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Significance

We demonstrate that a neural network automatically solves, explains, and generates
university-level problems from the largest Massachusetts Institute of Technology (MIT)
mathematics courses at a human level. Our methods combine three innovations: 1) using
recent neural networks pretrained on text and fine-tuned on code rather than pretrained
on text; 2) few-shot learning synthesizing programs that correctly solve course problems
automatically; and 3) a pipeline to solve questions, explain solutions, and generate new
questions indistinguishable by students from course questions. Our work solves
university-level mathematics courses and improves upon state-of-the-art, increasing
automatic accuracy on randomly sampled questions on a benchmark by order of
magnitude. Implications for higher education include roles of artificial intelligence (Al) in

automated course evaluation and content generation.



Homeworks (2021

ID Course Question Solution
1 18.01 Single A bacteria population is 4,000 at time t = 0 and its rate of growth 4000 + 1000
Variable Calculus is 1,000 * 2'bacteria per hour after ¢ h. What is the population log(2)
after 1 h?
2 18.02 Multivariable Describe the graph of the function f: .
Calculus fxy)=10—/x2+y2. - I
12
3 18.03 Differential Find general solutions of the differential equations. If an initial yx) =201 —e™
Equations condition is given, find the corresponding particular solution.
Throughout, primes denote derivatives with respect to x. y’ +
y=2,y0)=0.
4 18.05 Introduction to Calculate the probability of getting a three-of-a-kind poker hand. 0.021128
Probability and
Statistics
5 18.06 Linear Algebra Find a combination x;w; + xow, + x3w3 that gives the zero vector Xx1=1,x=-2,x3=1
with x; = 1. w, is the vector (1;2;3). w; is the vector (4; 5; 6). ws
is the vector (7; 8; 9).
6 6.042 Mathematics for Find a number x € {0, 1, .., 112} such that 11x = 1 (mod 113). 72
Computer Science
7 COMS3251 Given a d-dimensional nonzero vector v, compute the rank of the 1
Computational Linear matrix w'.
Algebra
8 MATH Prealgebra What is the greatest common factor of 84, 112, and 210? 14
9 MATH Algebra Let N, O be functions such that N (x) = 2/x, and O(x) = x*. What 24
is N (O(N (O(N (O(3)))?
10 MATH Number Theory How many four-digit numbers whose digits add up to 9 are 0
divisible by 11?
1 MATH Counting and A standard six-sided fair die is rolled four times. The probability 187
Probability that the product of all four numbers rolled is a perfect square
is I, where m and n are relatively prime positive integers. Find
m+n.
12 MATH Intermediate Given that x* + y* = 14x + 6y + 6, find the largest possible value 73
Algebra of 3x + 4y.
13 MATH Precalculus If the six solutions of x® = —64 are written in the form a + bi, 4

where a and b are real, find the product of those solutions
with a > 0.




Homeworks (2021)
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Homeworks (2021)
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Final Exams (2022)

Grading: Human  Human Human Machine
Answers: Human Human Machine Machine
Questions: All Non-Image Non-Image Non-Image Non-Open
MIT Spring 2021 75.84 80.77 62.09 64

MIT Fall 2021 74.38 60.38 58.94 51.33

MIT Spring 2022  69.07 70.82 68.86 73.53

Mean 73.10 70.82 63.29 62.95

Drori et al, 2022



Final Exams (2022)

Semester GPT-32ZS GPT-33ZS ChatGPTZS GPT-3FS GPT-3ZSCoT GPT-3FSCoT CodexZS CodexFS OPT ZS
MIT Fall 2017 38.21 50.00 48.93 NA 22.86 NA 21.43 NA NA
MIT Spring 2018 44.35 60.48 50.00 60.48 38.71 70.97 32.26 67.74 33.33
MIT Fall 2018 51.99 62.96 72.50 52.18 61.63 64.17 49.78 54.00 47.54
MIT Spring 2019 43.45 55.65 62.14 54.23 41.07 58.81 15.54 41.55 34.64
MIT Fall 2019 54.92 58.61 58.20 77.05 29.92 58.20 26.23 61.48 NA
MIT Spring 2021 44.33 48.31 51.26 55.81 53.45 60.21 33.62 62.09 33.77
MIT Fall 2021 58.94 61.53 47.24 69.44 50.35 54.90 18.11 42.00 24.44
MIT Spring 2022 42.78 55.29 55.07 68.86 32.03 53.48 51.01 65.46 60.71
Harvard Spring 2015 85.71 64.29 78.57 NA 85.71 NA 50.00 NA 21.43
Harvard Spring 2021 47.73 77.27 72.73 86.36 47.73 81.82 43.18 86.36 45.45
Cornell Spring 2017 78.91 59.90 79.03 NA 80.86 NA 51.30 NA 21.88
Cornell Fall 2018 36.45 57.01 61.21 53.27 44.39 61.21 42.52 56.07 28.97




Final Exams (2022)

Topic GPT-32ZS GPT-33ZS ChatGPTZS GPT-3FS GPT-3ZSCoT GPT-3FSCoT CodexZS CodexFS OPTZS
Regression 31.71 56.67 50.56 50.00 25.61 40.85 40.24 50.00 50.00
Classifiers 38.18 47.12 52.81 46.21 26.28 42.35 18.88 53.74 50.00
Logistic Reg. 50.00 60.71 67.86 60.00 77.50 77.50 55.00 70.00 16.67
Features 58.65 71.92 76.15 75.96 53.85 77.31 68.85 81.54 10.00
Loss Functions NA NA NA NA NA NA NA NA NA
Neural Networks 48.34 60.82 67.71 60.23 44.54 68.42 37.82 63.45 27.27
CNNs 37.50 59.59 62.05 53.58 28.36 47.81 13.38 36.77 23.83
MDPs 49.19 73.28 47.33 52.01 46.03 54.23 24.38 38.03 28.32
RNNs 61.46 33.33 45.83 71.88 57.29 66.14 12.50 40.63 39.28
RL 36.09 65.24 55.59 42.99 36.67 50.11 28.79 45.11 24.28
Clustering 100.00 50.00 90.00 100.00 100.00 100.00 50.00 50.00 63.33
Decision Trees 54.70 74.78 69.08 71.80 32.48 51.28 46.15 54.70 55.00
Model Selection 82.93 71.12 82.10 83.74 72.76 95.12 67.48 69.92 21.95
Ensemble Methods 27.89 41.35 69.23 50.00 22.12 66.35 32.69 50.00 13.46
Bayesian Networks 100.00 0.00 100.00 100.00 100.00 100.00 0.00 0.00 100.00
HMMs 100.00 100.00 100.00 100.00 50.00 100.00 100.00 100.00 100.00
Optimization 55.00 77.50 87.50 60.00 35.00 55.00 17.50 70.00 20.00




Course

6.100A Intro to CS Programming in Python
18.100B Real Analysis

18.102 Intro to Functional Analysis

18.C06 Linear Algebra and Optimization
6.1210 Intro to Algorithms

6.1220 Design and Analysis of Algorithms
6.3900 Intro to Machine Learning

18.303 Linear Partial Differential Equations
18.200 Principles of Discrete Applied Math
6.1800 Computer Systems Engineering
18.01 Calculus |

6.4110 Rep., Inference, and Reasoning in Al
18.704 Seminar in Algebra

6.1020 Elements of Software Construction
18.600 Probability and Random Variables
18.02 Calculus II

6.8611 Quantitative Methods for NLP
18.404 Theory of Computation

6.1910 Computation Structures

18.03 Differential Equations

6.2000 Electrical Circuits

18.300 Principles of Continuum Applied Math

6.3000 Signal Processing

Entire Classes (2023)
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Task Type

Entire Classes (2023)
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Problem Set

Final Exam
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Math and EECS Classes (2023)

ChatGPT as a baseline by itself passes “only” 75 of the MIT curriculum

Our latest method automatically graduates from MIT in Mathematics and EECS
across all majors with a grade A

Our novel contributions: dataset, program synthesis, self error correction,
mathematical proofs, automated facial gestures.



Homeworks and Exams embracing ChatGPT (Spring 2023)

Following are 10 questions and answers by ChatGPT. For each Q2
question identify whether the answer is correct or not. If the 1 Point
answer is correct, explain why. If the answer is incorrect, write the

. What is the difference between a learning algorithm and a
correct answer and explain.

hypothesis? Write down one possible hypothesis for a linear
regression problem in which the input dimension isd = 3

ChatGPT Answer:"A learning algorithm is a procedure or set of
instructions used to find an approximate solution to a problem,
such as finding a hypothesis that fits a given dataset. A hypothesis,
on the other hand, is a statement or function that describes the
relationship between inputs and outputs in a problem.

One possible hypothesis for a linear regression problem with input
dimension d = 3 is a linear function of the form h(z) = w2 +
weZy + wsx3 + b, where wy, wy, w3 and b are parameters to be
learned from the data.”

@® Correct

O Incorrect

Explanation:



Publishing Books (2023)

From years to months
Regular review process by established press
Correct, complete, high quality, original books

Non-trivial process: from proposal to press

CTART Proposal &."———BODK Chapters| = —Chapter (ontent

Book Cover [T Review | —— Editing

Pretace

Proviveading

END

Id  Course Name Course #
1 Intro to Computer Science & Programming in Python 6.100A
2 Fundamentals of Programming 6.1010
3 Elements of Software Construction 6.1020
4  Introduction to Algorithms 6.1210
5 Design and Analysis of Algorithms 6.1220
6 Computer Systems Engineering 6.1800
7 Computation Structures 6.1910
8 Electrical Circuits: Modeling & Design of Physical Sys.  6.2000
9 Electromagnetic Waves and Applications 6.2300
10  Signal Processing 6.3000
11  Signals, Systems & Inference 6.3010
12 Introduction to Machine Learning 6.3900
13 Representation, Inference, and Reasoning in Al 6.4110
14  Computational Cognitive Science 6.4120
15 Quantitative Methods for NLP 6.8611
16 Calculus 1 18.01
17  Calculus 2 18.02
18  Differential Equations 18.03
19 Linear Algebra and Optimization 18.C06
20 Real Analysis 18.100A
21  Analysis and Manifolds 18.101
22 Seminar in Analysis 18.104
23  Principles of Discrete Applied Mathematics 18.200
24 Principles of Continuum Applied Mathematics 18.300
25 Introduction to Numerical Analysis 18.330
26  Theory of Computation 18.404
27  Probability and Random Variables 18.600
28  Algebral 18.701
29  Algebrall 18.702
30 Introduction to Topology 18.901




Defining New Roles and Coining Terms (2023)

Prompter, editor, publisher

Booksets: validation, testing

“Here is a 100 prompt book ready for editing by the class professor”
“Here is a meta prompt for the cover”

“This book is prompted by X, edited by Y, and published by Z”



Example (2023)

Prompted by class teaching assistant

Edited by class instructor

“‘MIT quality” book

Published by Cambridge University Press

Contents

1 Introduction to Machine Learning 17
1.1 Overview of Machine Learning . . . . ... ... ... ..... 17
1.1.1  Types of Machine Learning . . . ... ......... 17

1.1.2  Applications of Machine Learning . ... ... .. .. 18

1.2 Key concepts in Machine Learning . . . . .. ... ....... 19
1.2.1 Feature Representation . . . . .. ... ......... 19

122 ModelSelection . . .. .................. 19

123 Overfitting . . ... ... ... ... ... ... .. 19

1.24 Bias-Variance Tradeoff . . . . ... ... ... ..... 19

1.2.5 Evaluation Metrics . . ... ............... 19

1.3 Types of data in Machine Learning . . . . . .. .. ....... 20
131 StructuredData . . . . ... ... er e 20

1.3.2 UnstructuredData . . .................. 20

133 TimeSeriesData ..................... 20

134 SequentialData . . .................... 20

2 Regression 23
2.0.1 TypesofRegressions . . ... .............. 23

2.0.2 UseCasesofRegression . .. .............. 24

2.0.3 Assumptions of Regression . .. ............ 24

2.1 Formulating the Problem . . ... ................ 25
2.2 LinearRegression . ... ..................... 26
221 Analytical Solution . . . . . .... .. ... ... ... 27

222 GradientDescent . . . .................. 29

23 Regulatization : : s ww s o s sswmons s s ama s 58 29
23.1 RidgeRegression . .. .................. 32

232 LassoRegression . .................... 33

233 ElasticNet......................... 35



Example Lecture

31

g B /
S
Train Data
Fitted Line (degree 3)
' Test Data
-3 1 Y —
0 2 4 6 8 10

Input

By adding a regularization term to the cost function, we can improve
the generalization performance of the model. The green line represents the
model fit with regularization, and as we can see, it fits both the training and
test data well, resulting in a lower test error.

To combat overfitting, ization is often used in ion. Reg-

ularization is a technique that adds a penalty term to the cost function to
discourage the model from fitting the noise in the data and instead encour-
age simpler, more general models.

There are two main types of regularization used in regression: L1 regu-
larization, also known as Lasso regularization, and L2 regularization, also
known as Ridge regularization.

L1 REGULARIZATION adds a penalty term to the cost function proportional
to the absolute value of the coefficients. The L1 regularization term is

defined as:
A 1B

Where 1 is the regularization parameter and f; are the coefficients. The
L1 regularization term encourages the model to have sparse solutions,
‘meaning that some coefficients will be exactly equal to zero.

L2 REGULARIZATION adds a penalty term to the cost function proportional
to the square of the coefficients. The L2 regularization term is defined as:

I

Where A is the regularization parameter and f; are the coefficients.
‘The L2 regularization term encourages the model to have small, non-zero
coefficients.

When the L2 regularization term is added to the cost function, the re-

sulting cost function is called Ridge ion, and when L1 larization

term is added it is called Lasso Regression.

Regularization can be added to the cost function by simply adding the reg-
ularization term to the mean square error. For example, in Ridge Regression
the cost function becomes:

L n .
= Z:,M )~y Z B2 Z B
‘Where 2 is the regularization parameter and f; are the coefficients.

‘The ization term acts as a int on the ients, pre-
venting them from becoming too large and resulting in overfitting. The

regularization parameter A controls the strength of the regularization term
and can be tuned to achieve the best trade-off between fitting the data and
preventing overfitting.

2.3.1 Ridge Regression

Ridge Regression is a variation of linear regression that uses L2 regulariza-
tion to prevent overfitting. The cost function for Ridge Regression is defined

IO =130 =Y g ey B

Where 1 is the regularization parameter and f; are the coefficients.

as:

DERIVING THE ANALYTICAL SOLUTION:

To derive the analytical solution for Ridge Regression, we can take the
derivative of the cost function with respect to each f; and set it equal to zero.
By doing this we can find the normal equation as

AP __2 7 5 20
TAZ*;;(v“fﬂ(w;ﬂﬁf’)xf’+21ﬂx

fori=0,

AP __ 2% 6 N
T =-;;(y“—ﬂn~;ﬁ,x,‘>)=o

On solving above equations we can get the following analytical solution
for Ridge Regression.

B=X"X+A)7XTY
Where X is the design matrix, Y is the output vector, and I is the Identify
matrix.
To find the values of the coefficients that minimize the cost function, the
gradient descent algorithm is used. The gradient descent algorithm is an

Notes (ML class, Spring 2023)

iterative algorithm that starts with initial values for the coefficients and
updates them in the direction of the negative gradient of the cost function.
The update rule for the coefficients in Ridge Regression is:
aJ(B)
= fi-a
fi=hieop,
Where « is the learning rate. The gradient of the cost function with

respect to f; is:

AP _

i

so, the update rule becomes:

Lo .
=W~ fo= 3 B~ 2ap,

Bi= Bz Y - Y B 2

In Ridge Regression, the L2 regularization term shrinks the coefficients
towards zero, but it doesn’t make them zero. The value of the regularization
parameter, , determines the strength of the regularization. A high value of
will result in small coefficients (close to zero) and a low value of will result
in large coefficients.

It's important to note that Ridge Regression is a technique to prevent
overfitting in the model by adding a bias term to the cost function, which
causes the model to prefer solutions with small coefficients. As a result, the
values of the coefficients become close to zero, but not zero, compared to
Lasso Regression where the values of the coefficients become zero. This
property of Ridge Regression makes it useful when we have a large number
of features and we want to keep all of them in the model.

Additionally, Ridge Regression also helps to address the issue of multi-
collinearity, which occurs when there is a high correlation between indepen-
dent variables. In this case, the coefficients can become unstable, leading to
large variances in the model’s predictions. Regularization helps to reduce
the variance by shrinking the coefficients towards zero.

Another ad of Ridge ion is that it is ionall
efficient, as it only requires the inversion of a matrix, which can be done

using linear algebra libraries such as NumPy or scikit-learn. This makes it a
popular choice for large datasets.

However, one limitation of Ridge Regression is that it does not perform
feature selection, meaning it does not set any coefficients to zero. This can
be an issue if we have a large number of features and some of them are not
relevant to the model. In such cases, Lasso Regression or Elastic Net may be
more suitable.

23.2 Lasso Regression

The Lasso regression is a form of linear regression that uses a regularization
term known as L1 regularization. The objective function in Lasso regression



Machine-Generated Questions, Answers, Explanations

Indistinguishable from human-written questions
Appropriate for class, controlled difficulty level, engaging
Research focus on correctness, completeness, quality, originality: quantified

Used in class homeworks and finals



Photorealistic Avatar Lecture (ML class Spring 2023)

Hypothesis Class

What do we want? |
Given new unseen z¥, predict y @)

YA . ®
Hypothesis :R? 5 R e
hypothesis is a function 7, .
> [ ]
Hypothesis class 7{:setof h >m1

is parameterized p(z; 6)
is a “family” of functions

One important skill for a machine learning practitioner is to pick
the right hypothesis class for a given problem.



Photorealistic Avatar Lecture (Spring 2023)

Linear Regression Hypothesis Clar

A linear regression hypothesis class when d=1:

h(z;6,60) = 0z + 6

A linear reg. hypothesis class when d=1:

h(z;0,600) = 01x1 + - + Ogxq + O Al |
= 9T$ + 00 wzh. ‘
i fé |
Or ?: o "

1

h(iL’; 9) = 915(71 frrewpp Hd:cd + (90)(1)

0T Hypothesis is a

“hyperplane”




Photorealistic Avatar Lecture (Spring 2023)
How Good is a Given Hypothesis?

Generalization: A hypothesis should provide
good prediction for future data.

Loss: How good is a given hypothesis at one

point? 2 & *
. Example : squared loss 9uess, o ®
a: actual -
L(g,a) = (g — a)®
- Example: asymmetric loss °
[ (g—a)?ifg>a
L(g,a) = { 2(g a)ifg<a

Training Error: &, ( Z L(h(z®),y®)
n+n’
Test Error (n’ new points): Z L(h(z®),y®)

1=n+1



Photorealistic Avatars

Reconstruction

Photorealistic

Figure source: Meta avatar codec



Photorealistic Avatar

Uncanny valley

Example: 40% Terence Tao, 40% Esther Perel, 20% you

Figure source: Masterclass



Photorealistic Avatar Lecture (Fall 2023)

Automatic text, speech, gestures
Pass uncanny valley of photo realism

Real-time rendering for live interaction with students



Curriculum Analysis and Generation from Data (2022)

Prerequisites based on data
Equivalent classes based on data

Set of classes and concepts required for graduating
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@ 18.C06 Linear Algebra and Optimization
x 6.1010 Fundamentals of Programming
® 6.1200 Mathematics for Computer Science
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@® 6.1910 Computation Structures
18.404 Theory of Computation
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X 6.8611 Quantitative Methods for Natural Language Processing



Al Generated Curriculum

Chose class contents and topics

Example: generate a class that is 40% economics, 40% optimization, 20% you



Current Status

Machine-generated, correctness evaluation homeworks delivered in Spring class
(on gradescope)

Machine-generated, lecture notes delivered in Spring class (on Ed discussion)
Validation bookset in publication process (at Cambridge University press)
Conference presentation given by photorealistic avatar (AAAI)

Leading team of 25 students and colleagues (MIT, Harvard, Stanford, Cornell,
Columbia, BU, Cambridge University Press) actively working on these topics in
Spring 2023.



Spring 2023 Team

Iddo Drori, MIT, Columbia University, Boston University
Yann Hicke, Cornell University

Sarah Zhang, MIT

Sage Simhon, MIT

Zad Chin, Harvard

Annie Wang, MIT

Alice Zhang, MIT

Eugenia Feng, MIT

Kirsi Rajagopal, MIT

Samuel Florin, MIT

Harsh Sharma, Boston University

Keith Tyser, Boston University

Andrei Marginean, MIT

Saisamrit Surbehera, Columbia University
Nikhil Singh, MIT

Leonard Tang, Harvard

Lauren Cowles, Cambridge University Press
Gilbert Strang, MIT

Tonio Buonasisi, MIT

Madeleine Udell, Stanford

Armando Solar Lezama, MIT
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The Science of Deep Learning

2022 textbook dlbook.org

Translated to Chinese and Korean

The Science of Deep Leaming provides an
up-to-date guide to deep learning with
unique content, igorous math, comprehensive.
algorithms, and high-quality igures. This
cutting-edge text i ideal for a wide audience
of STEM students as wellasresearchers in
academia and industry.

“From the avalsble baoks on deep
learring thistextbook is utstanding,
Drori has provided an exensive
overview of the field ncluding.
reinforcement learming - n t technical
meaning and in s successful, common-
sense approach to teaching and
understanding”

asachusets nstiue of
Technology

“This book covers an impressve breadth
of foundationl concepts and algorithms
behind modem deep learning, By
reading this book, readers il quickly
bt thoroughiy learm and appreciate
foundations and advances of moder
deep learning”

Kyunghyun Cho, New York Universty

“This ook offers  fascinating tour of the
feld of deep learning, which in oy ten
years has come to revolutonize almost
‘every area of computing Drori provides
condise descriptions of many of the mast
important developments, combining
unified mathematical notation and ample
figures to form an essential esource for
students and practtioners aie™
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