Learning to Solve Combinatorial **Optimization Problems on** Real-World Graphs in Linear Time

Iddo 1,2,3 Anant³ Drori Kharkar

William ³ Brandon² Sickinger Kates

Qiang ³ Ма

Suwen³ Ge

Eden ³ Dolev

Dietrich

Brenda² David² Williamson

Madeleine² Udell

Massachusetts Institute of Technology

Example Problems Over Graphs

- Polynomial
 - Minimum Spanning Tree (MST)
 - Single-Source Shortest Paths (SSP)
- NP-hard
 - Traveling Salesman Problem (TSP)
 - Vehicle Routing Problem (VRP)

TSP Time Complexity

- NP-hard problem
- Approximation algorithms and optimality gaps
- Linear time approximation with optimality gap close to 1

Method	Runtime Complexity	Runtime (ms)	Speedup	Optimality Gap
Gurobi (Exact)	NA	3,220	2,752.1	1
Concorde (Exact)	NA	254.1	217.2	1
Christofides	$O(n^3)$	5,002	4,275.2	1.029
LKH	$O(n^{2.2})$	2,879	2460.7	1
2-opt	$O(n^2)$	30.08	25.7	1.097
Farthest	$O(n^2)$	8.35	7.1	1.075
Nearest	$O(n^2)$	9.35	8	1.245
S2V-DQN	$O(n^2)$	61.72	52.8	1.084
GPN	$O(n \log n)$	1.537	1.3	1.086
Ours	O(n)	1.17	1	1.074

Running Time Complexity

- Graph attention is quadratic
- Attention approximation is linear and independent of data
- Practical GPU memory bottleneck

Running Time Complexity

- Verification problems for NP-hard problems have polynomial time complexity.
- Polynomial vs. NP-hard problems:
 - Fast type-1 process: polynomial problems on graphs can be solved using GNN's without reinforcement learning or search
 - Slow type-2 process: NP-hard problems require RL or search
- GNN's can be used directly for verification

Minimum Spanning Tree (MST)

• Given connected and undirected graph G = (V, E, W)

 Find tree T = (V_T, E_T) with V_T = V, E_T ⊂ E minimizing sum of edge weights W_T ⊂ W.

 Greedy algorithms with time complexity O(|E|log|V|): Boruvka, Prim, Kruskal

Single-Source Shortest Paths (SSP)

- Given connected and directed graph G = (V, E, W) and source vertex.
- Find shortest paths from source to all other vertices.
- For SSP with nonnegative weights: Dijkstra's algorithm complexity O(|V|log|V| + |E|) using a heap.
- For general SSP: Bellman-Ford runs in O(|V||E|).
- Floyd–Warshall algorithm solves SSP between all pairs of nodes with cubic time complexity O(|V|^3)

Traveling Salesman Problem (TSP)

- Graph G = (V, E, W)
- V represents list of cities
- W represents distances between each pair of cities.
- Find shortest tour visiting each city once and returns to start.
- NP-hard problem.

Examples

Vehicle Routing Problem (VRP)

- Given M vehicles and graph G = (V, E) with |V| cities
- Find optimal routes for vehicles.
- Each vehicle m ∈ {1, .., M} starts from same depot node, visits subset V(m) of cities, and returns to depot node.
- Routes of different vehicles do not intersect except at depot; together, the vehicles visit all cities.
- Optimal routes minimize longest tour length of any single route.
- TSP is special case of VRP for one vehicle.

- Represent problem space as search tree.
- Leaves of search tree represent all (possibly exponentially many) possible solutions to problem.
- Search traverses tree, choosing path (guided by MCTS+NN)

- Initial state: represented by root node, may be empty set, a random state, or other initial state.
- Each path from root to a leaf consists of moving between nodes (states) along edges (taking actions) reaching a leaf node (reward).
- Actions: adding or removing a node or edge.
- Reward (or cost): value of solution, for example sum of weights or length of tour.

State

Actions

• Add or remove node or edge

Line Graph

• Problem: problems involve both actions on nodes and edges.

 Solution: use edge-to vertex dual (line graph) Perform actions on nodes.

Graph

• G = (V, E)

Line Graph: Edge-to-Vertex Dual

• Each edge in primal graph corresponds to node in line graph

Graph

• Edges in primal graph

Line Graph: Edge-to-Vertex Dual

• Correspond to nodes in line graph

Line Graph: Edge-to-Vertex Dual

- Two nodes in line graph are connected if corresponding edges in primal graph share a node.
- Edge weights in primal graph become node weights in line graph.

Tree

Line Graph

Line Graph: Edge-to-Vertex Dual

- Two nodes in line graph are connected if corresponding edges in primal graph share a node.
- Edge weights in primal graph become node weights in line graph.

State

Food for Thought: Learning to Learn to Learn..

Actions

• Add/remove nodes/edges.

Problem	State	Action	Reward
MST	$G = (V, E), G^* = (V^*, E^*), W, \mathcal{T}$	$\mathcal{T}=\mathcal{T}\cup\{e\}$	$-\left(I(\mathcal{T})+\sum_{e\inE\pi}W(e) ight)$ (Eq. 4)
SSP	$G = (V, E), G^* = (V^*, E^*), W, Q_i$	$\mathcal{Q}_i = \mathcal{Q}_i \cup \{e\}$	$-\sum_{i=1}^{ V } \left(I(\mathcal{Q}_i) + \sum_{e \in \mathcal{Q}_i} W(e) \right)$
TSP	$G = (V, E), ar{V} = \{ au(1),, au(i)\}$	$ar{V}=ar{V}\cup\{ au(i+1)\}$	$-\sum_{i=1}^{ V } \ \mathbf{v}_{\tau(i)} - \mathbf{v}_{\tau(i+1)}\ _2$ (Eq. 5)
VRP	$G = (V, E), \bar{V}_m = \{\tau(d), \tau_m(2),, \tau_m(i)\}, M$	$\bar{V}_m = \bar{V}_m \cup \{\tau_m(i+1)\}$	$-\max_{m \in \{1,,M\}} \left\{ \sum_{i \in V_{\tau}(m)} \ \mathbf{v}_{\tau_{m}(i)} - \mathbf{v}_{\tau_{m}(i+1)} \ _{2} \right\}$

Reward

Objective function

Problem	State	Action	Reward
MST	$G = (V, E), G^* = (V^*, E^*), W, \mathcal{T}$	$\mathcal{T}=\mathcal{T}\cup\{e\}$	$-\left(I(\mathcal{T})+\sum_{e\inE\pi}W(e) ight)$ (Eq. 4)
SSP	$G = (V, E), G^* = (V^*, E^*), W, Q_i$	$\mathcal{Q}_i = \mathcal{Q}_i \cup \{e\}$	$-\sum_{i=1}^{ V } \left(I(\mathcal{Q}_i) + \sum_{e \in \mathcal{Q}_i} W(e) \right)$
TSP	$G = (V, E), \bar{V} = \{\tau(1),, \tau(i)\}$	$ar{V}=ar{V}\cup\{ au(i+1)\}$	$-\sum_{i=1}^{ V } \ \mathbf{v}_{\tau(i)} - \mathbf{v}_{\tau(i+1)}\ _2$ (Eq. 5)
VRP	$G = (V, E), \bar{V}_m = \{\tau(d), \tau_m(2),, \tau_m(i)\}, M$	$\bar{V}_m = \bar{V}_m \cup \{\tau_m(i+1)\}$	$-\max_{m \in \{1,,M\}} \left\{ \sum_{i \in V_{\tau}(m)} \ \mathbf{v}_{\tau_{m}(i)} - \mathbf{v}_{\tau_{m}(i+1)} \ _{2} \right\}$

Machine Learning for Combinatorial Optimization

- Rapidly growing field
- Leading architecture
 - Outer loop: RL / search
 - Inner loop: GNN's

NP-hard Problem	Method	Туре
Towers of Hanoi	AlphaZero: Recursive MCTS + LSTM [52]	Model-based, Given model
Integer Programming	RL + LSTM [62]	Model-free, Policy-based
Minimum Dominating Set (MDS)	RL + Decision Diagram [13]	Model-free, Value-based
5	RL + GNN [72]	Model-free, Policy-based
Maximum Common Subgraph (MCS)	DQN + GNN [6]	Model-free, Value-based
Maximum Weight Matching (MWM)	DDPG [23]	Model-free, Policy-based
Boolean Satisfiability (SAT)	MPNN [57]	Supervised, Approximation
,	RL + GNN [72]	Model-free, Policy-based
	Tree search + GCN [39]	Model-based, Given model
Graph Coloring	RL + GNN [72]	Model-free, Policy-based
	AlphaZero: MCTS + LSTM [30]	Model-based, Given model
Maximum Clique (MC)	RL + GNN [72]	Model-free, Policy-based
	Tree search + GCN [39]	Model-based, Given model
Maximum Independent Set (MIS)	Tree search + GCN [39]	Model-based, Given model
• • •	AlphaZero: MCTS + GCN [2]	Model-based, Given model
Minimum Vertex Cover (MVC)	Q-Learning + GNN [19]	Model-free, Value-based
	DQN, Imitation learning [59]	Model-free, Value-based
	RL + GNN [72]	Model-free, Policy-based
	Tree search + GCN [39]	Model-based, Given model
Maximum Cut (MaxCut)	Q-Learning + GNN [19]	Model-free, Value-based
	DQN + MPNN [8]	Model-free, Value-based
	PPO + CNN, GRU [11]	Model-free, Actor-Critic
Traveling Salesman Problem (TSP)	Pointer network [66]	Supervised, Approximation
	GCN + Search [31]	Supervised, Approximation
	Q-Learning + GNN [19]	Model-free, Value-based
	Hierarchical RL + GAT [44]	Model-free, Policy-based
	REINFORCE + LSTM with attention [47]	Model-free, Policy-based
	REINFORCE + attention [20]	Model-free, Policy-based
	RL + GAT [36]	Model-free, Policy-based
	DDPG [23]	Model-free, Policy-based
	REINFORCE + Pointer network [10]	Model-free, Policy-based
	RL + NN [45]	Model-free, Actor-Critic
	RL + GAT [14]	Model-free, Actor-Critic
	AlphaZero: MCTS + GCN [51]	Model-based, Given model
Knapsack Problem	REINFORCE + Pointer network [10]	Model-free, Policy-based
Bin Packing Problem (BPP)	REINFORCE + LSTM [29]	Model-free, Policy-based
	AlphaZero: MCTS + NN [38]	Model-based, Given model
Job Scheduling Problem (JSP)	RL + LSTM [16]	Model-free, Actor-Critic
Vehicle Routing Problem (VRP)	REINFORCE + LSTM with attention [47]	Model-free, Policy-based
	RL + LSTM [16]	Model-free, Policy-based
	RL + GAT [36]	Model-free, Policy-based
	RL + NN [43]	Model-free, Policy-based
	RL + GAT [25]	Model-free, Actor-Critic
Global Routing	DQN + MLP [40]	Model-free, Value-based
Highest Safe Rung (HSR)	AlphaZero: MCTS + CNN [71]	Model-based, Given model

Massachusetts Institute of Technology Massachusetts Institute of Technology Optimization Problems

- 1. From small to large graphs
- 2. Between different types of random graphs
- 3. From random to real-world graphs

- From small to large random regular graphs
- Training on 100 node graphs
- Testing on 100/250/500/750/1000 node graphs

- From small to large random regular graphs
- Trained on graphs with 100 nodes, tested on 250 nodes

- From random graphs to real world graphs
- Trained on random Euclidean graphs with 100 nodes

TSPLIB	Exact		RL			Approx.	
Instance	Concorde	Ours	GPN	S2V-DQN	Farthest	2-opt	Nearest
eil51	426	439	485	439	448	452	514
berlin52	7,542	7,681	8,795	7,734	8,121	7,778	8,981
st70	675	684	701	685	729	701	806
eil76	538	555	591	558	583	597	712
pr76	108,159	112,699	118,032	111,141	119,649	125,276	153,462
rat99	1,211	1,268	1,472	1,250	1,319	1,351	1,565
kroA100	21,282	21,452	24,806	22,335	23,374	23,306	26,856
kroB100	22,141	22,488	24,369	22,548	24,035	23,129	29,155
kroC100	20,749	21,427	24,780	21,468	21,818	22,313	26,327
kroD100	21,294	21,555	23,494	21,886	22,361	22,754	26,950
kroE100	22,068	22,267	23,467	22,820	23,604	25,325	27,587
rd100	7,910	8,243	8,844	8,305	8,652	8,832	9,941
eil101	629	650	704	667	687	694	825
lin105	14,379	14,571	15,795	14,895	15,196	16,184	20,363
pr107	44,303	44,854	55,087	44,780	45,573	46,505	48,522
pr124	59,030	59,729	67,901	61,101	61,645	61,595	69,299
bier127	118,282	120,672	134,089	123,371	127,795	136,058	129,346
ch130	6,110	6,208	6,457	6,361	6,655	6,667	7,575
pr136	96,772	98,957	110,790	100,185	104,687	103,731	120,778
pr144	58,537	60,492	67,211	59,836	62,059	62,385	61,651
ch150	6,528	6,729	7,074	6,913	6,866	7,439	8,195
kroA150	26,524	27,419	30,260	28,076	28,789	28,313	33,610
kroB150	26,130	27,165	29,141	26,963	28,156	28,603	32,825
pr152	73,682	79,326	85,331	75,125	75,209	77,387	85,703
u159	42,080	43,687	52,642	45,620	46,842	42,976	53,637
rat195	2,323	2,384	2,686	2,567	2,620	2,569	2,762
d198	15,780	17,754	19,249	16,855	16,161	16,705	18,830
kroA200	29,368	30,553	34,315	30,732	31,450	32,378	35,798
kroB200	29,437	30,381	33,854	31,910	31,656	32,853	36,982
ts225	126,643	130,493	147,092	140,088	140,625	143,197	152,494
tsp225	3,916	4,091	4,988	4,219	4,233	4,046	4,748
Mean Opt. Gap	1	1.032	1.144	1.045	1.074	1.087	1.238

- From small random graphs to large real world graphs
- Trained on random Euclidean graphs with 100 nodes

TSPLIB	Exact		RL			Approx.	
Instance	Concorde	Ours	GPN	S2V-DQN	Farthest	2-opt	Nearest
pr226	80,369	86,438	85,186	82,869	84,133	85,306	94,390
gil262	2,378	2,523	5,554	2,539	2,638	2,630	3,218
pr264	49,135	52,838	67,588	53,790	54,954	58,115	58,634
a280	2,579	2,742	3,019	3,007	3,011	2,775	3,311
pr299	48,191	53,371	68,011	55,413	52,110	52,058	61,252
lin318	42,029	45,115	47,854	45,420	45,930	45,945	54,034
rd400	15,281	16,730	17,564	16,850	16,864	16,685	19,168
fl417	11,861	13,300	14,684	12,535	12,589	12,879	15,288
pr439	107,217	126,849	137,341	122,468	122,899	111,819	131,258
pcb442	50,778	55,750	58,352	59,241	57,149	57,684	60,242
Mean Opt. Gap	1	1.095	1.331	1.106	1.105	1.096	1.252

Conclusions

 Approximation with linear running time complexity and optimality gaps close to 1

• Generalizations on graphs

Unified framework for approximating combinatorial optimization problems over graphs

Learning to Solve Combinatorial **Optimization Problems on** Real-World Graphs in Linear Time

Iddo 1,2,3 Anant³ Drori Kharkar

William ³ Brandon² Sickinger Kates

Qiang ³ Ма

Suwen³ Ge

Eden ³ Dolev

Dietrich

Brenda² David² Williamson

Madeleine² Udell

Massachusetts Institute of Technology

