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Example Problems Over Graphs

• Polynomial
– Minimum Spanning Tree (MST)
– Single-Source Shortest Paths (SSP)

• NP-hard
– Traveling Salesman Problem (TSP)
– Vehicle Routing Problem (VRP)



• NP-hard problem
• Approximation algorithms and optimality gaps
• Linear time approximation with optimality gap close to 1

TSP Time Complexity



• Graph attention is quadratic
• Attention approximation is linear and independent of data
• Practical GPU memory bottleneck

Running Time Complexity



Running Time Complexity

• Verification problems for NP-hard problems have polynomial time 
complexity. 

• Polynomial vs. NP-hard problems:
– Fast type-1 process: polynomial problems on graphs can be 

solved using GNN’s without reinforcement learning or search
– Slow type-2 process: NP-hard problems require RL or search

• GNN’s can be used directly for verification



Minimum Spanning Tree (MST)

• Given connected and undirected graph 𝐺 = (V, E, W)

• Find tree T = (VT, ET) with VT = V, ET ⊂ E minimizing sum of 
edge weights WT ⊂ W.

• Greedy algorithms with time complexity O(|E|log|V|): 
Boruvka, Prim, Kruskal



Single-Source Shortest Paths (SSP)

• Given connected and directed graph G = (V, E, W) and 
source vertex.

• Find shortest paths from source to all other vertices.
• For SSP with nonnegative weights: Dijkstra’s algorithm 

complexity O(|V|log|V| + |E|) using a heap. 
• For general SSP: Bellman-Ford runs in O(|V||E|). 
• Floyd–Warshall algorithm solves SSP between all pairs of 

nodes with cubic time complexity O(|V|^3)



Traveling Salesman Problem (TSP)

• Graph G = (V, E, W)
• V represents list of cities
• W represents distances between each pair of cities.
• Find shortest tour visiting each city once and returns to start.
• NP-hard problem.



Examples

TSP250 TSP500 TSP750 TSP1000



Vehicle Routing Problem (VRP)

• Given M vehicles and graph G = (V, E) with |V| cities
• Find optimal routes for vehicles.
• Each vehicle m ∈ {1, .., M} starts from same depot node, visits 

subset V(m) of cities, and returns to depot node. 
• Routes of different vehicles do not intersect except at depot; 

together, the vehicles visit all cities. 
• Optimal routes minimize longest tour length of any single route.
• TSP is special case of VRP for one vehicle.



Learning Graph Algorithms as Single Player 
Games

• Represent problem space as search tree.
• Leaves of search tree represent all (possibly exponentially 

many) possible solutions to problem.
• Search traverses tree, choosing path (guided by MCTS+NN)



Action

State

Reward

Learning Graph Algorithms as Single Player 
Games



Reinforcement Learning



Learning Graph Algorithms as Single Player 
Games

• Initial state: represented by root node, may be empty set, a 
random state, or other initial state.

• Each path from root to a leaf consists of moving between 
nodes (states) along edges (taking actions) reaching a leaf 
node (reward). 

• Actions: adding or removing a node or edge. 
• Reward (or cost): value of solution, for example sum of 

weights or length of tour. 
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Actions

• Add or remove node or edge



Line Graph

• Problem: problems involve both actions on nodes and edges.
 

• Solution: use edge-to vertex dual (line graph)
Perform actions on nodes.



Graph

• G = (V, E)



• Each edge in primal graph corresponds to node in line graph

Line Graph: Edge-to-Vertex Dual



• Edges in primal graph

Graph



• Correspond to nodes in line graph

Line Graph: Edge-to-Vertex Dual



• Two nodes in line graph are connected if corresponding edges 
in primal graph share a node. 

• Edge weights in primal graph become node weights in line 
graph.

Line Graph: Edge-to-Vertex Dual



Tree



Line Graph



Line Graph: Edge-to-Vertex Dual

• Two nodes in line graph are connected if corresponding edges 
in primal graph share a node. 

• Edge weights in primal graph become node weights in line 
graph. 



Learning Graph Algorithms as Single Player 
Games
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Action

State

Reward

our state now is 
learning an algorithm,
that has a state, which 
includes a graph, etc.

Food for Thought: Learning to Learn to Learn..



Actions

• Add/remove nodes/edges.



Reward

• Objective function
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Unified Framework



Machine Learning for Combinatorial 
Optimization

• Rapidly growing field
• Leading architecture

– Outer loop: RL / search
– Inner loop: GNN’s



RL

Model-basedModel-free

Supervised

PolicyValue Actor-Critic Given Model Learn Model

ML for CO

ML Approaches for NP-Hard Combinatorial 
Optimization Problems



Generalization on Graphs

1. From small to large graphs
2. Between different types of random graphs
3. From random to real-world graphs



• From small to large random regular graphs
• Training on 100 node graphs
• Testing on 100/250/500/750/1000 node graphs

Generalization on Graphs



• From small to large random regular graphs
• Trained on graphs with 100 nodes, tested on 250 nodes

Generalization on Graphs



Generalization on Graphs
• From random graphs to real world graphs
• Trained on random Euclidean graphs with 100 nodes



• From small random graphs to large real world graphs
• Trained on random Euclidean graphs with 100 nodes

Generalization on Graphs



Conclusions

• Approximation with linear running time complexity and 
optimality gaps close to 1

• Generalizations on graphs

• Unified framework for approximating combinatorial 
optimization problems over graphs
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