our state now is
learning an algorithm,
that has a state, which
includes a graph, etc.

Food for Thought: Learning to Learn to Learn..

Actions

• Add/remove nodes/edges.

Reward

• Objective function

Action

State

Reward

A

B

C

Unified Framework

Machine Learning for Combinatorial
Optimization

• Rapidly growing field
• Leading architecture

– Outer loop: RL / search
– Inner loop: GNN’s

RL

Model-basedModel-free

Supervised

PolicyValue Actor-Critic Given Model Learn Model

ML for CO

ML Approaches for NP-Hard Combinatorial
Optimization Problems

Generalization on Graphs

1. From small to large graphs
2. Between different types of random graphs
3. From random to real-world graphs

• From small to large random regular graphs
• Training on 100 node graphs
• Testing on 100/250/500/750/1000 node graphs

Generalization on Graphs

• From small to large random regular graphs
• Trained on graphs with 100 nodes, tested on 250 nodes

Generalization on Graphs

Generalization on Graphs
• From random graphs to real world graphs
• Trained on random Euclidean graphs with 100 nodes

• From small random graphs to large real world graphs
• Trained on random Euclidean graphs with 100 nodes

Generalization on Graphs

Conclusions

• Approximation with linear running time complexity and
optimality gaps close to 1

• Generalizations on graphs

• Unified framework for approximating combinatorial
optimization problems over graphs

Learning to Solve Combinatorial
Optimization Problems on

Real-World Graphs in Linear Time

Iddo
Drori

Brandon
Kates

William
Sickinger

Anant
Kharkar

Brenda
Dietrich

David
Williamson

Madeleine
Udell

1 2 3

1,2,3 233 2 22Qiang
Ma

3 Suwen
Ge

3 Eden
Dolev

3

