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Abstract

We provide a new multi-task benchmark for evaluating text-to-image models and
perform a human evaluation comparing two of the most common open source
(Stable Diffusion) and commercial (DALL-E 2) models. Twenty computer science
AI graduate students evaluated the two models, on three tasks, at three difficulty
levels, across ten prompts each, providing 3,600 ratings. Text-to-image generation
has seen rapid progress to the point that many recent models have demonstrated
their ability to create realistic high-resolution images for various prompts. However,
current text-to-image methods and the broader body of research in vision-language
understanding still struggle with intricate text prompts that contain many objects
with multiple attributes and relationships. We introduce a new text-to-image
benchmark that contains a suite of fifty tasks and applications that capture a
model’s ability to handle different features of a text prompt. For example, asking a
model to generate a varying number of the same object to measure its ability to
count or providing a text prompt with several objects that each have a different
attribute to correctly identify its ability to match objects and attributes. Rather
than subjectively evaluating text-to-image results on a set of prompts, our new
multi-task benchmark consists of challenge tasks at three difficulty levels (easy,
medium, and hard) along with human ratings for each generated image.
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1 Introduction

Spurred by large-scale pretraining on billions of image-text pairs, vision-language models have seen
rapid progress in recent years. Large-scale models like CLIP (1) and Flamingo (2) have reported
remarkable performance on dozens of benchmarks using a single model, even when using few or no
task-specific training samples. Generating high-resolution images given a text prompt has improved
in quality to such an extent with models like Stable Diffusion (3), Imagen (4), and DALL-E 2 (5) that
their influence has affected popular culture as illustrated in their use to generate magazine covers1.
There has been much recent progress in improving text-to-image models, allowing the synthesis of
objects within novel contexts (6) such as different backgrounds, illumination, and poses. However,
these methods still have challenges generating images in complex scenes or where compositionality
is essential. A critical bottleneck in further progress is the lack of rigorous evaluation protocols, as
current evaluation methods focus on prompts that do not fully account for the diverse settings these
models must support (4).

We propose a new text-to-image generation benchmark covering fifty tasks and applications, each
targeting a different capability of text-to-image generation models as shown in Table 2. For example,
we may ask a model to produce varying numbers of an object to identify its ability to count or ask
a model to generate an image with an object of a specified shape. We divide each task into three
difficulty levels: easy, medium, and hard. For example, suppose the task is to synthesize different
numbers of objects. In that case, the task may be divided into easy: generating 1-3 objects, medium -
generating 4-10 objects, and hard - generating more than ten objects. Next, we provide ten different
instances for each task difficulty level. These instances are specific prompts that implement the tasks.
We score text-to-image models on each of the thirty instances (ten for each of the three difficulty
levels) for each of the fifty tasks and applications. Specifically, we run our benchmark on DALL-E
2 (5) and Stable Diffusion (3).

We can quantify and compare any new text-to-image generation model with our new benchmark.
In this work, we perform a human evaluation of three tasks; however, many of the tasks may also
be evaluated automatically by a neural network. Table 2 describes which tasks may be evaluated
automatically and which require human evaluation. For example, incorporating spatial-aware methods
ensures spatial relationships and prompts with compositional elements that are correctly generated.
Using OCR mechanisms ensures that quoted text is legible and accurate.

Our key contributions are: (i) developing challenge tasks for state-of-the-art text-to-image generative
models, (ii) defining human evaluation procedures and defining which tasks may be automatically
evaluated, and (iii) Performing a human evaluation for a subset of tasks with 3,600 human rat-
ings, comparing the performance of two of the most common open source (Stable Diffusion) and
commercial (DALL-E 2) models.

1.1 Related Work

Text-to-image models may be roughly split into two types: autoregressive transformer-based models
(7) and diffusion-based models (4). Prior state-of-the-art (8; 9; 10; 6) handles specific limitations
of text-to-image models such as generating an image within context or modifying object attributes
automatically. A comprehensive and quantitative multi-task benchmark for text-to-image synthesis
does not exist that covers a diverse set of tasks with varying difficulty levels. Our goal is to develop a
benchmark that will become the gold standard in the field for evaluating text-to-image models that
will endure the test of time.

Text-to-image models are commonly evaluated by the Inception Score (IS) and the Fréchet Inception
Distance (FID). Both of these metrics are based on Inception v3 classifier. These measures, therefore,
are designed for the unconditional setting and are primarily trained on single-object images. We have
seen several approaches which rectify these shortcomings.

Imagen (4) introduced DrawBench, a benchmark with 11 categories with approximately 200 prompts
total. Human raters (25 participants) were asked to choose a better set of generated images from
two models regarding image fidelity and image-text alignment. Categories are: colors counting,
conflicting, DALL-E 2, description, misspellings, positional, rare words, Reddit, text.

1https://www.cosmopolitan.com/lifestyle/a40314356/dall-e-2-artificial-intelligence-cover/
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Difficulty Easy Medium Hard Average
Task / Model SD DALL-E 2 SD DALL-E 2 SD DALL-E 2 SD DALL-E 2

Counting 74.8 91.8 52.2 51.4 36.1 54.0 54.4 65.7
Faces 72.5 93.5 74.0 74.3 64.2 77.2 70.2 81.7

Shapes 70.8 67.1 56.8 46.0 45.1 57.3 57.6 56.8

Table 1: Percentages of the best possible scores for human evaluation of Stable Difussion and DALL-
E 2 across the three tasks of counting, shapes, and faces. DALL-E 2 outperforms Stable Diffusion on
Counting and Faces tasks, Stable Diffusion shows minor advantage on the shapes task. On 6 out of 9
sub-tasks DALL-E 2 produces better images.

DALL-E 2-Eval (11) proposed PaintSkills to test skills of the generative models — specified object
generation, counting, color, and spatial relations. It utilizes the Unity engine to test these tasks using
predefined sets of objects, a subset of MS-COCO (12) objects, colors, and spatial relations. We
propose a more comprehensive benchmark of tasks at a finer level of detail, with three levels of
difficulty.

Localized Narratives (13) is a multi-modal image captioning approach that can be adapted to bench-
marking images. Text captions are first generated by human annotators whose cursor movement and
voice commentary hover their cursor over the image to provide richness and accuracy.

PartiPrompts, a holistic benchmark of 1,600 English prompts (14), compared to Localized Narratives,
is better in probing model capabilities on open-domain text-to-image generation. The 1,600 prompts
span 12 different categories and 11 challenge aspects. The 12 categories are artifacts, animals, indoor
scenes, produce and plants, abstract, arts, food & beverage, vehicles, illustrations, outdoor scenes,
people, and world knowledge, while the 11 challenge aspect are basic, fine-grained detail, properties
& positioning, linguistic structures, perspective, quantity, writing & symbols, complex, imagination,
style & format and simple detail. The image quality and the alignment of the generated image with
the input text are evaluated.

2 Methods

We create a comprehensive multi-task text-to-image generation benchmark of fifty diverse tasks and
applications, as shown in Table 2. We use the benchmark to compare different models, comparing
Stable Diffusion (3) 2 and DALLE-2 (5), and identify their limitations. Our evaluation protocol
consists of human ratings between 1 (worst) and 5 (best) of tasks at three difficulty levels.

Examples of cases in which human evaluation is required are: (i) concepts that are difficult to define,
such as successfully combining objects that are rarely co-occurring in the real world; (ii) complex
tasks such as images that require common sense; and (iii) cases where human expertise is essential
such as generating images without racial or gender bias.

We obtained 3,600 human ratings: twenty graduate students, two models, three difficulty levels,
and ten prompts each. The images were all generated with identical default model parameters and
evaluated on the same scale, providing a rating between 1 (worst) and 5 (best).

3 Results

We survey twenty students that evaluate the performance of Stable Diffusion and DALL-E 2. Each
student evaluated the three tasks at three levels of difficulty and ten prompts each, providing a rating
between 1 (worst) and 5 (best). We collected a total of 3,600 scores. The results are summarized
in Table 1 and a detailed breakdown of the evaluations by prompts is available in Table 3 of the
Appendix.

Our human evaluation shows that on the counting task DALL-E 2 (65.7%) performs better than
Stable Diffusion (54.4%), on the Faces tasks both models perform very well and DALL-E 2 (81.7%)
performs better than Stable Diffusion (70.2%), and on the Shapes task both models perform equally
well (56.8% compared to 57.6%).

2Publicly available https://beta.dreamstudio.ai/
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Id Task Eval
1 Generating a specified number of objects ML
2 Generating objects with specified spatial positioning ML
3 Combining objects very rarely co-occurring in the world Human
4 Generating images obeying physical rendering rules of shadows, reflections, and acoustics Human
5 Generating objects with specified colors ML
6 Generating conflicting interactions between objects Human
7 Understanding complex and long text prompts describing objects Human
8 Understanding misspelled prompts ML
9 Handling absurd requests Human
10 Understanding rare words ML
11 Incorporating quoted text with correct spelling ML
12 Understanding negation and counter-examples Human
13 Understanding anaphora and phrases that refer to other parts of the prompt Human
14 Aligning text as specified in the prompt ML
15 Generating common-sense images Human
16 Removing objects without needing manual annotation ML
17 Removing content that is not child-safe Human
18 Editing the color of objects without marking them manually ML
19 Replacing objects without marking them manually ML
21 Objects obeying physics rules Human
22 Generating images without racial or gender bias Human
23 Understanding comparative concepts like fewer and more ML
24 Photo-realistic faces ML
25 Understanding prompts regarding weather Human
26 Handling multi-lingual prompts ML
27 Duplicating objects perfectly ML
28 Generating multiple camera viewpoints of the same scene ML
29 Generating realistic faces with a specific emotion ML
30 Generating well-known faces ML
31 Generating a thumbnail summary for text and video Human
32 Changing dimensions of an image without losing information Human
Id Application
33 Graphic designs: generating new designs for websites
34 e-Commerce: generating personalized ads
35 Architectural planning: generating new renderings of building and interior designs
36 Home design: generating creative home design suggestions
37 Real-estate listings: generating furnished versions of unfurnished apartment and house photos for advertisement
38 Education: generating personalized digital learning interfaces with customized enhancements
39 User interface and user experience: generating design templates for mobile and desktop applications
40 Stop-motion video: generating frames for short animations
41 Cosmetics: generating realistic images showcasing products
42 Stock photos: generating large amounts of stock images for general audiences
43 Product design: quickly prototyping digital and physical products
44 Illustrations: generating professional artwork for custom purposes
45 Synthetic data: generating synthetic data for boosting training samples size
46 Social media: generating memes and shareable content
47 Image recommendation: generating recommendations based on user preferences
48 Gaming: using natural language to create complex scenes for video games
49 Proteomics: designing new proteins visualizing existing structures
50 Material science: designing new crystals

Table 2: Multi-task text-to-image benchmark and applications: we propose a series of tasks and
applications on which text-to-image models could be evaluated. These tasks can be further divided
based on whether the evaluation can currently be automated or requires human assessment.
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Performance gracefully degrades as the tasks are more difficult, except for DALL-E 2 which performs
slightly better on the hard than on the medium Shapes task.

Our proposed benchmark allows for testing individual competencies and limitations of the different
generative models. Understanding the limitations is critical for picking the suitable model for each
task and application and advancing the quality of generative models and the alignment of their
performance with human goals.
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A Appendix

Difficulty Easy Medium Hard
Prompt / Model SD DALL-E 2 SD DALL-E 2 SD DALL-E 2

1 96 100 69 32 30 57
2 93 97 62 62 28 52
3 49 97 34 36 22 61
4 87 99 38 46 37 44
5 51 90 77 64 46 57
6 97 50 54 45 35 82
7 92 93 51 79 47 48
8 67 97 38 39 37 45
9 43 98 43 50 30 55

10 73 97 56 61 49 39
1 69 96 79 86 66 73
2 82 93 83 95 70 69
3 76 96 76 75 68 80
4 97 98 70 87 91 91
5 23 92 81 86 58 90
6 75 96 71 77 74 77
7 60 92 91 20 53 95
8 58 84 76 66 41 81
9 96 94 74 77 59 51

10 89 94 39 74 62 65
1 93 92 73 30 36 41
2 94 84 49 36 67 64
3 89 77 32 32 44 62
4 85 49 48 38 44 50
5 49 38 69 42 30 66
6 89 45 45 83 47 71
7 52 80 65 52 34 70
8 37 32 32 42 49 47
9 79 90 84 37 51 37

10 41 84 71 68 49 65
Average: 72.70 84.13 61.00 57.23 48.47 62.83

Table 3: Percentages of the best possible scores for human evaluation of Stable Difussion and DALL-
E 2 across the three tasks of counting, shapes, and faces for each of the ten prompts.
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crossing 
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Easy (1-3 typical number of objects)

Counting Task

Medium (4-10 atypical number of objects)

Architectural 
render of 

twenty-story 
building in 

the city
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photo of 
twelve 
boats 

arranged in 
three rows

Aquarium 
with 

fourteen 
golden fish 
in a hotel 

lobby

Birthday 
cake with 
exactly 
seventy 

candles on it
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carrying a 
stack of 
twelve 
books
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people 
juggling 
ten balls 
together

Office 
room with 
five desks 
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chairs

Drawing of 
a pyramid 

of ten 
champagne 

glasses

Coffee 
table with 
a five-by-
five chess 
board on it

Painting of 
seventeen 
horses in 

a field

Hard (10+ objects with other numerical concepts in prompt)

1 2
3 4 5 6

7 8 9
10

1

2 3
4 5

6 7 8 9

10

1

2 3 4 5 6 7 8
9 10

Figure 1: Evaluation of image generation on a counting task at various difficulties. Each panel
contains tasks at different difficulties where the columns correspond to the text prompt and the rows
correspond to the model used to generate the image: (i) Stable Diffusion and (ii) DALLE-2. Images
that are evaluated to sufficiently match the prompt have a green border while images that do not
sufficiently match the prompt have a red border. A success score for both models is indicated in
the upper right corner of each panel. The prompts used to generate the images are classified into
three different difficulties: (i) easy difficulty tasks consisting of generating 1–3 objects, e.g., two cars,
three people; (ii) medium difficulty tasks consisting of generating 4–10 objects, including uncommon
combinations of quantities and objects, e.g., six bowling pins, seven fire hydrants; (iii) hard difficulty
tasks consisting of 10 or more objects with other numerical concepts in the prompt, e.g., twelve boats
arranged in three rows.
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window
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tree with 
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leaves

An 
octagon 
shaped 

cookie on 
a heart 
shaped 
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Figure 2: Evaluation of image generation on a shape task at various difficulties. Each panel contains
tasks at different difficulties where the columns correspond to the text prompt and the rows correspond
to the model used to generate the image: (i) Stable Diffusion and (ii) DALLE-2. Images that are
evaluated to sufficiently match the prompt have a green border while images that do not sufficiently
match the prompt have a red border. A success score for both models is indicated in the upper right
corner of each panel. The prompts used to generate the images are classified into three different
difficulties: (i) easy difficulty tasks consisting of generating simple shapes, e.g., circle, star; (ii)
medium difficulty tasks consisting of generating entities in the form of a shape, e.g., hexagonal maze,
octagonal TV; (iii) hard difficulty tasks consisting of multiple entities, each of a specified shape, e.g.,
square shaped water bottle next to a semicircular orange.
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Figure 3: The prompts used to generate the images are classified into three different difficulties:
generating photo-realistic faces given (i) easy: 1 to 2 features for an individual; (ii) medium: different
1 to 3 features for each individual in a group of 1 to 2 people with easy angle and posture; (iii) hard:
given more than 2 features for each individual in a group of more than 2 people with challenging
angle, posture, lighting or occlusion. Asterisk (∗) indicates a failure to generate an image because of
model’s content filters.
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