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1 Introduction

To achieve sample efficient deep reinforcement learning in high dimensional (i.e: visual) observation
spaces and long-horizon tasks, recent approaches that learn latent world models have shown lots of
promise. By encoding visual sensory information into a latent state, the policy, transition dynamics,
and/or rewards model can operate on the resulting low-dimensional state more efficiently. Notably,
Dreamer [1] uses a probabilistic latent world model [2] to generate more experience in the latent space,
enabling policy optimization without interacting with the environment - hence, dreaming, or latent
imagination - and achieves unprecedented sample efficiency. Since the latent world model is fully-
differentiable, the policy can be optimized for the rewards model’s predicted reward using analytical gra-
dients, achieving high performance on long-horizon tasks. The performance of such latent world model
approaches crucially depends on how good the latent states are, yet not much investigation has been done
on the quality of these representations. What makes a good representation for reinforcement learning?

Consider the task of hammering a nail into a block. Even though visual observations may exhibit wide
variance (i.e: due to varied lighting conditions and wallpaper colors), only the pose of the nail head,
hammerhead, and block matters for the task. How can we distill these state abstractions from visual
observations to allow for efficient policy learning? One approach is to optimize the latent states using
reconstruction of high dimensional observations, such as the Variational Auto-Encoder (VAE) [3].
While such dimensionality reduction algorithms are generically applicable to a wide range of settings
beyond RL, it assumes that all information in visual observations is not only useful but crucial to the
task. However, in the hammering task, such approaches will try to encode the hammer color, which
leads to poor generalization to, for instance, another hammering task with different hammer colors.
Intuitively, we want a low dimensional state abstraction that explicitly ignores distracting information.

In this project, we aim to learn a generalizable representation for reinforcement learning without
reconstruction which is robust against distractors by encoding only task-relevant information. We
propose Deep Bisimulation Dreaming (DBD), a new representation learning algorithm for RL
which regularizes the latent space with bisimulation metrics [4]. By enforcing distance between
latent states to their bisimulation metric distance, latent states are close together if they have similar
reward behaviors and dynamic transitions, and far apart otherwise. We compare our approach with
a reconstruction-based baseline on a continuous action space robotic task from visual observations
on the MuJoCo [5] benchmark. We report that our approach can generalize to novel visual distractors
by extracting only task-relevant information from high-dimensional observations, while the baseline
fails to achieve high rewards in both the training and testing environment.

2 Background

2.1 Partially-Observable Markov Decision Processes

RL is formalized as a Markov decision process (MDP), described by the tupleM= (S,A,P,R,γ)
where S is the state space, A the action space, P(s′|s,a) the probability of transitioning from state
s ∈ S to state s′ ∈ S by executing action a ∈A, and γ ∈ [0,1) a discount factor. An agent chooses
actions according to a stochastic policy π(a|s)∈ [0,1], which yields the next state s′ ∼P(s,a) and
a scalar reward ras =R(s,a). The agent’s goal is to maximize the expected cumulative discounted
rewards maxπEP [

∑∞
t=1[γtR(st)]].
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A partially observable Markov decision process (POMDP) has, in addition, the set of observations
Ω and the conditional observation probabilities O, such that at each time step, the agent receives
the observation o∈Ω sampled from O(o|s′,a) conditioned on its action a and next state s′. While
having access to only the observations means the environment is no longer Markovian from the agent’s
perspective, the agent can maintain its belief in the state (i.e: a distribution over states) and update
its belief with its previous belief, the current observation, and the current action. Thus, the environment
is Markovian in the agent’s belief space.

2.2 Latent World Models

(a) Recurrent State Space Models

(b) Our approach

Figure 1: Graphical models,
where solid lines denote the
generative process and dashed
lines the inference model.

Latent World Models is a family of approaches for learning rewards
and dynamics models of environments with high dimensional obser-
vations. Instead of working directly in the space of visual sensory
data, an encoder infers low dimensional latent states from the high
dimensional observations and learns the transition dynamics within
this latent space. When used within RL, the policy and value networks
can use the world model for optimization.

Since visual observations are partial observations of the ground state
of any system, RL agents with access only to visual observations
operate in POMDPs rather than MDPs. As such, their world is only
Markovian in their belief. However, since their belief is sampled from
their previous beliefs, their world is still Markovian in their entire past
sequence of observations and actions, which can be approximated
with recurrence.

Recurrent State Space Model (RSSM) [2] (Figure 1a) is a probabilistic
recurrent dynamics model, which can be thought of as a sequential
VAE. RSSM maximizes the Evidence Lower Bound (ELBO) of its
observations o1:T and rewards r1:T in logp(o1:T ,r1:T |a1:T ) with

log

∫
p(st|st−1,at−1)pθ(ot|st)pθ(rt|st)ds1:T

≥
T∑
t=1

(
E[logpθ(ot|st)]+E[logpθ(rt|st)]︸ ︷︷ ︸

observation and rewards reconstruction

−E[DKL[qφ(st|o≤t,a≤t)||p(st|st−1,at−1)]]︸ ︷︷ ︸
self consistent dynamics

) (1)

Here, the encoder qφ(st|o≤t,a≤t) extracts a low dimensional latent
state st from a sequence of observations and actions, and uses this
latent state space for observation reconstruction pθ(ot|st), rewards
inference (rt|st), and dynamics prediction p(st|st−1,at−1).

RSSM’s accurate prediction has been exploited by Dreamer [1] to solve long horizon tasks in a sample
efficient manner. To minimize its data requirements, Dreamer cycles between interacting with the
environment, training its latent world model, then using its latent world model to “imagine” trajectories
in latent space to optimize its policy. Since its latent representation, which comes from RSSM, is
optimized for the reconstruction of the high dimensional observations, Dreamer is prone to visual
distractors.

2.3 Bisimulation Metrics

In the RL state abstraction literature, stochastic bisimulation is an equivalence relation for partitioning
an MDP’s state space into behaviourally similar clusters. Two states s and s′ are bisimilar if, for every
action a, both states yield the same reward and the same distribution over the next states which are
also bisimilar. The bisimulation metric for MDPs with continuous action spaces [4] softens the exact
bisimulation relation, making it more applicable to noisy observation spaces. The bisimulation metric
distance between two states s and s′ is defined by [4] as

max
a∈A

(
(1−γ)|ras−ras′ |+γW1(P(·|s,a),P(·|s′,a))

)
(2)
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where γ is the discount factor and W1 is the Wasserstein (a.k.a “Earth Mover”) probability metric.
Bisimulation metrics have been applied to deep RL algorithms to learn robustly generalizable represen-
tations [6] without reconstruction. However, operating purely from visual observations, this approach
can’t be used for latent imagination for long-horizon RL tasks due to the inaccuracies of a single-step
(i.e: non-recurrent) latent dynamics model.

3 Method

We propose Deep Bisimulation Dreaming (DBD), an algorithm that incorporates bisimulation metrics
into latent world models to retain the generalizable and robust representations of the former and the
sample efficiency of the latter.

3.1 Learning the world model

Our latent world model is built on top of RSSM [2] and includes all of its components except for
its decoder. From a sequence of observations and actions from an episode, we use the encoder
q(s1:T |o1:T ,a1:T )=

∏T
t=1q(st|ht,ot) to sample the latent state st. The latent states st are used by our

latent world model, which comprises of a deterministic state transition model ht=f(ht−1,st−1,at−1),
a stochastic state transition model st∼p(st|ht), and the rewards model rt∼p(rt|ht,st). Our encoder,
transition models, and rewards model are optimized to maximize the ELBO from equation 1 without
the observation reconstruction term.

All our stochastic networks are Gaussian distributions, parameterized by the outputs of deep neural
networks. Our encoder is deep convolutional neural network [7], our stochastic state model a multi-
layer perceptron (MLP), and our deterministic state model a recurrent neural network. The rewards
model also outputs a Gaussian, but unlike the other three networks, parameterizes only the means, as
opposed to both the means and variances.

Using a latent world model based on RSSM gives us accurate dynamic models that we can use for
optimizing our policy through long horizon dreaming. Thus, our approach retains the sample efficiency
of latent imagination.

3.2 Bisimulation Regularization

We wish to learn a latent state which encodes only task-relevant information. To do this, we follow
a similar approach to [6] and optimize the L1 distance between two latent states s and s′ to their
bisimiulation metric distance

Lbisim=

(
|s−s′|−(1−γ) |ras−ras′ |︸ ︷︷ ︸

rewards difference

−γW2

(
p(·|f(h,s,a))

∣∣∣p(·|f(h′,s′,a))︸ ︷︷ ︸
Transitions under our latent world model

))2

(3)

Intuitively, this loss encourages states which are behaviourally similar with respect to both their reward
schemes and transition dynamics to be close together in latent space. Following [6], we use the
2-Wasserstein probability metricW2 for the transition functions because it admits a simple closed-form
for the Gaussian distributions from our encoder

W2(N (µi,σi),N (µj ,σj))=

√
||µi−µj ||22+||σ

1
2
i −σ

1
2
j ||2F

where ||·||F is the Frobenius norm. Given a batch of stochastic latent states {si} sampled from our
encoder, we minimize the mean pairwise bisimulation loss between the batch and a random permutation
of the batch. Using the reparameterization trick, we can backpropagate through the random sampling
of latent states.

4 Experiments

Through our experiments, we want to investigate the following questions: (1) Can our approach
achieve high rewards in the presence of distractors and generalize to held-out distractors? (2) Does our
representation lead to more accurate latent dynamics and rewards models? and (3) Does our encoder
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(a) T-SNE embedding of feature space
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(b) Performance against held-out distractors

Figure 2: From visual observations with distractors, our approach extracts representations where
pairwise distances in the latent space reflects to differences in task-relevant details (a), enabling it to
achieve high rewards even when facing novel distractors (b).

extract meaningful information from high-dimensional visual observations? We compare against
Dreamer [1], which learns a latent state through the reconstruction of visual inputs.

Tasks with Visual Distractors. We chose to test on the Deep Mind Control Suite’s Cart Pole task
because the ground truth states necessary to solve the task includes only 4 scalars, making it a very
simple task given the ground truth state. However, agents must solve tasks from noisy visual sensory
data with distractors. For each observation, we mask the agent out and replace the background with
grayscaled videos from the Deep Mind Kinetic Dataset [8]. Our training background videos uses
25,000 frames from 1653 videos, coming from the categories “arranging flowers”, “blowing glass”,
and “carving pumpkin” (Figure 2a). Our held-out testing background videos uses 25,000 frames from
414 videos from the categories “brush painting” and “clay pottery making”.

Evaluation Metric. To evaluate the agent’s performance, we measure the agent’s cumulative dis-
counted rewards, averaged over 100 episodes with distractors not seen during training.

Convergence Metric. Since maximizing the variational lower bound [9] includes an observation
reconstruction term, we instead choose to monitor the correlation between our latent states and the 4
scalars describing the ground truth system state (which is hidden from the agent, but we have access to
through the simulation environment). We say that a state representation encodes more task-relevant
details if it correlates with the ground truth state. Specifically, given a collection of ground truth states
and the corresponding collection of latent states, we measure the rank correlation in pairwise Euclidean
distances between two collections. More details on this metric can be found in the supplementary
material.

A task-relevant latent state. Quantitatively, our approach achieves high rewards in the presence of
unseen background videos, suggesting that our representation ignores distractors and extracts task-
relevant latent states (Figure 2b). Qualitatively, behaviourally similar visual states are encoded closer
together in latent space (Figure 2a). In contrast, the baseline fails to separate task-relevant information
from distractors, as a result of maximizing the ELBO of the visual observations through reconstruction.
This result shows that generic representation techniques, such as VAEs [3], may not be well-suited
for RL applications, where extracting only information about rewards and dynamics enables better
generalization.

Efficient rewards and dynamics modeling. We compare our approach’s rewards and dynamics
model loss curve with the baseline in Figure 3a and Figure 3b respectively. The baseline’s rewards loss
is 15% higher than that of our approach, while its dynamics model loss is close to 4 orders of magnitude
larger than ours. Recall the dynamics model is optimized for self-consistency with the KL divergence
from equation 1. Since bisimilar states have identical transition probabilities, a dynamics model
operating on our latent states has a much easier task in predicting dynamics. Indeed, bisimulation
is a state abstraction technique to reduce large state spaces to clusters of bisimilar states, and any
policy, value network, or dynamics model trained on this reduced bisimilar state space will learn more
efficiently. Meanwhile, Dreamer encodes states that are bisimilar but with different visual distractors to
different latent states, putting more burden on the dynamics model to fit this wider variance of latent
states and all its transitions.

4



0 200000 400000 600000
Training Iterations

0.925
0.950
0.975
1.000
1.025
1.050
1.075
1.100

Re
wa

rd
 L

os
s

Algorithm
Ours
Dreamer

(a) Training Rewards Loss
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(b) Training Dynamics Loss (c) Rank Correlation with True States

Figure 3: Our representations achieves more accurate latent world models (a) (b), despite seemingly
not correlating with the ground truth states (c).

Ground Truth State Recovery. A policy observing ground-truth states only requires 4 scalars (the
pole’s angle, angular velocity, the cart’s position, and velocity) to solve the task. In this experiment, we
investigate whether our latent representation correlates with hidden ground truth states. From figure 3c,
we do not observe any meaningful relationship between our latent states or the baseline’s latent states
with ground truth states. We hypothesize that this might be reflective of our rank correlation measure.
Perhaps, a better way to test for correlation might be to train a single layer MLP with no non-linearity
to regress ground truth states from latent embeddings and compare the final regression accuracy.

5 Conclusion

In this work, we have proposed Deep Bisimulation Dreamer, an algorithm for learning task-relevant
latent representations using the bisimulation metric. We show that it performs favorably on continuous
action space robotics tasks within the framework of planning in latent spaces.

Due to the compute requirements of each experiment (approximately 1 day to converge on a GTX
1080 Ti) and limited time constraints, we were not able to test our approach on a wide variety of tasks
with multiple different seeds. Moving forward, it is crucial to make sure our approach learns stably
and robustly achieves high performance on a wide variety of tasks, including more challenging tasks
requiring long horizon reasoning. Given the promising results, we would also like to test with more
challenging colored visual distractors as opposed to just grayscaled distractors. Additionally, though
our approach outperforms Dreamer by a large margin, its absolute performance is still low for the
Cartpole task, whose average successful rewards are at least 600.

An interesting tangent to this current research would be to consider the bisimulation metric as an add-on
service rather than a replacement for observation reconstruction. The bisimulation metric could be
used to optimize the latent space, as performed in this report, in conjunction with the reconstruction
loss. Also, our evaluation excluded optimizing the ELBO since we removed the reconstruction loss.
However, there is budding research [10] in a robust optimization objective that avoids reconstructing
the observations while still lower bounding the original ELBO. This could offer a more robust metric
and optimization objective for representation learning in reinforcement learning.
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6 Supplementary Material

6.1 Rank Correlation Metric

To evaluate the quality of an encoded representation, we devise a metric, order distance. For a set
of encoded representations v1,v2,...,vn and their corresponding ground truth states g1,g2,...,gn, we
can compute the matrices,DTrue andDRep, that specify the pairwise euclidean distances between the
ground truth vectors and between the encoded representations respectively.

By considering the pairwise distance matrices,DTrue andDRep, our metric can be invariant with respect
to different transformations of the data (e.g. rotations, translations, ...). To determine if the pairwise
distance information is preserved, we can consider the order of the nearest neighbors for vi and gi. If
the encoded representations and the ground truth states have the same qualitative pairwise distance
information, then the order of the nearest neighbors for vi and gi will be the same. Otherwise, we can
impose a loss based on how different the orders are. For this implementation, our loss is the following:

Li=−
n∑
j=1

w(π(j,vi))·|π(j,vi)−π(j,gi)|

where π(i,v) represents the position of data point i in the nearest neighbor ordering of v1,...,vn with
respect to v. Additionally, we can weight the accumulated losses by a functionw so that bad orderings
for the points nearby v incur a higher penalty than those that are further away.
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