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guides sampling-based robot planners to generate for language-guided skill learning. Give it a task success condition code snippet allows the robot to
rich and diverse manipulation trajectories. aescription, and it will automatically generate retry failed tasks. The result are demonstrations of

rich, diverse robot trajectories, complete with robust behavior, which teach the policy to recover
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Our framework is a step towards putting robotics on
the same scaling trend as large language models
while  not compromising on rich low-level
manipulation.
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language-labeled and diverse robot trajectories.
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