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Significance

We demonstrate that a neural network automatically solves, explains, and generates
university-level problems from the largest Massachusetts Institute of Technology (MIT)
mathematics courses at a human level. Our methods combine three innovations: 1) using
recent neural networks pretrained on text and fine-tuned on code rather than pretrained
on text; 2) few-shot learning synthesizing programs that correctly solve course problems
automatically; and 3) a pipeline to solve questions, explain solutions, and generate new
questions indistinguishable by students from course questions. Our work solves
university-level mathematics courses and improves upon state-of-the-art, increasing
automatic accuracy on randomly sampled questions on a benchmark by order of
magnitude. Implications for higher education include roles of artificial intelligence (Al) in

automated course evaluation and content generation.
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What questions does a student need
to answer to fulfill the graduation
requirements of MIT in Mathematics
and EECS in any major?



ID Number  Name Level  Questions Parts
1 6.100A Intro to CS Programming in Python 0 34 47
2 18.100B  Real Analysis 1 60 66
3 18.102 Intro to Functional Analysis 2 68 104
4 18.C06 Linear Algebra & Optimization 1 77 195
5 6.1210 Intro to Algorithms 2 82 164
6 6.1220 Design & Analysis of Algorithms 3 44 158
7 6.3900 Intro to Machine Learning 2 114 619
8 18.303 Linear Partial Differential Equations 2 22 65
9 18.200 Principles of Discrete Applied Math 2 45 86
10 6.1800 Computer Systems Engineering 3 58 112
11 18.702 Algebra II 3 52 94
12 18.701 Algebral 2 58 87
13 18.01 Calculus I 0 203 495
14 6.4110 Rep., Inference, & Reasoning in Al 3 54 324
15 6.1010 Fundamentals of Programming 1 22 31
16 18.704 Seminar in Algebra 3 16 25
17 6.4120 Computational Cognitive Science 3 10 67
18 6.1020 Elements of Software Construction 2 26 52
19 18.02 Calculus I 0 81 154
20 18.600 Probability & Random Variables 1 65 160
21 6.8611 Quantitative Methods for NLP 3 20 31
22 18.404 Theory of Computation 3 53 101
23 6.1910 Computation Structures 2 72 198
24 18.03 Differential Equations 1 66 160
25 6.2000 Electrical Circuits 2 27 97
26 18.300 Principles of Continuum Applied Math 2 43 90
27 6.3000 Signal Processing 2 55 258
28 6.2300 Electromagnetic Waves & Applications 2 37 142
29 6.3010 Signals, Systems & Inference 3 57 224
30 18.901 Intro to Topology 2 58 144
Mean 55.97 151.67

Total 1679 4550
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ID Task Type Parts
1 Exercise 198
2 Problem Set 2820
3 Final Exam 418
4 Midterm Exam 799
5 Lab 278
6 Project 37
Mean 758.3
Total 4550

ID Answer Type Parts
1 Programming 234
2 Multiple Choice 710
3 Numerical 634
4 Expression 969
Submean 636.8
Subtotal 2547
5 Open 1821
6 Image 182
Submean 1001.5
Subtotal 2003
Mean 758.3
Total 4550
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Can a language model fulfill the
graduation requirements?



asis1/3



6.100A Intro to CS Programming in Python (0)
18.100B Real Analysis (1)

18.102 Intro to Functional Analysis (2)

18.C06 Linear Algebra & Optimization (1)
6.1210 Intro to Algorithms (2)

6.1220 Design & Analysis of Algorithms (3)
6.3900 Intro to Machine Learning (2)

18.303 Linear Partial Differential Equations (2)
18.200 Principles of Discrete Applied Math (2)
6.1800 Computer Systems Engineering (3)
18.702 Algebra Il (3)

18.701 Algebra | (2)

18.01 Calculus | (0)

6.4110 Rep., Inference, & Reasoning in Al (3)

Course

6.1010 Fundamentals of Programming (1)
18.704 Seminar in Algebra (3)

6.4120 Computational Cognitive Science (3)
6.1020 Elements of Software Construction (2)
18.02 Calculus Il (0)

18.600 Probability & Random Variables (1)

6.8611 Quantitative Methods for NLP (3)
18.404 Theory of Computation (3)
6.1910 Computation Structures (2)
18.03 Differential Equations (1)

6.2000 Electrical Circuits (2)

18.300 Principles of Continuum Applied Math (2)

6.3000 Signal Processing (2)

8 ..III

o
N
o

0.50 0.75
Question Parts Solve Rate

o
8
S
=3
o
=]
=3
=]
=}



Exercise

Problem Set

Final Exam
]
Q
>
-
x
7]
©
-

Midterm Exam

Lab

Project

o

05
Solve Rate

Programming

Open

® Multiple Choice
Q
>
._
s
o
=
7}
c

< Numerical

Expression

Image

0.5
Solve Rate

o



41

ID Number  Name Level  Questions Parts Task Type Solve Rate Answer Type Solve Rate Solve Ratél
1 6.100A Intro to CS Programming in Python 0 34 47 1 (E), 1 (ME), 0.84 (PS) 0.93 (P) 0.93 41
2 18.100B  Real Analysis 1 60 66 0.90 (FE), 0.67 (ME), 0.79 (PS) 0 (1), 0.80 (O) 079
3 18.102 Intro to Functional Analysis 2 68 104 0.73 (FE), 0.71 (ME), 0.94 (PS) 0.77 (0) 0.77

4 18.C06  Linear Algebra & Optimization 1 77 195  0.81 (FE), 0.76 (ME), 0.67 (PR), 0.71 (PS) 0.72 (E), 0 (I), 1 (M), 0.84 (N), 0.78 (0), 0.71 (P) 074 41
5 6.1210 Intro to Algorithms 2 82 164  0.78 (FE), 0.72 (ME), 0.66 (PS) 0.21(E), 1 (I), 0.56 (M), 0 (N), 0.83 (0), 0.53 (P) 0.72

6 6.1220 Design & Analysis of Algorithms 3 44 158  0.56 (FE), 0.51 (ME), 0.54 (PS) 0.65 (E), 0.50 (M), 0.34 (N), 0.53 (O) 053 41
7 6.3900 Intro to Machine Learning 2 114 619 0.5 (E), 0.38 (FE), 0.68 (L), 0.57 (ME), 0.63 (PS)  0.52 (E), 0.07 (I}, 0.35 (M), 0.26 (N, 0.66 (O), 0.46 (P) 051 4
8 18.303 Linear Partial Differential Equations 2 22 65 0.08 (ME), 0.5 (PR), 0.71 (PS) 0.37 (E), 1 (I), 1 (N), 0.47 (O) 0.49

9 18.200 Principles of Discrete Applied Math 2 45 86 0.45 (ME), 0.50 (PS) 0.07 (E), 0 (1), 0.28 (N), 0.67 (O) 0.48 41
10 6.1800 Computer Systems Engineering 3 58 112 0.51 (ME), 0 (PR), 0.59 (PS) 0 (E), 0.54 (M), 0.25 (N), 0.07 (O) 045 4,
11 18.702 Algebra IT 3 52 94 0.58 (ME), 0.36 (PS) 0.23 (E), 0.49 (M), 0.76 (N), 0.43 (O) 0.42

12 18.701 Algebral 2 58 87 0.37 (ME), 0.46 (PS) 0.39 (0) 039 42
13 18.01 Calculus I 0 203 495  0.28 (FE), 0.37 (ME), 0.45 (PS) 0.44 (E), 0.07 (I), 0.25 (M), 0.27 (N, 0.57 (O) 036,
14 6.4110 Rep., Inference, & Reasoning in Al 3 54 324 0.23 (FE), 0.40 (ME), 0.37 (PS) 0.26 (E), 0.33 (M), 0.16 (N), 0.42 (O), 0.52 (P) 0.34

15 6.1010 Fundamentals of Programming 1 22 31 0.38 (L), 0.26 (ME) 0.56 (E), 0.17 (M), 0 (N), 0.41 (O), 0.35 (P) 0.32 42
16 18.704 Seminar in Algebra 3 16 25 0 (PR), 0.61 (PS) 031 (0) 031

17 6.4120 Computational Cognitive Science 3 10 67 0 (PR), 0.19 (PS) 0 (E), 0.08 (O) 031 42
18 6.1020 Elements of Software Construction 2 26 52 0.27 (ME), 0 (PR), 0.35 (PS) 0.75 (E), 0.19 (M), 0.18 (O), 0.32 (P) 0.30 42
19 18.02 Calculus I 0 81 154 0.13 (FE), 0.38 (ME), 0.35 (PS) 0.23 (E), 0.31 (I), 0 (M), 0.20 (N), 0.57 (O) 0.29

20 18.600 Probability & Random Variables 1 65 160  0.38 (FE), 0.13 (ME), 0.41 (PS) 0.22 (E), 0.21 (N), 0.62 (O) 0.29 42
21 6.8611 Quantitative Methods for NLP 3 20 31 0.02 (PR), 0.52 (PS) 0 (I), 0.30 (O) 0.28 ,,
22 18.404 Theory of Computation 3 53 101 0.31 (FE), 0.12 (ME), 0.31 (PS) 0 (E), 0 (1), 0.46 (M), 0.27 (O) 0.27

23 6.1910 Computation Structures 2 72 198 0.40 (E), 0.13 (ME), 0.04 (L) 0.17 (E), 0 (I), 0.55 (M), 0.17 (N), 0.10 (O), 0.06 (P) 0.19 42
24 18.03 Differential Equations 1 66 160  0.05 (FE), 0.14 (ME), 0.29 (PS) 0.11 (E), 0.21 (I), 0.27 (N), 0.29 (O) 016
25 6.2000 Electrical Circuits 2 27 97 0.02 (FE), 0.04 (ME), 0.29 (PS) 0.02 (E), 0 (I), 0.38 (N), 0.37 (O) 0.11

26 18.300 Principles of Continuum Applied Math 2 43 90 0 (PR), 0.12 (PS) 0.07 (E), 0 (I), 0 (N), 0.12 (O) 0.08 43
27 6.3000 Signal Processing 2 55 258 0.05 (FE), 0.01 (ME), 0.13 (PS) 0.13 (E), 0.02 (I), 0 (M), 0.06 (N), 0.22 (O) 0.06

28 6.2300 Electromagnetic Waves & Applications 2 37 142 4
29 6.3010 Signals, Systems & Inference 3 57 224 43
30 18.901 Intro to Topology 2 58 144 o
Mean 55.97 151.67

Total 1679 4550 43
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How can we ensure that a language
model generates correct and
complete answers?



Correctness and Completeness

Provide correct and clear text in prompt
Simplification

Chain of thought

Automatic checkers for several types of questions
Training a classifier predicting if model can
answer guestion

Self error correction

o~ wbh-=
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Correctness and Completeness

MIT class data

Books, notes, exercises, problem sets, midterms,
finals, projects

MIT data
Slack, emalil
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Which learning approaches allow
language models to pass the MIT
curriculum and why?



Current Approach

Akin to asking a sophomore on the first day of
orientation to solve the entire curriculum one
question at a time, without learning anything, without
scratch paper, and with a single thought for each
answer.



Learning Approaches

W=

Few-shot learning
Chain of thought
Program synthesis
Self-error correction



Few-Shot Learning

Asking a large language model questions

Problem: is analogous to asking a human a
guestion without learning the subject

Solution: few-shot learning allows to provide other
guestion-answer or text examples before question



lug kiki wif blicket zup ® @ O

What are the most challenging
concepts, tasks, and types of questions?



Challenging Concepts

Proofs



Challenging Types of Questions

Images



ID Task Type Parts Solve Rate
1 Exercise 198 0.73
2 Problem Set 2820 0.41
3 Final Exam 418 0.37
4 Midterm Exam 799 0.36
5 Lab 278 0.26
6 Project 37 0.10
Mean 758.3 0.37
Total 4550 0.36

ID Answer Type Parts  Solve Rate
1 Programming 234 0.51
2 Multiple Choice 710 0.33
3 Numerical 634 0.23
4 Expression 969 0.21
Submean 636.8 0.32
Subtotal 2547 0.31
5 Open 1821 0.42
6 Image 182 0.06
Submean 1001.5 0.24
Subtotal 2003 0.40
Mean 758.3 0.29
Total 4550 0.36
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What questions, topics, and classes help
answer other questions, understand
other topics, and are prerequisites for
other classes based on data?



Curriculum Design

Embed questions in low-dimensional space and
show the relationships between questions, topics,
and classes providing insight into course
prerequisites and curriculum design based on data.



Curriculum Analysis and Generation from Data

1. Embedding of topics and questions

2. Graph of classes: nodes are classes, directed edges are
ability to few shot one class given the other
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=} 6.3000 Signal Processing
@ 18.C06 Linear Algebra and Optimization
x 6.1010 Fundamentals of Programming
® 6.1200 Mathematics for Computer Science
x 18.03 Differential Equations
@® 6.1910 Computation Structures
18.404 Theory of Computation
+ 6.1800 Computer Systems Engineering
@® 6.1220 Design and Analysis of Algorithms
@® 6.1210 Introduction to Algorithms
18.600 Probability and Random Variables
18.02 Calculus Il
@ 6.4120 Computational Cognitive Science
6.100A Introduction to Computer Science Programming in Python
6.1020 Elements of Software Construction
+ 6.2000 Electrical Circuits Modeling and Design of Physical Systems
X 6.8611 Quantitative Methods for Natural Language Processing



Curriculum Analysis and Generation from Data (2022)

Prerequisites based on data
Equivalent classes based on data

Set of classes and concepts required for graduating
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How can we evaluate student
performance while allowing the
usage of large language models?



Evaluation

1.

Student evaluate language model correctness

2. Asking questions language model cannot solve

o ko

yet

Labs with checkoffs

Projects

Clearly mark which parts are student contribution
and which parts are language model contribution



Homeworks and Exams embracing ChatGPT (Spring 2023)

Following are 10 questions and answers by ChatGPT. For each Q2
question identify whether the answer is correct or not. If the 1 Point
answer is correct, explain why. If the answer is incorrect, write the

. What is the difference between a learning algorithm and a
correct answer and explain.

hypothesis? Write down one possible hypothesis for a linear
regression problem in which the input dimension isd = 3

ChatGPT Answer:"A learning algorithm is a procedure or set of
instructions used to find an approximate solution to a problem,
such as finding a hypothesis that fits a given dataset. A hypothesis,
on the other hand, is a statement or function that describes the
relationship between inputs and outputs in a problem.

One possible hypothesis for a linear regression problem with input
dimension d = 3 is a linear function of the form h(z) = w2 +
weZy + wsx3 + b, where wy, wy, w3 and b are parameters to be
learned from the data.”

@® Correct

O Incorrect

Explanation:
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How can we automatically generate
questions at scale with correct answers?



Question Generation

1. Generate question and answer and explanation
(or verification) together at the same time

2. Generate questions from other questions

3. Generate questions from specific parts of course
notes or books



Machine-Generated Questions, Answers, Explanations

Indistinguishable from human-written questions
Appropriate for class, controlled difficulty level, engaging

Research focus on correctness, completeness, quality,
originality: quantified

Used in class homeworks and finals



human beyond 8 is reaching limit vs. machine 100,000,000 cuts & pastes per second
allows cut & paste of precise random numbers, arithmetic, programs, interpreters, etc.

emergence is explainable

How can we rapidly write complete books
while ensuring quality and originality?



Book Generation
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Book Generation

Proposal

Chapters

Contents

Cover, preface, index, bibliography, acks
Error correction

Grammar and originality scores
Proofreading

NoOabkowh=



Book Generation

1. Many prompts: 200 prompt books

2. Roles: act as a writer, reviewer, editor

3. Specify content types: text, examples, equations,
figures, exercises and solutions.



Defining New Roles and Coining Terms (2023)

Prompter, editor, publisher

Booksets: validation, testing

“Here is a 200 prompt book ready for editing by the class professor”
“Here is a meta prompt for the cover”

“This book is prompted by X, edited by Y, and published by Z”
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By adding a regularization term to the cost function, we can improve
the generalization performance of the model. The green line represents the
model fit with regularization, and as we can see, it fits both the training and
test data well, resulting in a lower test error.

To combat overfitting, ization is often used in ion. Reg-

ularization is a technique that adds a penalty term to the cost function to
discourage the model from fitting the noise in the data and instead encour-
age simpler, more general models.

There are two main types of regularization used in regression: L1 regu-
larization, also known as Lasso regularization, and L2 regularization, also
known as Ridge regularization.

L1 REGULARIZATION adds a penalty term to the cost function proportional
to the absolute value of the coefficients. The L1 regularization term is

defined as:
A 1B

Where 1 is the regularization parameter and f; are the coefficients. The
L1 regularization term encourages the model to have sparse solutions,
‘meaning that some coefficients will be exactly equal to zero.

L2 REGULARIZATION adds a penalty term to the cost function proportional
to the square of the coefficients. The L2 regularization term is defined as:

I

Where A is the regularization parameter and f; are the coefficients.
‘The L2 regularization term encourages the model to have small, non-zero
coefficients.

When the L2 regularization term is added to the cost function, the re-

sulting cost function is called Ridge ion, and when L1 larization

term is added it is called Lasso Regression.

Regularization can be added to the cost function by simply adding the reg-
ularization term to the mean square error. For example, in Ridge Regression
the cost function becomes:

L n .
= Z:,M )~y Z B2 Z B
‘Where 2 is the regularization parameter and f; are the coefficients.

‘The ization term acts as a int on the ients, pre-
venting them from becoming too large and resulting in overfitting. The

regularization parameter A controls the strength of the regularization term
and can be tuned to achieve the best trade-off between fitting the data and
preventing overfitting.

2.3.1 Ridge Regression

Ridge Regression is a variation of linear regression that uses L2 regulariza-
tion to prevent overfitting. The cost function for Ridge Regression is defined

IO =130 =Y g ey B

Where 1 is the regularization parameter and f; are the coefficients.

as:

DERIVING THE ANALYTICAL SOLUTION:

To derive the analytical solution for Ridge Regression, we can take the
derivative of the cost function with respect to each f; and set it equal to zero.
By doing this we can find the normal equation as

AP __2 7 5 20
TAZ*;;(v“fﬂ(w;ﬂﬁf’)xf’+21ﬂx

fori=0,

AP __ 2% 6 N
T =-;;(y“—ﬂn~;ﬁ,x,‘>)=o

On solving above equations we can get the following analytical solution
for Ridge Regression.

B=X"X+A)7XTY
Where X is the design matrix, Y is the output vector, and I is the Identify
matrix.
To find the values of the coefficients that minimize the cost function, the
gradient descent algorithm is used. The gradient descent algorithm is an

Notes (ML class, Spring 2023)

iterative algorithm that starts with initial values for the coefficients and
updates them in the direction of the negative gradient of the cost function.
The update rule for the coefficients in Ridge Regression is:
aJ(B)
= fi-a
fi=hieop,
Where « is the learning rate. The gradient of the cost function with

respect to f; is:

AP _

i

so, the update rule becomes:

Lo .
=W~ fo= 3 B~ 2ap,

Bi= Bz Y - Y B 2

In Ridge Regression, the L2 regularization term shrinks the coefficients
towards zero, but it doesn’t make them zero. The value of the regularization
parameter, , determines the strength of the regularization. A high value of
will result in small coefficients (close to zero) and a low value of will result
in large coefficients.

It's important to note that Ridge Regression is a technique to prevent
overfitting in the model by adding a bias term to the cost function, which
causes the model to prefer solutions with small coefficients. As a result, the
values of the coefficients become close to zero, but not zero, compared to
Lasso Regression where the values of the coefficients become zero. This
property of Ridge Regression makes it useful when we have a large number
of features and we want to keep all of them in the model.

Additionally, Ridge Regression also helps to address the issue of multi-
collinearity, which occurs when there is a high correlation between indepen-
dent variables. In this case, the coefficients can become unstable, leading to
large variances in the model’s predictions. Regularization helps to reduce
the variance by shrinking the coefficients towards zero.

Another ad of Ridge ion is that it is ionall
efficient, as it only requires the inversion of a matrix, which can be done

using linear algebra libraries such as NumPy or scikit-learn. This makes it a
popular choice for large datasets.

However, one limitation of Ridge Regression is that it does not perform
feature selection, meaning it does not set any coefficients to zero. This can
be an issue if we have a large number of features and some of them are not
relevant to the model. In such cases, Lasso Regression or Elastic Net may be
more suitable.

23.2 Lasso Regression

The Lasso regression is a form of linear regression that uses a regularization
term known as L1 regularization. The objective function in Lasso regression



How can we drive a photo-realistic
speaking avatar to act as a TA or lecturer?



Al Generated Avatars

Photorealistic speaking avatars delivering machine
generated content.



https://docs.google.com/file/d/19oBR9OmcsWl2b7PeOCmJjKKjHfwY9pgZ/preview

Photorealistic Avatars

Reconstruction

Photorealistic

Source: Meta avatar codec



Al Generated Avatars

Uncanny valley

Example: 40% Terence Tao, 40% Esther Perel, 20% you

Figure source: Masterclass



Al Generated Avatar Lecture (Fall 2023)

Automatic text, speech, gestures using language models

Pass uncanny valley of photo realism

Real-time rendering for live interaction with students
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A neural network solves, explains, and generates university math problems by program synthesis and few-shot learning at human level

Iddo Drori, Sarah Zhang, Reece Shuttleworth, Leonard Tang, Albert Lu, Elizabeth Ke, Kevin Liu, Linda Chen, Sunny Tran, Newman Cheng, Roman Wang, Nikhil Singh, Taylor L. Patti, Jayson Lynch, Avi Shporer, Nakul Verma, Eugene Wu, Gilbert
Strang

Proceedings of the National Academy of Sciences (PNAS), 119(32), 2022.

Solving Probability and Statistics problems by probabilistic program synthesis at human level and predicting solvability
Leonard Tang, Elizabeth Ke, Nikhil Singh, Bo Feng, Derek Austin, Nakul Verma, Iddo Drori
International Conference on Artificial Intelligence in Education (AIED), 2022.

Solving machine learning problems

Sunny Tran, Pranav Krishna, Ishan Pakuwal, Prabhakar Kafle, Nikhil Singh, Jayson Lynch, Iddo Drori
Asian Conference on Machine Learning (ACML), 2021.
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