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Quick Intro
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Hi everyone! I’m Honglin Chen.  

Rising 4th year PhD student @ Columbia 
Physics-based Simulation 
Geometry Processing 
Optimization and (a little bit of) ML 

My 2nd SCA 
But my 1st time presenting here!



What’s optimization (and why should we study it) ? 
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Finding the best feasible solution  
from all the possibilities 

(potentially subject to some constraints)

Inspiration from here 

https://crl.ethz.ch/teaching/computational-fab-19/slides/1-2_NumericalOptimizationReview.pdf


What’s an optimization problem?
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Ingredient 1: optimization variables

?

Inspiration from here 

https://crl.ethz.ch/teaching/computational-fab-19/slides/1-2_NumericalOptimizationReview.pdf


What’s an optimization problem?
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Ingredient 2: objective function

Optimized for running Optimized for flying

Inspiration from here 

https://crl.ethz.ch/teaching/computational-fab-19/slides/1-2_NumericalOptimizationReview.pdf


What’s an optimization problem?
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Ingredient 2: objective function

Optimized for swimming Optimized for cuteness

Inspiration from here 

https://crl.ethz.ch/teaching/computational-fab-19/slides/1-2_NumericalOptimizationReview.pdf


What’s an optimization problem?
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Ingredient 2: objective function

What is this optimized for ?? 🤔 
Inspiration from here 

https://crl.ethz.ch/teaching/computational-fab-19/slides/1-2_NumericalOptimizationReview.pdf


What’s an optimization problem?
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3 components: 

optimization variables that parameterize the space 

an objective function that measures how “good” an 
arbitrary point in parameter space is 

possibly some constraints

Inspiration from here 

https://crl.ethz.ch/teaching/computational-fab-19/slides/1-2_NumericalOptimizationReview.pdf
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Why is optimization so important in graphics?

And many more…

Mesh Parameterization Elastodynamic Simulation

Optimization in Simulation and Geometry
Elastic energy



Who is this course for?
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New to optimization 

New to elastic simulation 

Want to learn about different techniques for 
elastic energy minimization



What will I learn from this course?
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How to minimize an elastic energy (defined on a mesh)? 
Classical techniques  
More advanced optimization techniques 

How to make your optimization run better? 
Common challenges 
Strategies to tackle these challenges  
Know where to look if you want to learn more 

Tips for easy implementations 
Tools and frameworks



Non-Goals of this Course
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This course will not  
Cover how to formulate these energies 

Eris will talk about that in our next course soon!  

Teach you how to minimize an energy on a neural network 

Dive into details on designing a customized solver for a 
specific problem 



Agenda 
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Elastic Energy  

Optimization Basics & Classical Algorithms   

Optimization Methods for Simulation 

✨Challenge 1✨: Handling Nonconvexity  

✨Challenge 2✨: Nontrivial Constraints  

✨Challenge 3✨: Large-scale Optimization 



Elastic Energy

 Elastic Energy 

 Optimization Basics & Classical Algorithms 

 Optimization Methods for Simulation

✨Challenge 1✨: Handling Nonconvexity 

✨Challenge 2✨: Nontrivial Constraints 

✨Challenge 3✨: Large-scale Optimization 
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Elastic Energy is Everywhere
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Cloth 3D Deformable Solids Thin Shells

Rods Surface Parameterization

[Smith et al. 2018][Zhang et al. 2022]

[Bergou et al. 2008]

[Grinspun et al. 2003]

[Smith et al. 2018]



Elastic Energy
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Target Shape Current Shape



Quasistatic Simulation
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Stable Neo-Hookean Flesh Simulation.  
Breannan Smith, Fernando de Goes, and Theodore Kim. ACM Trans. Graph. 2018. 



Dynamic Simulation

18
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Incremental Potential Contact: Intersection- and Inversion-free Large Deformation Dynamics.  
Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele Panozzo, Chenfanfu Jiang, Danny M. Kaufman.   
ACM Trans. Graph. 2020. 



Incremental Potential Contact: Intersection- and Inversion-free Large Deformation Dynamics.  
Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele Panozzo, Chenfanfu Jiang, Danny M. Kaufman.   
ACM Trans. Graph. 2020. 



Elastic Energy as Regularization 
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Eurographics Symposium on Geometry Processing 2021
K. Crane and J. Digne
(Guest Editors)

Volume 40 (2021), Number 5

Normal-Driven Spherical Shape Analogies

Hsueh-Ti Derek Liu and Alec Jacobson
University of Toronoto

:

:

Figure 1: Our normal-driven spherical shape analogy stylizes an input 3D shape (bottom left) by studying how the surface normal of a style
shape (green) relates to the surface normal of a sphere (gray).

Abstract

This paper introduces a new method to stylize 3D geometry. The key observation is that the surface normal is an effective instru-
ment to capture different geometric styles. Centered around this observation, we cast stylization as a shape analogy problem,
where the analogy relationship is defined on the surface normal. This formulation can deform a 3D shape into different styles
within a single framework. One can plug-and-play different target styles by providing an exemplar shape or an energy-based
style description (e.g., developable surfaces). Our surface stylization methodology enables Normal Captures as a geometric
counterpart to material captures (MatCaps) used in rendering, and the prototypical concept of Spherical Shape Analogies as a
geometric counterpart to image analogies in image processing.

1. Introduction

Analogies of the form A : A0 :: B : B0 is a reasoning process that
conveys A is to A0 as B is to B0. This formulation has become a core
technique for creating artistic 2D digital content, such as image
analogies [HJO*01] in Photoshop [Ado21] for image stylization
and the Lit Sphere [SMGG01] (a.k.a. MatCap) in ZBrush [Pix20]
for non-photorealistic renderings. However, leveraging analogies to
stylize 3D geometry is still at a preliminary stage because defining
the analogy relationship on surface meshes requires dealing with
irregular discretizations, curved metrics, and different topologies.

In this paper, we introduce a step towards a more general 3D
shape analogies, named spherical shape analogies. We consider a
specific case where A is a unit sphere. This restriction enables us
to operate on an input mesh B with arbitrary topologies, bound-
aries, and geometric complexity. While not fully general, because
A is restricted to be a sphere, we demonstrate that this formulation
can immediately achieve different geometric styles within a single

framework. In Fig. 1, we show that by providing different target
style shapes A0 to the algorithm, we can turn the input shape B
into different styles. In addition to stylization, our method can en-
compass many existing applications, such as developable surface
approximation and PolyCube deformation.

One key observation in our spherical shape analogies is that
the surface normal is an effective instrument to capture geometric
styles. Thus, we define the analogy relationship based on normals:
we optimize a stylized shape B0 such that the relationship between
the surface normals of B and B0 is the same as the relationship be-
tween the surface normals of A and A0

We realize this by casting it as a simple and effective normal-
driven shape optimization problem which aims at deforming the
input shape towards a set of desired normals. However, such an
optimization problem is often difficult due to the nonlinearity of
unit normals. We draw inspiration from previous works and apply
a change of variables to accelerate the computation: instead of di-

c� 2021 The Author(s)
Computer Graphics Forum c� 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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Shape Stylization
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Shape Stylization
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Local Deformation for Interactive Shape Editing
Honglin Chen

Columbia University
New York City, NY, USA

honglin.chen@columbia.edu

Changxi Zheng
Columbia University

New York City, NY, USA
cxz@cs.columbia.edu

Kevin Wampler
Adobe Research
Seattle, WA, USA

kwampler@adobe.com

Undeformed Interactive edit with local deformation

Figure 1: Ourmethod enables the user to edit shapes in an interactive and physically plausible way. The edit is local, meaning that
the user can focus on one region of the complex scene without worrying about inadvertent changes elsewhere. To visualize the
locality, in the rightmost �gure we highlight the regions where the vertex displacement is larger than 10�3 in red. (Undeformed
scene shapes thanks to [Zhang et al. 2022])

ABSTRACT
We introduce a novel regularization for localizing an elastic-energy-
driven deformation to only those regions being manipulated by the
user. Our local deformation features a natural region of in�uence,
which is automatically adaptive to the geometry of the shape, the
size of the deformation and the elastic energy in use. We further
propose a three-block ADMM-based optimization to e�ciently min-
imize the energy and achieve interactive frame rates. Our approach
avoids the artifacts of other alternative methods, is simple and easy
to implement, does not require tedious control primitive setup and
generalizes across di�erent dimensions and elastic energies. We
demonstrates the e�ectiveness and e�ciency of our localized defor-
mation tool through a variety of local editing scenarios, including
1D, 2D, 3D elasticity and cloth deformation.

CCS CONCEPTS
• Computing methodologies! Mesh geometry models.

KEYWORDS
Local control, shape deformation, elasticity, sparsity, ADMM.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0159-7/23/08. . . $15.00
https://doi.org/10.1145/3588432.3591501

ACM Reference Format:
Honglin Chen, Changxi Zheng, and Kevin Wampler. 2023. Local Deforma-
tion for Interactive Shape Editing. In Special Interest Group on Computer
Graphics and Interactive Techniques Conference Conference Proceedings (SIG-
GRAPH ’23 Conference Proceedings), August 6–10, 2023, Los Angeles, CA, USA.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3588432.3591501

1 INTRODUCTION
Local deformation is a core component in modeling and animation.
In a localized deformation, only the parts of the shape near where
the user is currently manipulating move—everything else stays
still, ensuring that the user can focus entirely on one region of
the shape without worrying about inadvertent changes elsewhere.
However, existing localized deformation tools tend to have practical
impediments for interactive design: they are either too slow to run,
unaware of the geometry, introduce artifacts, or require a careful
control point setup.

When global deformation is acceptable, a widely useful approach
is to solve for the deformation by minimizing an elastic energy de-
�ned over the shape, subject to positional constraints derived from
the user’s input. This paradigm has many advantages. The deforma-
tion accounts for the geometry of the shape, generalizes well to 2D,
3D, and cloth, and the elastic energy can be used to model a wide
range of both real-world and stylized materials. Unfortunately elas-
tic energy minimization is by its nature global, and jointly solves for
all the degrees of freedom in the shape. This necessitates a rigging
step to “pin down” certain aspects of the deformation lest the opti-
mizer move them. This limits the applicability of such methods to
situations where a suitable rig is available, or the region of in�uence
for a deformation is known in advance.
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Local Deformation
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Large Steps in Inverse Rendering of Geometry

BAPTISTE NICOLET, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
ALEC JACOBSON, University of Toronto, Canada
WENZEL JAKOB, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

(a) Initial State (b) Naïve (c) Regularized (d) Ours (e) Ours (with remeshing) (f) Reference

Self-intersection

Fig. 1. (a) Inverse reconstruction of the N�������� bust from a spherical starting guess with 25 rendered views (1 shown). (b) Naïve application of a di�erentiable
renderer produces an unusable tangled mesh when gradient steps pull on the silhoue�e without regard for distortion or self-intersections. (c) Regularization
can alleviate such problems by making the optimization aware of mesh quality. On the flipside, this penalizes non-smooth parts of the geometry and causes
unsatisfactory convergence in gradient-based optimizers. While the final mesh undeniably looks be�er, a closer inspection of the wireframe rendering reveals
countless self-intersections. (d) Our method addresses both problems and converges to a high-quality mesh. (e) Combined with an isotropic remeshing step,
our reconstruction captures fine details of the reference (f). The hyper-parameters of each method were optimized to obtain the best convergence at equal time.
Self-intersections are shown in red.

Inverse reconstruction from images is a central problem in many scienti�c
and engineering disciplines. Recent progress on di�erentiable rendering has
led to methods that can e�ciently di�erentiate the full process of image
formation with respect to millions of parameters to solve such problems via
gradient-based optimization.

At the same time, the availability of cheap derivatives does not necessarily
make an inverse problem easy to solve. Mesh-based representations remain
a particular source of irritation: an adverse gradient step involving vertex
positions could turn parts of the mesh inside-out, introduce numerous local
self-intersections, or lead to inadequate usage of the vertex budget due
to distortion. These types of issues are often irrecoverable in the sense
that subsequent optimization steps will further exacerbate them. In other
words, the optimization lacks robustness due to an objective function with
substantial non-convexity.

Such robustness issues are commonly mitigated by imposing additional
regularization, typically in the form of Laplacian energies that quantify
and improve the smoothness of the current iterate. However, regularization
introduces its own set of problems: solutions must now compromise between
solving the problem and being smooth. Furthermore, gradient steps involving

Authors’ addresses: Baptiste Nicolet, École Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland, baptiste.nicolet@ep�.ch; Alec Jacobson, University of Toronto,
Canada, jacobson@cs.toronto.edu, wenzel.jakob@ep�.ch; Wenzel Jakob, École Poly-
technique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, wenzel.jakob@ep�.ch.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The de�nitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3478513.3480501.

a Laplacian energy resemble Jacobi’s iterative method for solving linear
equations that is known for its exceptionally slow convergence.

We propose a simple and practical alternative that casts di�erentiable
rendering into the framework of preconditioned gradient descent. Our pre-
conditioner biases gradient steps towards smooth solutions without requir-
ing the �nal solution to be smooth. In contrast to Jacobi-style iteration,
each gradient step propagates information among all variables, enabling
convergence using fewer and larger steps.

Our method is not restricted to meshes and can also accelerate the recon-
struction of other representations, where smooth solutions are generally
expected. We demonstrate its superior performance in the context of geo-
metric optimization and texture reconstruction.

CCS Concepts: •Computingmethodologies!Rendering; Shapemod-
eling.

Additional Key Words and Phrases: di�erentiable rendering, geometry re-
construction, Laplacian mesh processing

ACM Reference Format:
Baptiste Nicolet, Alec Jacobson, and Wenzel Jakob. 2021. Large Steps in
Inverse Rendering of Geometry. ACM Trans. Graph. 40, 6, Article 248 (De-
cember 2021), 13 pages. https://doi.org/10.1145/3478513.3480501

ACM Trans. Graph., Vol. 40, No. 6, Article 248. Publication date: December 2021.

Inverse Rendering
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Inverse Rendering



More than just Elastic Energy
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Surface-Filling Curves
[Noma et al. 2024]

Quad Mesh Planarization

Developable Surfaces
[Sellán et al. 2020]

And many more…!

Magnetic Simulation
[Chen et al. 2022]

[Liu et al. 2006]



Optimization Basics
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 Elastic Energy 

 Optimization Basics & Classical Algorithms 

 Optimization Methods for Simulation

✨Challenge 1✨: Handling Nonconvexity 

✨Challenge 2✨: Nontrivial Constraints 

✨Challenge 3✨: Large-scale Optimization 



What is Energy Minimization?
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EnergyOptimization  
Variables
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High Energy 
Undesired State

Low Energy 
Desired State

Spot
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How can I go to the lowest point of 
the energy landscape?



Iterative Optimization 
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Minima

Maxima Saddle 
Point

0

2

-2
-2 0 2

Iterative Process

x

x
x

x…
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Where should I go for 
the next step?
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1. Which direction? 
2. How far should I go?



Search Direction 
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x
d

A descent direction is a vector that points towards a local 
minimum of an objective function. 



Step Size
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x
d

The step size determines how far we should move along the 
search direction.

x
d



Picking the Right Step Size
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Too small: converge 
vert slowly

Too big: overshoot 
and even diverge

f(x) f(x)

x xx* x*



Backtracking Line Search
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Descent Direction Energy Minimization
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-2 0 2

11 Iterations



Classical Algorithms
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 Elastic Energy 

 Optimization Basics & Classical Algorithms 

 Optimization Methods for Simulation

✨Challenge 1✨: Handling Nonconvexity 

✨Challenge 2✨: Nontrivial Constraints 

✨Challenge 3✨: Large-scale Optimization 
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How can you minimize a function 
without knowing much about it?

Assume it is much simpler  
than it really is



Taylor Expansion for Approximation
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If f is continuously twice differentiable, then

Gradient Hessian



Gradient Descent: Use First-order Information
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0

2

-2
-2 0 2



Gradient Descent Can be Slow
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Newton’s Method: Use Second-order Information
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Set the gradient w.r.t. d to be 0

x
d

“Pretend” the function is quadratic:
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Newton’s Method

If the function f is convex,

x
d



Newton’s Method
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Idea: apply a coordinate transformation so that the local energy 
landscape looks more like a “round bowl” 

The gradient now directly points toward the nearby minimizer



Fast Convergence of Newton’s Method 
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Auto-differentiation Libraries
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Easy to compute the gradient  
and the (sparse) Hessian :)



In C++

52Link: https://github.com/patr-schm/TinyAD

Just write out 
the energy



Optimization Methods for Simulation
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 Elastic Energy 

 Optimization Basics & Classical Algorithms 

 Optimization Methods for Simulation

✨Challenge 1✨: Handling Nonconvexity 

✨Challenge 2✨: Nontrivial Constraints 

✨Challenge 3✨: Large-scale Optimization 
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What are the challenges of applying those 
classical optimization methods to simulation?
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Why not just use gradient descent?

The convergence of vanilla gradient descent can be 
very slow in higher dimensions
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Why not just directly use Newton’s method?

Nonconvexity Infeasible points Large-scale

x
d

indefinite
3N x 3N

-1

expensiv
e



Challenge 1:  
Handling Nonconvexity
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 Elastic Energy 

 Optimization Basics & Classical Algorithms 

 Optimization Methods for Simulation

✨Challenge 1✨: Handling Nonconvexity 

✨Challenge 2✨: Nontrivial Constraints 

✨Challenge 3✨: Large-scale Optimization 
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Challenge 1: Handling Nonconvexity

x
d

positive definite

x
d

indefinite

x
d

negative definite



0

2

-2
-2 0 2

Why is Nonconvexity Problematic? 
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Φ2

0

8

Φ1

 
Choose 
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0

2

-2
-2 0 2

Φ2

Φ1

Newton 
Direction



Where does this non-convexity come from?

61

C�����, SIGGRAPH 2022

Dynamic Deformables:
Implementation and Production
Practicalities (Now With Code!)

Instructors:
Theodore Kim, Yale University

David Eberle, Pixar Animation Studios

Built on: April 25, 2024
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Projected Newton

Positive Definite
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Eigenvalue Clamping

[Teran et al. 2005]

63



Eigenvalue Clamping
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x
d

indefinite

xd

Positive Semidefinite



Additive Contribution of Neighboring Elements
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Z1 Z2 Z3

Z1

Z2

Z3

+ +=

Z1 Z2 Z3

Z1

Z2

Z3

+ +=Z1 Z2 Z3

Z1

Z2

Z3

+ +=
Z1 Z2 Z3

Z1

Z2

Z3

+ +=

X

+ Also boundary conditions

The global Hessian can 
often be positive definite  

(X > 0)
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Add a multiple of Identity Matrix

66

[Tikhonov 1943]
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Absolute Eigenvalue Projection

67

[Chen et al. 2024]

(for highly non-convex scenarios) 



Recap: Projected Newton
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Positive Definite



Challenge 2:  
Nontrivial Constraints
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 Elastic Energy 

 Optimization Basics & Classical Algorithms 

 Optimization Methods for Simulation

✨Challenge 1✨: Handling Nonconvexity 

✨Challenge 2✨: Nontrivial Constraints 

✨Challenge 3✨: Large-scale Optimization 
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Nontrivial Constraints as a Barrier Function

0

Undefined  
when x < 0

Barrier term

Infeasible Points
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Example 1: Neo-Hookean Energy

+

0

-
(inversion) 



Strategy 1: Remove the infeasibility in the energy

72

[Smith et al. 2018]

Stable Neo-Hookean Flesh Simulation.  
Breannan Smith, Fernando de Goes, and Theodore Kim. ACM Trans. Graph. 2018. 

+

-



Strategy 1: Remove the infeasibility in the energy

73

Stable even when inversion exists  
before or during the optimization

No guarantee to be inversion-free 



Example 2: Incremental Potential Contact (IPC)
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Incremental Potential Contact: Intersection- and Inversion-free,
Large-Deformation Dynamics

MINCHEN LI, University of Pennsylvania & Adobe Research
ZACHARY FERGUSON and TESEO SCHNEIDER, New York University
TIMOTHY LANGLOIS, Adobe Research
DENIS ZORIN and DANIELE PANOZZO, New York University
CHENFANFU JIANG, University of Pennsylvania
DANNY M. KAUFMAN, Adobe Research

Fig. 1. Squeeze out: Incremental Potential Contact (IPC) enables high-rate time stepping, here with h = 0.01s, of extreme nonlinear elastodynamics with
contact that is intersection- and inversion-free at all time steps, irrespective of the degree of compression and contact. Here a plate compresses and then
forces a collection of complex so� elastic FE models (181K tetrahedra in total, with a neo-Hookean material) through a thin, codimensional obstacle tube. The
models are then compressed entirely together forming a tight mush to fit through the gap and then once through they cleanly separate into a stable pile.

Contacts weave through every aspect of our physical world, from daily
household chores to acts of nature. Modeling and predictive computation of
these phenomena for solid mechanics is important to every discipline con-
cerned with the motion of mechanical systems, including engineering and
animation. Nevertheless, e�ciently time-stepping accurate and consistent
simulations of real-world contacting elastica remains an outstanding com-
putational challenge. To model the complex interaction of deforming solids
in contact we propose Incremental Potential Contact (IPC) – a new model
and algorithm for variationally solving implicitly time-stepped nonlinear

Authors’ addresses: Minchen Li, University of Pennsylvania & Adobe Research,
minchernl@gmail.com; Zachary Ferguson; Teseo Schneider, New York University;
Timothy Langlois, Adobe Research; Denis Zorin; Daniele Panozzo, New York Univer-
sity; Chenfanfu Jiang, University of Pennsylvania; Danny M. Kaufman, Adobe Research,
dannykaufman@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
0730-0301/2020/7-ART49 $15.00
https://doi.org/10.1145/3386569.3392425

elastodynamics. IPC maintains an intersection- and inversion-free trajectory
regardless of material parameters, time step sizes, impact velocities, severity
of deformation, or boundary conditions enforced.

Constructed with a custom nonlinear solver, IPC enables e�cient res-
olution of time-stepping problems with separate, user-exposed accuracy
tolerances that allow independent speci�cation of the physical accuracy of
the dynamics and the geometric accuracy of surface-to-surface conformation.
This enables users to decouple, as needed per application, desired accuracies
for a simulation’s dynamics and geometry.

The resulting time stepper solves contact problems that are intersection-
free (and thus robust), inversion-free, e�cient (at speeds comparable to or
faster than available methods that lack both convergence and feasibility),
and accurate (solved to user-speci�ed accuracies). To our knowledge this
is the �rst implicit time-stepping method, across both the engineering and
graphics literature that can consistently enforce these guarantees as we vary
simulation parameters.

In an extensive comparison of available simulation methods, research
libraries and commercial codes we con�rm that available engineering and
computer graphics methods, while each succeeding admirably in custom-
tuned regimes, often fail with instabilities, egregious constraint violations
and/or inaccurate and implausible solutions, as we vary input materials,
contact numbers and time step. We also exercise IPC across a wide range

ACM Trans. Graph., Vol. 39, No. 4, Article 49. Publication date: July 2020.



Incremental Potential Contact



Strategy 2: Avoid going to infeasible regions
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feasibility-aware line search

Guarantee to satisfy the constraints

Line search is more complex and may 
clamp down the step size too much



Challenge 3:  
Large-scale Optimization
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 Elastic Energy 

 Optimization Basics & Classical Algorithms 

 Optimization Methods for Simulation

✨Challenge 1✨: Handling Nonconvexity 

✨Challenge 2✨: Nontrivial Constraints 

✨Challenge 3✨: Large-scale Optimization 
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Large-Scale Optimization

3N x 3N

-1

expensiv
e



Total Computational Cost 
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Total Cost =  

      Per-step Cost  x  Iterations



Total Cost = Per-step Cost x Iterations

80

Gradient Descent 
(First-order)

Newton’s Method 
(Second-order)

Per-Step Cost Convergence

Low Slow

High Fast

Other Methods?



An Inaccurate Map
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Per-Step Cost

Iters

Newton’s Method

Sobolev
L-BFGS

ADMM /  
Projective Dynamics

PBD

Gradient Descent 
Eigenmodes

And more …!

Block 
Coordinate  

Descent

Exact locations depend 
on the energy, problem size, 

compute resources …



Overall Goal
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Simpler Hessian Better gradient



Strategy 1: Simplify H
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Simpler Hessian



Steepest Descent
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(Gradient Descent) 



Sobolev-Preconditioned Gradient Descent

85
Gpytoolbox (python) libigl (C++)



Limited-memory BFGS (L-BFGS)
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Low-rank Update

Previous Approximation  
(Known)



BFGS

87

(Rank-2 Update)



L-BFGS

88

Use only the last m pairs of    and



Sobolev Gradient 🤝 L-BFGS

89

Blended Cured�asi-Newton for Distortion Optimization

YUFENG ZHU, University of British Columbia & Adobe Research
ROBERT BRIDSON, Autodesk & University of British Columbia
DANNY M. KAUFMAN, Adobe Research
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Fig. 1. Twisting. A stress-test 3D deformation problem. Left: we initialize a 1.5M element tetrahedral mesh bar with a straight rest shape into a tightly
twisted coil, constraining both ends to stay fixed. Right: minimizing the ISO deformation energy to find a constrained equilibrium with (top to bo�om)
Projected Newton (PN), Accelerated �adratic Proxy (AQP) and our Blended Cured quasi-Newton (BCQN) method, we show intermediate shapes at reported
wall-clock time (seconds) and iteration counts at those times (BCQN/AQP/PN). AQP, much slower than BCQN, requires many more iterations to converge
while PN, despite requiring fewer iterations, is well over 25X slower due to per-iteration costs dominated by factorization.

Optimizing distortion energies over a mesh, in two or three dimensions, is a
common and critical problem in physical simulation and geometry processing.
We present three new improvements to the state of the art: a barrier-aware
line-search �lter that cures blocked descent steps due to element barrier terms
and so enables rapid progress; an energy proxy model that adaptively blends
the Sobolev (inverse-Laplacian-processed) gradient and L-BFGS descent to
gain the advantages of both, while avoiding L-BFGS’s current limitations in
distortion optimization tasks; and a characteristic gradient norm providing
a robust and largely mesh- and energy-independent convergence criterion
that avoids wrongful termination when algorithms temporarily slow their
progress. Together these improvements form the basis for Blended CuredQuasi-
Newton (BCQN), a new distortion optimization algorithm. Over a wide range
of problems over all scales we show that BCQN is generally the fastest and
most robust method available, making some previously intractable problems
practical while o�ering up to an order of magnitude improvement in others.

CCS Concepts: • Mathematics of computing → Continuous optimiza-
tion; • Computing methodologies → Shape modeling;

Additional Key Words and Phrases: numerical optimization, geometry opti-
mization, distortion, deformation, elasticity, simulation, preconditioning, fast
solvers
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1 INTRODUCTION
Many fundamental physical and geometric modeling tasks reduce to
minimizing nonlinear measures of distortion over meshes. Simulat-
ing elastic bodies, parametrization, deformation, shape interpolation,
deformable inverse kinematics, and animation all require robust, e�-
cient, and easily automated distortion optimization. By robust wemean
the algorithm should solve every reasonable problem to any accuracy
given commensurate time, and only report success when the accuracy
has truly been achieved. By e�cient we mean rapid convergence in
wall-clock time, even if that may mean more (but cheaper) iterations.
By automated we mean the user needn’t adjust algorithm parameters
or tolerances at all to get good results when going between di�er-
ent problems. With these three attributes, a distortion optimization
algorithm can be reliably used in production software.

We propose a new algorithm, BlendedCuredQuasi-Newton (BCQN),
with three core contributions based on analysis of where prior meth-
ods faced di�culties:

• an adaptively blended quadratic energy proxy for distor-
tion energies that iteratively combines the Sobolev gradient and
a quasi-Newton secant approximation; this allows low cost per
iterate with second-order acceleration while avoiding secant
artifacts where the Laplacian is more robust;

• a barrier-aware �lter on search directions, that gains larger
step sizes and so improved convergence progress in line search
for the common case of iterates where individual elements
degenerate towards collapse; and

ACM Trans. Graph., Vol. 37, No. 4, Article 40. Publication date: August 2018.
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Vertex Block Descent
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Fig. 1. Example simulation results using our solver, both of those methods involve more than 100 million DoFs and 1 million active collisions.

We introduce vertex block descent, a block coordinate descent solution for
the variational form of implicit Euler through vertex-level Gauss-Seidel
iterations. It operates with local vertex position updates that achieve reduc-
tions in global variational energy with maximized parallelism. This forms a
physics solver that can achieve numerical convergence with unconditional
stability and exceptional computation performance. It can also �t in a given
computation budget by simply limiting the iteration count while maintaining
its stability and superior convergence rate.

We present and evaluate our method in the context of elastic body dy-
namics, providing details of all essential components and showing that it
outperforms alternative techniques. In addition, we discuss and show exam-
ples of how our method can be used for other simulation systems, including
particle-based simulations and rigid bodies.

CCS Concepts: • Computing methodologies ! Physical simulation;
Collision detection.

Additional Key Words and Phrases: physics-based simulation, elastic body,
rigid body, time integration

1 INTRODUCTION
Physics-based simulation is the cornerstone of most graphics ap-
plications and the demands from simulation systems to deliver im-
proved stability, accelerated computational performance, and en-
hanced visual realism are ever-growing. Particularly in real-time
graphics applications, the stability and performance requirements
are so strict that realism can sometimes be begrudgingly considered
of secondary importance.

Notwithstanding the substantial amount of research and ground-
breaking discoveries made on physics solvers over the past decades,
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Lake City, UT, USA; Ziheng Liu, NA, University of Utah, Salt Lake City, UT, USA; Yin
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existing methods still leave some things to be desired. They either
deliver high-quality results, but fail to meet the computational de-
mands of many applications or �t in a given computation time by
sacri�cing quality. Stability, on the other hand, is always a challenge,
particularly with strict computation budgets.
In this paper, we introduce vertex block descent (VBD), a physics

solver that o�ers unconditional stability, superior computational
performance than prior methods, and the ability to achieve nu-
merical convergence to an implicit Euler integration. Though our
method is a general solution that can be used for a variety of simu-
lation problems, we present and evaluate it in the context of elastic
body dynamics. Then, we brie�y discuss how our method can be
applied to some other simulation systems, including particle-based
simulations and rigid bodies.
Our VBD method is based on block coordinate descent that per-

forms vertex-based Gauss-Seidel iterations to solve the variational
form of implicit Euler. For elastic body dynamics, each iteration
runs a loop over the mesh vertices, adjusting the position of a single
vertex at a time, temporarily �xing all others. This o�ers maxi-
mized parallelism when coupled with vertex-based mesh coloring,
which can achieve an order of magnitude fewer colors (i.e. serialized
workloads) as compared to element-based parallelization. Our local
position-based updates can ensure that the variational energy is
always reduced. Therefore, our method maintains its stability even
with a single iteration per time step and large time steps, operating
with unconverged solutions containing a large amount of resid-
ual. With more iterations, it converges faster than its alternatives.
Thus, it can more easily �t in a given computation budget, while
maintaining stability with improved convergence.
We present all essential components of using VBD for elastic

body dynamics, including formulations for damping, constraints,
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WRAPD: Weighted Rotation-aware ADMM for Parameterization and
Deformation
GEORGE E. BROWN, University of Minnesota
RAHUL NARAIN, Indian Institute of Technology Delhi

Fig. 1. �asi-static simulation of a neo-Hookean centaur with 98K tetrahedra and 26K vertices, subject to pin constraints. Le� : Initial and rest shapes. Middle:
Selected frames from the first ten seconds of simulation comparing our algorithm to competitors. Top right : Objective value vs. time. Bo�om right : Norm of
position error relative to optimal state vs. time.

Local-global solvers such as ADMM for elastic simulation and geometry
optimization struggle to resolve large rotations such as bending and twisting
modes, and large distortions in the presence of barrier energies. We propose
two improvements to address these challenges. First, we introduce a novel
local-global splitting based on the polar decomposition that separates the
geometric nonlinearity of rotations from the material nonlinearity of the
deformation energy. The resulting ADMM-based algorithm is a combination
of an L-BFGS solve in the global step and proximal updates of element
stretches in the local step. We also introduce a novel method for dynamic
reweighting that is used to adjust element weights at runtime for improved
convergence. With both improved rotation handling and element weighting,
our algorithm is considerably faster than state-of-the-art approaches for
quasi-static simulations. It is also much faster at making early progress in
parameterization problems, making it valuable as an initializer to jump-start
second-order algorithms.

CCS Concepts: • Computing methodologies → Physical simulation.

Additional Key Words and Phrases: quasi-statics, parameterization, geomet-
ric nonlinearity, rotation-aware, reweighting, optimization, ADMM
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1 INTRODUCTION
From quasi-static and dynamic simulation of elastic bodies in physics-
based animation to interactive shape manipulation and mesh pa-
rameterization in geometry processing, recent work has converged
on minimization of deformation energies as a central task in com-
puter graphics. The deformation energy model takes many di�erent
forms in di�erent applications, from physically-based hyperelastic
models such as the neo-Hookean model, to geomerically motivated
distortion metrics such as the symmetric Dirichlet energy. These
energies can be highly nonlinear with respect to stretching defor-
mations, but have the key property that they are invariant to rigid
transformations.
Many popular techniques for minimizing such energies use a

local-global approach [Sorkine and Alexa 2007; Bouaziz et al. 2012;
Overby et al. 2017; Liu et al. 2017; Peng et al. 2018; Zhang et al.
2019; Ouyang et al. 2020], in which chosen per-element quantities
are introduced as additional optimization variables. Optimization is
then performed in an alternating fashion, with a local step acting on
the per-element local variables and a global step updating the vertex
positions.We focus onADMM-PD [Overby et al. 2017], a local-global
algorithm that has been shown to be e�ective for nonlinear energies

ACM Trans. Graph., Vol. 40, No. 4, Article 82. Publication date: August 2021.
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Mixed Variational Finite Elements for Implicit Simulation of
Deformables
TY TRUSTY, University of Toronto, Canada
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Fig. 1. Our new mixed finite element method (MFEM) can produce simulations of elastica with wildly di�erent materials (including rigid) both accurately and
quickly. Our key contribution is that our method is both capable of converging to an accurate solution, matching that of a Newton’s method, as well as
generate visually plausible results when stopped early. This makes it ideal for a plethora of engineering and graphics applications.

We propose and explore a new method for the implicit time integration of
elastica. Key to our approach is the use of a mixed variational principle.
In turn, its �nite element discretization leads to an e�cient and accurate
sequential quadratic programming solver with a superset of the desirable
properties of many previous integration strategies. This framework �ts a
range of elastic constitutive models and remains stable across a wide span
of time step sizes and material parameters (including problems that are
approximately rigid). Our method exhibits convergence on par with full
Newton type solvers and also generates visually plausible results in just a
few iterations comparable to recent fast simulation methods that do not con-
verge. These properties make it suitable for both o�ine accurate simulation
and performant applications with expressive physics. We demonstrate the
e�cacy of our approach on a number of simulated examples.

CCS Concepts: • Computing methodologies! Physical simulation.
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1 INTRODUCTION
In this paper we explore the use of a mixed variational principle to
build an e�cient and general-purpose simulation algorithm for the
physics-based animation of elastica.

Standard approaches for the implicit time integration of continua
discretize with �nite di�erences in time and �nite elements in space.
Recent methods often leverage the observation that, for these im-
plicit time integration choices, each individual time step solve can
then be cast as a minimization problem. In turn, the applied strategy
for solving these optimization problems then leads to a wide range
of well-known simulation algorithms [Li et al. 2019]. For example,
a “standard” �nite element approach involves minimizing an im-
plicit integration energy via Newton’s method while solving the
bottleneck of inner linear-systems solves either via direct or itera-
tive methods. Extended Position-Based Dynamics replaces standard
direct or iterative solvers with iterations (e.g., GS, Jacobi, and/or
SOR) acting on the dual variables (constraint forces) while Projective
Dynamics and its more recent generalizations apply various forms
of ADMM-type solvers to split, augmented Lagrangian forms.

Despite their common variational origin, implicit solvers for elas-
tica exhibit a wide range of features and limitations, and so tradeo�s.

1

Subspace Mixed Finite Elements for Real-Time Heterogeneous
Elastodynamics
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Figure 1:We propose a reduced spacemixed�nite elementmethod (MFEM) built on a Skinning Eigenmode subspace andmaterial-
aware cubature scheme. Our solver is well-suited for simulating scenes with large material and geometric heterogeneities in
real-time. This mammoth geometry is composed of 98,175 vertices and 531,565 tetrahedral elements and with a heterogenous
composition of widely varying materials of muscles (⇢ = 5 ⇥ 105 Pa), joints (⇢ = 1 ⇥ 105 Pa), and bone (⇢ = 1 ⇥ 1010 Pa). The
resulting simulation runs at 120 frames per second (FPS).

ABSTRACT
Real-time elastodynamic solvers are well-suited for the rapid simu-
lation of homogeneous elastic materials, with high-rates generally
enabled by aggressive early termination of timestep solves. Unfortu-
nately, the introduction of strong domain heterogeneities can make
these solvers slow to converge. Stopping the solve short creates visible
damping artifacts and rotational errors. To address these challenges
we develop a reduced mixed �nite element solver that preserves rich
rotational motion, even at low-iteration regimes. Speci�cally, this
solver augments time-step solve optimizations with auxillary stretch

∗Indicates joint �rst authors.
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degrees of freedom at mesh elements, and maintains consistency
with the primary positional degrees of freedoms at mesh nodes via
explicit constraints. We make use of a Skinning Eigenmode subspace
for our positional degrees of freedom. We accelerate integration of
non-linear elastic energies with a cubature approximation, placing
stretch degrees of freedom at cubature points. Across a wide range
of examples we demonstrate that this subspace is particularly well
suited for heterogeneous material simulation. Our resulting method is
a subspace mixed �nite element method completely decoupled from
the resolution of the mesh that is well-suited for real-time simulation
of heterogeneous domains.

KEYWORDS
Mixed FEM, Heterogeneous Materials
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