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Abstract
Supervised models learn a mapping from an input
to an output space from example pairs. Semi-
supervised models leverage the availability of un-
labeled inputs, using data on the input space man-
ifold. We propose a method for extending semi-
supervised learning to the output space for vehicle
trajectory prediction. We show that a meta-model
which adaptively selects a semi-supervised model
based on recent driving trajectograms, or trajec-
tory histograms, improves trajectory prediction
by applying a suitable semi-supervised model to
the given driving scenario. Our meta-model im-
proves trajectory prediction accuracy compared
with the best supervised model as well as state
of the art semi-supervised input models, demon-
strating that semi-supervised data of both input
and output spaces are a useful signal for trajectory
prediction.

1. Introduction
The traditional supervised approach to vehicle trajectory
prediction involves mapping observations from the input
space, such as sensor data from the vehicle, to the output
space of trajectories, mapping X 7→ Y . Semi-supervised
approaches improve performance by also using unlabeled
data from the input space X , such as unlabeled images
available in large quantities, as illustrated in Figure 1. In
this work, we extend semi-supervised learning for trajectory
prediction to the output space. We show that data from the
output space alone, Y , namely vehicle trajectories, which
are also available in large quantities, are useful for trajectory
prediction.

We demonstrate our method by training a meta-model that
takes as input a trajectogram, which is a trajectory histogram,
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Figure 1. Supervised approaches learn a mapping X 7→ Y between
the input space sensor data to output space driving trajectories from
example pairs {Xi,Yi} illustrated by points. Semi-supervised
approaches use unlabeled input data {Xj}, in addition to the su-
pervised pairs. Input samples are often abundant and knowing
the underlying manifold of the input space improves performance.
In this work we demonstrate that using unlabeled output space
samples {Yk}, in addition to supervised pairs and unlabeled input
space samples, further improves prediction accuracy.

as depicted in Figure 2. The meta-model uses the trajec-
togram observed from recent driving to predict which out
of a set of trained semi-supervised trajectory models to
employ in a given driving scenario. The semi-supervised
models are fine-tuned on the trajectory prediction task to
learn mappings Mi : X 7→ Y . Our meta-model learns
a mapping from the output space to the semi-supervised
model: Y 7→ Mi, which is then used for trajectory predic-
tion.

We test our approach by training models on the Drive360
dataset (Hecker et al., 2018) used in the ICCV 2019:
Learning-to-Drive Challenge. The dataset includes cam-
era footage, visual maps, and semantic maps, with the task
of predicting the speed and steering wheel angle of a human
driver one second into the future after the given observations.
We use the supervised architecture of the winning team of
the competition (Diodato et al., 2019) for comparison. We
show that our meta-model improves the steering predic-
tion accuracy by 3.7% and speed by 5.95% compared with
supervised models, and by 3% and 0.5% compared with
semi-supervised models. Figure 3 shows an example of
predictions made by individual models and the meta-model.

1.1. Related Work

End-to-end models have been used to predict steering com-
mands using low-level representations like raw pixels from a
front camera (Bojarski et al., 2016). Other systems construct
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Figure 2. Trajectograms from different 5-minute segments of the
same drive. Notice that the statistics, represented by the speed
and steering wheel angle histograms, are different for the driving
scenarios in the top and bottom rows.

mid-level representations of the environment, such as a map
annotated with agent positions (Djuric et al., 2020), rather
than predicting a vehicle’s trajectory directly from visual
input. These representations are then used as input to predict
trajectories. We follow a low-level, end-to-end approach,
using front-facing camera footage as input to predict speed
and steering wheel angle.

Fernando et al. (2017) shows the power of neural memory
networks to incorporate long-term dependencies critical to
self-driving. In our work, rather than using an LSTM to
represent long-term dependencies, we construct a compact
representation with trajectograms.

Whereas our model predicts future driving actions, other
approaches (Deo & Trivedi, 2018; Cui et al., 2019; Tang
& Salakhutdinov, 2019; Chai et al., 2019) predict a proba-
bilistic distribution of output trajectories for agents in the
environment. This approach is extended using multi-head
attention (Kim et al., 2020; Messaoud et al., 2020) to focus
on trajectories of certain agents more than others. Cover-
Net (Phan-Minh et al., 2020) performs trajectory prediction
by building diverse trajectory sets, imposing dynamic con-
straints on feasible trajectories, and solving a classification
problem over these trajectory sets. Representing the behav-
ior of other agents with graphs has been explored by the
Trajectron (Ivanovic & Pavone, 2019) and SPAGNN (Casas
et al., 2020a). A multi-modal multi-task approach to jointly
reason between speed and steering predictions (Yang et al.,
2018) is similar to the semi-supervised baseline model that
we propose. ChauffeurNet (Bansal et al., 2019) uses imi-
tation learning to learn driving trajectories and introduces
trajectory perturbations to improve robustness. Incorporat-
ing prior knowledge into loss functions (Casas et al., 2020b)
results in more precise trajectory distributions over future
outcomes. Rules of the road (Hong et al., 2019) encodes
high level semantic information such as the entity state,
other entities’ states and road networks into a spatial grid
allowing deep convolutional networks to learn entity-entity
and entity-environment interactions.
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Figure 3. Steering wheel predictions during three of the recorded
drives. In these examples, each of the individual models predict
steering angles similar to the ground truth, shown in the top-left
wheel in each example. The meta-model, using the trajectogram
from recent driving, selects which of the semi-supervised models
will have the lowest error. The meta-model’s selections are shown
in the dotted green line. In these examples, the meta-model cor-
rectly selects the best model in each scenario. By choosing the
best model at each scenario throughout a drive, the meta-model’s
trajectories have lower error than any individual model.

Recent semi-supervised models extend and improve upon
supervised ResNets by using orders of magnitude more
unlabeled input samples (Yalniz et al., 2019; He et al., 2020;
Chen et al., 2020; Xie et al., 2020) with good results in
real-world applications.

2. Methods
Next, we describe our system of neural networks as illus-
trated in Figure 4 for predicting steering angle and speed.
The input data (in green at the bottom) consists of images
captured by the vehicle’s front-facing camera and semantic
map data at 100 millisecond intervals. The Drive360 dataset
includes 55 hours of driving recorded in Switzerland, di-
vided into 27 routes and 682 chapters. We partition the data
into three disjoint datasets, for training the semi-supervised
models (43%), training the meta-model (43%), and vali-
dating the meta-model (14%). The architecture consists of
neural networks (in blue) and intermediate feature vectors
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Figure 4. System architecture: Inputs are shown in green, neural
networks in blue, intermediate feature vectors in red, and outputs
in orange. The ResNet component is one of the supervised or
semi-supervised models we evaluate.

(in red). We replace the ResNet with different supervised
or semi-supervised models. This allows for a comparison
of models while keeping all other factors equal. Images are
fed into the supervised or semi-supervised model and the
semantic map data is passed through an encoder, a fully-
connected network. A fusion layer captures the non-linear
interactions between data sources, passing a feature vector
to an LSTM, which combines data from the current timestep
and a recent timestep (400ms in the past). The LSTM output
is then fused together with data from the initial timestep and
passed to the regressors. We predict two outputs (in orange
at the top), steering angle and the vehicle speed.

2.1. Semi-Supervised Models

We evaluate and compare different semi-supervised mod-
els in the place of the ResNet component in the architec-
ture. We perform transfer learning by fine-tuning each
semi-supervised model on our training set, allowing us
to leverage models already trained on datasets orders of
magnitude larger than our own. Next, we describe each
semi-supervised base model:

Teacher-student self-training. We use ResNeXt-101
32x4d SSL and SWSL (Yalniz et al., 2019). ResNeXt-
101 32x4d SSL is trained on a semi-supervised task us-
ing a teacher-student method on an unlabeled dataset of

90M images, and fine-tuned on 1.2M images from the Im-
ageNet1k dataset. ResNeXt-101 32x4d SWSL is trained
using a teacher-student method on 940M images, leveraging
associated hashtags in a semi-weakly supervised approach,
and fine-tuned on the ImageNet1k dataset.

Contrastive learning. We use SimCLR (Chen et al.,
2020), trained using a contrastive learning method on Ima-
geNet1k with a ResNet-50 architecture.

Noisy student training. We use a noisy student model
(Xie et al., 2020), trained using a modification of the teacher-
student method in which the student model is noised. The
teacher is initially trained on the ImageNet1k dataset, and
then used to generate pseudo labels for the student model,
which in turn is trained on 300M unlabeled images sourced
from the JFT dataset.

2.2. Meta Model

While the semi-supervised base models leverage unlabeled
data from the input space X to improve the mapping from
input to output space, X 7→ Y , our meta-model learns a
mapping from the output space to a semi-supervised model:
Y 7→ Mi. Our meta-model uses trajectograms from the
output space to predict which semi-supervised model Mi

to use in a driving scenario. Trajectograms represent the
characteristics of the current segment of road, as illustrated
in Figure 2 where we compare the trajectograms of a mostly
straight (top row) and a highly curved (bottom row) driving
segment. Our meta-model uses these output space samples
without corresponding input labels, reversing the roles of
input and output applied in a traditional semi-supervised
model. In both cases, such unlabeled data may be easy to
obtain: (i) semi-supervised input model data: Billions of
unlabeled images; (ii) semi-supervised output model data:
Unlabeled trajectories, without their corresponding input im-
ages, for example, from a bird’s eye view. Obviously, there
is mutual information between the input space X and output
space Y , since a driving environment strongly determines
the possible trajectories that a vehicle may take. A trajec-
togram therefore not only represents recent driving, but also
indirectly represents the recent driving environment. An
advantage of using a trajectogram to represent the driving
environment is that we efficiently capture information from
a long time period, such as a 5 minute window of driving,
without fully processing input signals over this period. We
efficiently update the histograms incrementally by a moving
window. In practice, this also allows us to easily incorporate
new base models: we provide a standard driving dataset to
all base models, and then only need their predictions on this
dataset to train a meta-model on these base models.
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Table 1. Comparison of speed and steering wheel angle prediction on a test dataset for each of the individual supervised and semi-
supervised models, and our adaptively selected semi-supervised model chosen by a network trained on trajectograms. For both speed and
steering wheel angle prediction, our meta-model improves upon the semi-supervised models, which in turn improve upon the supervised
models. Steering angle MSE is measured in degrees2 and the speed MSE in (km/h)2.

MODEL TYPE ANGLE SPEED
RESNET-101 SUPERVISED 1010.64 10.43
RESNET-50 SUPERVISED 1013.46 10.40
RESNET-34 SUPERVISED 1067.36 10.08
SIMCLR RESNET-50 SEMI-SUPERVISED 1003.56 9.53
RESNEXT-101 32X4D SSL SEMI-SUPERVISED 1050.58 10.80
RESNEXT-101 32X4D SWSL SEMI-SUPERVISED 1103.13 9.69
NOISY STUDENT EFFICIENTNET B7 SEMI-SUPERVISED 1213.00 13.17
OURS ADAPTIVE SEMI-SUPERVISED 973.30 9.48
SEMI-SUPERVISED IMPROVEMENT 0.70% 5.46%
ADAPTIVE SEMI-SUPERVISED IMPROVEMENT 3.02 % 0.52%
OVERALL IMPROVEMENT 3.69% 5.95%

3. Results
We experiment with different types of models for speed and
steering wheel angle prediction based on the Learning-to-
Drive dataset and setup. Our meta-model is trained on a
classification task with cross-entropy loss over the semi-
supervised models, where the target is the model with the
lowest error on the task and the input is the trajectograms
from recent driving. We train a separate meta-model for
speed and for steering wheel angle to select the best perform-
ing model on each task. Table 1 shows that our meta-model
improves steering angle prediction accuracy by 3.7% over
the best supervised model and by 5.95% for speed predic-
tion. Our meta-model improves upon the semi-supervised
models for trajectory prediction, which in turn improve upon
the supervised models for both tasks.

The meta-model improves on the best semi-supervised
model since no individual semi-supervised model is best
across all driving scenarios. Although SimCLR has the low-
est overall error for an individual model, it is the best choice
for steering angle in only 38% of the examples used to train
the meta-model, while the overall lowest performing steer-
ing angle model, Noisy Student EfficientNet-B7, is the best
choice in 10% of the examples. This emphasizes the advan-
tage of adaptively selecting from a set of semi-supervised
models based on the driving conditions.

Implementation. Neural network training is performed
on a Google cloud instance running an NVIDIA Tesla T4
GPU, and takes between 5-10 hours per model. We freeze 3

4
of the lowest blocks of the semi-supervised and supervised
models, fine-tuning the remaining blocks. We downsample
the images from 1920x1080 to 160x90 pixels, and during
training we downsample the dataset over time at a ratio of
1:10. For the meta-model, we use a separate feed-forward
network for the steering and speed tasks, allowing a different
semi-supervised model to be used for each task in a driving
scenario. We find that a longer trajectogram window (4

minutes) provides a useful signal for the steering angle
task, while a shorter window (2 minutes) is more useful
for the speed task. This indicates that understanding the
characteristics of a longer driving segment is more indicative
of the steering ahead, while speed prediction is concerned
with more local observations.

Discussion. Our experiments show that training a meta-
model on observed trajectograms improves end-to-end tra-
jectory prediction. Although our available dataset is only
55 hours of driving, we are able to show that data from the
output space is a useful signal which improves trajectory
prediction. We believe that this is a promising concept that
is worth scaling up to more driving data. Our approach of
using trajectograms to predict the semi-supervised model
with the most accurate trajectory is just one example of how
learning from unlabeled data in the output space may im-
prove trajectory prediction. Through further exploration we
may find different ways to represent the output space other
than trajectograms.

There are a number of practical advantages to applying
our method at scale. For instance, it is simple to incorpo-
rate a new base model without any knowledge of how that
model is trained. Establishing a common driving dataset
and distributing each model’s predictions on that dataset
allows us to train the meta-model to predict which model
to use in a driving scenario in an adaptive fashion. In a
production setting, we may include additional constraints
on the meta-model, such as avoiding trajectories that violate
driving restrictions. Our experiments are a step towards an
input-output semi-supervised model, and we demonstrate
its applicability to vehicle trajectory prediction.
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