A Dataset for Learning University STEM Courses at Scale
and Generating Questions at a Human Level

Iddo Drori"*°, Sarah Zhang', Zad Chin?, Reece Shuttleworth!, Albert Lu', Linda Chen',
Bereket Birbo!, Michele He!, Pedro Lantigua', Sunny Tran!, Gregory Hunter*, Bo Feng*,
Newman Cheng*, Roman Wang*, Yann Hicke?, Saisamrit Surbehera*, Arvind Raghavan*,
Alexander Siemenn', Nikhil Singh', Jayson Lynch®, Avi Shporer',
Nakul Verma*, Tonio Buonassisi!, Armando Solar-Lezama'

'Massachusetts Institute of Technology,
2Harvard University,
3Cornell University,
*Columbia University,
SBoston University,
®University of Waterloo,

{idrori @mit.edu, idrori@cs.columbia.edu, idrori @bu.edu, sazhang @mit.edu, zadchin @college.harvard.edu,
rshuttle @mit.edu, albert03 @mit.edu, linda55 @mit.edu, bereketb@mit.edu, mjhe @mit.edu, lantigua@mit.edu,
sunnyt@mit.edu, geh2129 @columbia.edu, bf2477 @columbia.edu, nc2893 @columbia.edu, rzw2002 @columbia.edu,
ylh8 @cornell.edu, ss6365 @columbia.edu, ar4284 @columbia.edu, asiemenn @mit.edu, nsinghl @mit.edu,
jayson.lynch@waterloo.ca, jayson.lynch @waterloo.ca, shporer @mit.edu, verma@cs.columbia.edu, buonassi @mit.edu,
asolar @csail.mit.edu}



Dataset

https://github.com/idrori/stemQ

ID | University | Department Course Number

1 MIT Mechanical Engineering Hydrodynamics 2.016

2 MIT Mechanical Engineering Nonlinear Dynamics I: Chaos 2.050J

3 MIT Mechanical Engineering Information & Entropy 2.1101

4 MIT Mechanical Engineering Marine Power and Propulsion 2611

5 MIT Materials Science and Engineering Fundamentals of Materials Science 3.012

6 MIT Materials Science and Engineering Math for Materials Scientists & Engineers | 3.016

7 MIT Materials Science and Engineering Introduction to Solid-State Chemistry 3.091

8 MIT Chemistry Principles of Chemical Science 5.111

9 MIT Electrical Engineering & Computer Science | Signal Processing 6.003

10 | MIT Electrical Engineering & Computer Science | Introduction to Machine Learning 6.036

11 | MIT Electrical Engineering & Computer Science | Introduction to Probability 6.041

12 | MIT Physics Quantum Physics 8.04

13 | MIT Physics Introduction to Astronomy 8.282

14 | MIT Earth, Atmospheric & Planetary Sciences Geobiology 12.007

15 | MIT Economics Principles of Microeconomics 14.01

16 | MIT Aeronautics and Astronautics Unified Engineering 1-2 16.01-02
17 | MIT Aeronautics and Astronautics Unified Engineering 34 16.03-04
18 | MIT Mathematics Probability and Random Variables 18.600

19 | MIT Mathematics Theory of Numbers 18.781

20 | MIT Biological Engineering Systems Microbiology 20.106J
21 | MIT Institute for Data, Systems & Society Statistical Thinking & Data Analysis IDS.013J
22 | Brown Mathematics Intermediate Calculus MATHO0180
23 | Cornell Computer Science Computer Architecture CS4420
24 | Harvard Statistics Probability STATS110
25 | Princeton Mathematics Calculus II MATH104
26 | UPenn Mathematics Calculus MATH110
27 | Yale Mathematics Fundamentals of Physics PHYS200

Table 1: A new dataset of questions and solutions from STEM courses by university and department: 27 courses across a dozen

departments in seven universities. We curate a dataset and generate new questions for each course.




Datasets as Benchmarks

We would like datasets to serve as benchmarks for
measuring performance of large language models

Problem: once the dataset of questions and
answers Is available online the large language model
uses the dataset for training.

Solution: provide private access to new datasets



Mathematical Abilities of Large Language Models

Large language models are trained using optimization
objectives such as filling in missing words and if two
sentences follow each other.

Problem: how can such models be used to solve STEM
problems requiring precision using arbitrary values?

Solution: programs, few-shot learning, chain of thought.



Method

6.003 Signal Processing Program

import sympy as sp

Explanation

The above code is a program that
solves a difference equation using

Question Input y = sp.Function('y') -_— the initial conditions y(8) = 1
5 i n = sp.Symbol('n') and y(1) = 2.
Solve the following difference Let the initial conditions be The difference equation is 8y(n) -

# Initial conditions
ye =1
y1=2

6y(n-1) + y(n-2) - 1.

The program uses the function y(n)
to solve the difference equation.
The program uses the symbol n to
# Difference equation represent the index of the differ-

equation 8y[n]-6y[n—1]+y[n-2]  y[0] =1 and y[-1] = 2.
=1, for n = 0 assuming the ini-
tial conditions y[0] = 1 and y[-1]

= 2. Express the solution in : 8y[n] - eq = 8xy(n) - 6xy(n-1) + y(n-2) - 1 [Nty ?:“ equation. e ARTEHAL

e program uses the initial con-
el Ei et 6yln-11 +yln-2] = 1, where n 2 # Solve the difference equation 1/3 - 16%4%*(-n)/3 + 6*2%*(-n) ditions'y(®) = 1 and y() = 2.
form expression below. 0, y[n] is a function. 61 = 85, FEOLUG(eG, y(")‘j (o) The program uses the function

rsolve to solve the difference
equation.
The program prints the solution to

¥0, y(1): y1})

# Print the solution

P the difference equation.
print(sol)

Figure 2: MIT 6.003 Signal Processing workflow: The question is solved as is and the prompt adds programming context to use
symbolic math sympy package to produce code snippets that generate answers in form of a symbolic mathematical equation.

8.282 Introduction to Astronomy

Program Explanation

The above code 1is the
gravitational constant
times the mass of the
sun divided by the

6.673 * 10 *x -8
1.9891 * 10 **x 33
1.5 * 10 *x 13

Question — > Input —MM

Find the gravitational acceleration  Find the gravitational accel-
of Earth due to the Sun. eration of Earth due to the
Sun. Gravitational constant is
6.673*10 ~ -8 dyne cm * 2
— o g ” -2. Mass of the Sun is

£67310A 8 dyne 1.9891*10433g.
o A2gh-2

em

square of the radius
of the earth.

This is the force of
gravity between the
earth and the sun.

G* M/ rxk2

Table ——

print(a)

Figure 3: MIT 8.282 Introduction to Astronomy workflow: In this course, Codex often requires context about physical constants.
This question involves the gravitational constant (G), mass of the Sun (M), and the distance between the Earth and the Sun (r;
this is the definition of one Astronomical Unit).



Few-Shot Learning

Asking a large language model STEM questions

Problem: is analogous to asking a human a
guestion without learning the subject

Solution: few-shot learning allows to provide other
guestion-answer examples before the question



Curriculum Design
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Figure 1: Visualization of embeddings of course questions: We embed the course questions into a 2,048-dimensional space using
OpenAl’s text-similarity-babbage-001 embedding, which captures semantic similarity between texts. We then use uniform
manifold approximation and projection to reduce the dimensionality to two, observing distinct clusters based on course topics.
On the top right, we see a cluster of questions from probability and statistics courses: MIT’s 6.041 Introduction to Probability,
18.600 Probability and Random Variables, MIT’s IDS013J Statistical Thinking and Data Analysis, and Harvard’s STAT 110.
On the left side, we see a cluster of the questions from Mechanical Engineering courses: MIT’s 2.611, 2.016, and 2.110J. Next,
we see a cluster of questions from Chemistry and Materials Science and Engineering on the left. On the bottom left, we see
a cluster of the questions from Aeronautics and Astronautics: 16.01, 16.02, 16.03, and 16.04. Below is a cluster of questions
from MIT’s 20.106J System Microbiology and 12.007 Geobiology. In the center, we see a cluster of questions from Yale PHYS
200, MIT’s Quantum Physics, and Introduction to Astronomy, all related to Physics. On the right, we see a cluster of questions
from MIT EECS courses. A cluster of questions from math courses appears in the center between EECS and Physics.



Curriculum Design

Problem: what questions, topics, and classes help answer
other questions, understand other topics, and are
prerequisites for other classes?

Solution: embed questions in low-dimensional space and
show the relationships between questions, topics, and classes
providing insight into course prerequisites and curriculum
design based on data.



Generating Questions

ID | Course Method | Q

4 Nonlinear Human | Find all the fixed points of the flow z = sin(z)
Dynamics I: Machine | Approximate the value of 7 at which the logistic map has a superstable 4-cycle. Please give a
Chaos numerical approximation that is accurate to at least four places after the decimal point.

5 Fundamentals Human | In discussing molecular rotation, the quantum number J is used rather than /. Using the Boltz-
of Materials mann distribution, calculate %GL for H35Cl for J = 0, 5, 10, and 20 at 7" = 1025 K.
Science Machine | A sample of an ideal gas is heated reversibly and adiabatically from an initial temperature of

300 K to a final temperature of 600 K. If the initial volume of the sample is 1.00 L, what is the
final volume of the sample?
Principles of Human | Using the table of mean bond enthalpies provided, predict the bond enthalpy (in kJ/mol) for the

8 Chemical CO bond marked with an arrow in the molecule below. (Bond enthalpeis: C-H - 412 kJ/mol,
Science C-C - 348 kJ/mol, C=C - 612 kJ/mol, C-O - 320 kJ/mol, C=0 - 743 kJ/mol).
Machine | 10.0 mL sample of 0.20 M HNO, (aq) solution is titrated with 0.10 M NaOH (aq). (Ka of
HNO, is 4.3 x 10™%). Calculate the pH of the solution when 10.0 mL of 0.10 M NaOH has
been added.
9 Signal Human | Determine the Laplace transforms (including the regions of convergence) of the following sig-
Processing nal: z(t) = (1 — (1 — t) x exp (—3 * t))u(t).

Machine | Find the inverse Fourier transforms of the following signal: X (f) = (%) * sinc(w * f)

13 Introduction to | Human | Measurements of the radial recession velocity of five galaxies in a cluster give velocities of
Astronomy 9700, 8600, 8200, 8500, and 10000 km s ™. What is the distance to the cluster if the Hubble
parameter is Ho = 72 km s~! Mpc~! ? Hint: Use the Hubble law for the average velocity of
the members in the cluster.

Machi A star has a luminosity of 10°L, and a temperature of 10" K. Find the star’s radius in units of
the Sun’s radius.
14 | Geobi Human | Determine the kind of nonmarine sedi y deposits that reflects arid environmental condi-
eobiology fons.
Machi Determine the term ‘Precambrian shield” and the place where it is present in North America
15 Principles of Human | Chloe consumes only books (x) and video games (y). Her preferences can be represented by
Microeconomics the following utility function: U (z, y) = « * (y). Calculate the Marginal Rate of Substitution
(at an arbitrary bundle (z, y)).
Machine | Suppose the demand for apples is @p = 550 — 50 * P and the industry supply curve is
Qs = —12.5 4 62.5 * P. Calculate the equilibrium price and quantity.
16 Unified Human | Define a thermoplastic and a thermoset.
Engineering Machi ‘What is the difference between an isothermal and an isentropic process?
19 Th2ory of Human | Tabulate the number of primes less than z, for z = 10000, 20000, .. ., 100000. Also tabulate
Numbers the number of primes less than z and of the form 4k + 1, and the number of the form 4k + 3.
Machi Find the smallest integer 7 > 1 such that n” divides the factorial of n.
20 Systems Human | What does proton motive force mean, and why is it important in biology?
Microbiology Machi Describe the difference between a batch culture and a continuous culture.
2 Intermediate Human | Find the value of g_—; at the point (1, 1, 1) if the equation =y + 23z — 2yz = 0 defines z as a
Calculus function of the two independent variables z and y and the partial derivative exists.
Machine | Find the surface area of the portion of the paraboloid z = 4 — 2° — y? that lies above the
xy-plane.
23 Computer Human | Whatis 01100110 XOR 00111011 in binary?
Architecture Machine | The CPU runs an operating system kernel. A user process occupies the bottom half of the 32-

bit address space (i.e., the lower addresses), while the kernel occupies the top half of the same
address space (i.e., the higher address) What is the address of the first byte of the kernel?
Human | You have a group of couples that decide to have children until they have their first girl, after
which they stop having children. What is the expected gender ratio of the children that are
born? What is the expected number of children each couple will have?

Machine | A fair coin is tossed repeatedly until a head is followed by a tail. What is the expected number
of coin tosses?

24 | Probability

Table 2: A subset of the human- and machine-generated questions for various courses. The table of questions for all of the 27
STEM courses is found in the Supplementary Material.



Generating Questions

Large language models generate new questions
indistinguishable from human-written questions

Problem: are the answers correct?

Solution:

Automatic checkers for several types of questions.

Evaluate students by asking them to evaluate if answers are
correct.

Training a classifier predicting if model can answer question.



Id | Approach Accuracy
1 | Specialized model trained on astronomy 92%

2 | Generalized Codex (Chen et al. 2021) 67%

3 | GPT-3 with CoT (Kojima et al. 2022a) 37.5%

4 | GPT-3 (Brown et al. 2020) 30%

5 | GPT-3 with CoT (Kojima et al. 2022a) 27%

6 | GPT-3 (Brown et al. 2020) 15%

7 | Jurassic-1 (Lieber et al. 2021) 10%

8 | Wolfram Alpha (Wolfram 2021) 0%

9 | Specialized model (Tran et al. 2021) 0%

Table 3: Comparison of accuracy on Introduction to As-
tronomy course questions. The specialized approach trained
on Astronomy achieves 92% accuracy. The generalized ap-
proach of writing programs to solve the questions, and
synthesizing the programs using OpenAl Codex, achieves
67%. GPT-3 (text-davinci-003) with chain-of-thought (CoT)
prompting achieves 37.5%, and GPT-3 (text-davinci-
003) without chain-of-thought prompting 30%. GPT-3
(text-davinci-002) with chain-of-thought (CoT) prompting
achieves 27% and GPT-3 (text-davinci-002) without chain-
of-thought prompting 15%. Jurassic-1 achieves 10%. Wol-
fram Alpha and a specialized model trained on a different
course completely fail.



Performance and Scale

Large language models are generalist and scalable.
Performance improves using

Few-shot learning
Chain of thought
Program synthesis
Self-error correction



Conclusions

Language models train on online data so for datasets to become
benchmarks they should be released privately.

When asking large language models STEM questions it makes sense to
give them at least same learning methods available to humans, so they
perform at a human level.

Learn from previous examples: few-shot learning

Use chain of thought and program synthesis

Provide multiple attempts by self error correction.

We generate hundreds of questions automatically from other questions,
class notes, and books.



What Now

ChatGPT solves “only” a third of the MIT
Mathematics and EECS curriculum.
Using our approaches solves the entire
curriculum; methods for handling images
and proofs; RL with LM inside.

Curriculum design based on data.

Photorealistic speaking avatars
delivering machine generated content.
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