
Internet Engineering Task Force MMUSIC WG
INTERNET-DRAFT H. Schulzrinne, A. Rao, R. Lanphier
draft-ietf-mmusic-rtsp-09.ps Columbia U./Netscape/RealNetworks

February 2, 1998
Expires: August 2, 1998

Real Time Streaming Protocol (RTSP)

Status of this Memo

This document is an Internet-Draft. Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working
documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced,
or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress”.

To learn the current status of any Internet-Draft, please check the “1id-abstracts.txt” listing contained
in the Internet-Drafts Shadow Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe), munnari.oz.au
(Pacific Rim), ds.internic.net (US East Coast), or ftp.isi.edu (US West Coast).

Distribution of this document is unlimited.

Copyright Notice

Copyright (c) The Internet Society (1998). All Rights Reserved.

Abstract

The Real Time Streaming Protocol, or RTSP, is an application-level protocol for control over the
delivery of data with real-time properties. RTSP provides an extensible framework to enable controlled,
on-demand delivery of real-time data, such as audio and video. Sources of data can include both live
data feeds and stored clips. This protocol is intended to control multiple data delivery sessions, provide
a means for choosing delivery channels such as UDP, multicast UDP and TCP, and provide a means for
choosing delivery mechanisms based upon RTP (RFC 1889).

Contents

1 Introduction 5
1.1 Purpose . 5
1.2 Requirements . 6
1.3 Terminology . 6
1.4 Protocol Properties. 8
1.5 Extending RTSP . 9
1.6 Overall Operation . 10
1.7 RTSP States . 10
1.8 Relationship with Other Protocols . 11

2 Notational Conventions 11

3 Protocol Parameters 11
3.1 RTSP Version . 11
3.2 RTSP URL . 12

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

3.3 Conference Identifiers . 13
3.4 Session Identifiers . 13
3.5 SMPTE Relative Timestamps . 13
3.6 Normal Play Time . 13
3.7 Absolute Time . 14
3.8 Option Tags . 14

3.8.1 Registering New Option Tags with IANA . 15

4 RTSP Message 15
4.1 Message Types . 15
4.2 Message Headers . 15
4.3 Message Body . 16
4.4 Message Length . 16

5 General Header Fields 16

6 Request 16
6.1 Request Line . 17
6.2 Request Header Fields . 17

7 Response 18
7.1 Status-Line . 18

7.1.1 Status Code and Reason Phrase . 18
7.1.2 Response Header Fields. 20

8 Entity 20
8.1 Entity Header Fields . 20
8.2 Entity Body . 22

9 Connections 22
9.1 Pipelining . 22
9.2 Reliability and Acknowledgements 22

10 Method Definitions 23
10.1 OPTIONS . 23
10.2 DESCRIBE . 24
10.3 ANNOUNCE . 25
10.4 SETUP . 26
10.5 PLAY . 27
10.6 PAUSE . 28
10.7 TEARDOWN . 29
10.8 GET PARAMETER . 30
10.9 SET PARAMETER . 30
10.10REDIRECT . 31
10.11RECORD . 31
10.12Embedded (Interleaved) Binary Data . 32

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 2]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

11 Status Code Definitions 33
11.1 Success 2xx. 33

11.1.1 250 Low on Storage Space . 33
11.2 Redirection 3xx . 33
11.3 Client Error 4xx . 33

11.3.1 405 Method Not Allowed . 33
11.3.2 451 Parameter Not Understood . 33
11.3.3 452 Conference Not Found 33
11.3.4 453 Not Enough Bandwidth . .. 33
11.3.5 454 Session Not Found. 33
11.3.6 455 Method Not Valid in This State . 34
11.3.7 456 Header Field Not Valid for Resource . 34
11.3.8 457 Invalid Range . 34
11.3.9 458 Parameter Is Read-Only . 34
11.3.10 459 Aggregate Operation Not Allowed . 34
11.3.11 460 Only Aggregate Operation Allowed . 34
11.3.12 461 Unsupported Transport . .. 34
11.3.13 462 Destination Unreachable . .. 34
11.3.14 551 Option not supported 34

12 Header Field Definitions 34
12.1 Accept .. 35
12.2 Accept-Encoding .. 35
12.3 Accept-Language .. 35
12.4 Allow . 35
12.5 Authorization . 35
12.6 Bandwidth . 37
12.7 Blocksize . 37
12.8 Cache-Control . 37
12.9 Conference . 39
12.10Connection . 39
12.11Content-Base . 39
12.12Content-Encoding . 39
12.13Content-Language .. 39
12.14Content-Length . 39
12.15Content-Location . 40
12.16Content-Type . 40
12.17CSeq . 40
12.18Date . 40
12.19Expires . 40
12.20From . 41
12.21Host . 41
12.22If-Match. 41
12.23If-Modified-Since .. 41
12.24Last-Modified . 41

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 3]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

12.25Location . 41
12.26Proxy-Authenticate. 42
12.27Proxy-Require 42
12.28Public . 42
12.29Range . 42
12.30Referer . 42
12.31Retry-After . 43
12.32Require . 43
12.33RTP-Info . 43
12.34Scale . 44
12.35Speed . 45
12.36Server . 45
12.37Session . 45
12.38Timestamp . 46
12.39Transport . 46
12.40Unsupported. 48
12.41User-Agent . 48
12.42Vary . 49
12.43Via . 49
12.44WWW-Authenticate . 49

13 Caching 49

14 Examples 49
14.1 Media on Demand (Unicast) . 50
14.2 Streaming of a Container file . 51
14.3 Single Stream Container Files . 54
14.4 Live Media Presentation Using Multicast . 55
14.5 Playing media into an existing session . 56
14.6 Recording . 57

15 Syntax 59
15.1 Base Syntax . 60

16 Security Considerations 61

A RTSP Protocol State Machines 62
A.1 Client State Machine . 63
A.2 Server State Machine . 63

B Interaction with RTP 64

C Use of SDP for RTSP Session Descriptions 65
C.1 Definitions . 65

C.1.1 Control URL . 65
C.1.2 Media streams . 66

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 4]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

C.1.3 Payload type(s) . 66
C.1.4 Format-specific parameters . 66
C.1.5 Range of presentation . 66
C.1.6 Time of availability .. 67
C.1.7 Connection Information . 67
C.1.8 Entity Tag .. 67

C.2 Aggregate Control Not Available . 67
C.3 Aggregate Control Available . 68

D Minimal RTSP implementation 68
D.1 Client . 68

D.1.1 Basic Playback . 69
D.1.2 Authentication-enabled . 70

D.2 Server . 70
D.2.1 Basic Playback . 70
D.2.2 Authentication-enabled . 71

E Author Addresses 71

F Acknowledgements 72

1 Introduction

1.1 Purpose

The Real-Time Streaming Protocol (RTSP) establishes and controls either a single or several time-synchronized
streams of continuous media such as audio and video. It does not typically deliver the continuous streams
itself, although interleaving of the continuous media stream with the control stream is possible (see Section
10.12). In other words, RTSP acts as a “network remote control” for multimedia servers.

The set of streams to be controlled is defined by a presentation description. This memorandum does not
define a format for a presentation description.

There is no notion of an RTSP connection; instead, a server maintains a session labeled by an identifier.
An RTSP session is in no way tied to a transport-level connection such as a TCP connection. During an
RTSP session, an RTSP client may open and close many reliable transport connections to the server to issue
RTSP requests. Alternatively, it may use a connectionless transport protocol such as UDP.

The streams controlled by RTSP may use RTP [1], but the operation of RTSP does not depend on the
transport mechanism used to carry continuous media.

The protocol is intentionally similar in syntax and operation to HTTP/1.1 [2] so that extension mecha-
nisms to HTTP can in most cases also be added to RTSP. However, RTSP differs in a number of important
aspects from HTTP:

� RTSP introduces a number of new methods and has a different protocol identifier.

� An RTSP server needs to maintain state by default in almost all cases, as opposed to the stateless
nature of HTTP.

� Both an RTSP server and client can issue requests.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 5]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

� Data is carried out-of-band by a different protocol. (There is an exception to this.)

� RTSP is defined to use ISO 10646 (UTF-8) rather than ISO 8859-1, consistent with current HTML
internationalization efforts [3].

� The Request-URI always contains the absolute URI. Because of backward compatibility with a his-
torical blunder, HTTP/1.1 [2] carries only the absolute path in the request and puts the host name in a
separate header field.

This makes “virtual hosting” easier, where a single host with one IP address hosts several document trees.

The protocol supports the following operations:

Retrieval of media from media server: The client can request a presentation description via HTTP or
some other method. If the presentation is being multicast, the presentation description contains the
multicast addresses and ports to be used for the continuous media. If the presentation is to be sent
only to the client via unicast, the client provides the destination for security reasons.

Invitation of a media server to a conference:A media server can be “invited” to join an existing confer-
ence, either to play back media into the presentation or to record all or a subset of the media in a
presentation. This mode is useful for distributed teaching applications. Several parties in the confer-
ence may take turns “pushing the remote control buttons”.

Addition of media to an existing presentation: Particularly for live presentations, it is useful if the server
can tell the client about additional media becoming available.

RTSP requests may be handled by proxies, tunnels and caches as in HTTP/1.1 [2].

1.2 Requirements

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described
in RFC 2119 [4].

1.3 Terminology

Some of the terminology has been adopted from HTTP/1.1 [2]. Terms not listed here are defined as in
HTTP/1.1.

Aggregate control: The control of the multiple streams using a single timeline by the server. For au-
dio/video feeds, this means that the client may issue a single play or pause message to control both
the audio and video feeds.

Conference: a multiparty, multimedia presentation, where “multi” implies greater than or equal to one.

Client: The client requests continuous media data from the media server.

Connection: A transport layer virtual circuit established between two programs for the purpose of commu-
nication.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 6]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

Container file: A file which may contain multiple media streams which often comprise a presentation
when played together. RTSP servers may offer aggregate control on these files, though the concept of
a container file is not embedded in the protocol.

Continuous media: Data where there is a timing relationship between source and sink; that is, the sink
must reproduce the timing relationship that existed at the source. The most common examples of
continuous media are audio and motion video. Continuous media can bereal-time (interactive), where
there is a “tight” timing relationship between source and sink, orstreaming (playback), where the
relationship is less strict.

Entity: The information transferred as the payload of a request or response. An entity consists of metain-
formation in the form of entity-header fields and content in the form of an entity-body, as described
in Section 8.

Media initialization: Datatype/codec specific initialization. This includes such things as clockrates, color
tables, etc. Any transport-independent information which is required by a client for playback of a
media stream occurs in the media initialization phase of stream setup.

Media parameter: Parameter specific to a media type that may be changed before or during stream play-
back.

Media server: The server providing playback or recording services for one or more media streams. Differ-
ent media streams within a presentation may originate from different media servers. A media server
may reside on the same or a different host as the web server the presentation is invoked from.

Media server indirection: Redirection of a media client to a different media server.

(Media) stream: A single media instance, e.g., an audio stream or a video stream as well as a single white-
board or shared application group. When using RTP, a stream consists of all RTP and RTCP pack-
ets created by a source within an RTP session. This is equivalent to the definition of a DSM-CC
stream([5]).

Message:The basic unit of RTSP communication, consisting of a structured sequence of octets matching
the syntax defined in Section 15 and transmitted via a connection or a connectionless protocol.

Participant: Member of a conference. A participant may be a machine, e.g., a media record or playback
server.

Presentation: A set of one or more streams presented to the client as a complete media feed, using a
presentation description as defined below. In most cases in the RTSP context, this implies aggregate
control of those streams, but does not have to.

Presentation description: A presentation description contains information about one or more media streams
within a presentation, such as the set of encodings, network addresses and information about the con-
tent. Other IETF protocols such as SDP (RFC XXXX [6]) use the term “session” for a live presenta-
tion. The presentation description may take several different formats, including but not limited to the
session description format SDP.

Response:An RTSP response. If an HTTP response is meant, that is indicated explicitly.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 7]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

Request: An RTSP request. If an HTTP request is meant, that is indicated explicitly.

RTSP session:A complete RTSP “transaction”, e.g., the viewing of a movie. A session typically consists
of a client setting up a transport mechanism for the continuous media stream (SETUP), starting the
stream withPLAY or RECORD, and closing the stream withTEARDOWN.

Transport initialization: The negotiation of transport information (e.g., port numbers, transport protocols)
between the client and the server.

1.4 Protocol Properties

RTSP has the following properties:

Extendable: New methods and parameters can be easily added to RTSP.

Easy to parse: RTSP can be parsed by standard HTTP or MIME parsers.

Secure: RTSP re-uses web security mechanisms, either at the transport level (TLS, RFC XXXX [7]) or
within the protocol itself. All HTTP authentication mechanisms such as basic (RFC 2068 [2, Sec-
tion 11.1]) and digest authentication (RFC 2069 [8]) are directly applicable.

Transport-independent: RTSP may use either an unreliable datagram protocol (UDP) (RFC 768 [9]), a
reliable datagram protocol (RDP, RFC 1151, not widely used [10]) or a reliable stream protocol such
as TCP (RFC 793 [11]) as it implements application-level reliability.

Multi-server capable: Each media stream within a presentation can reside on a different server. The client
automatically establishes several concurrent control sessions with the different media servers. Media
synchronization is performed at the transport level.

Control of recording devices: The protocol can control both recording and playback devices, as well as
devices that can alternate between the two modes (“VCR”).

Separation of stream control and conference initiation: Stream control is divorced from inviting a me-
dia server to a conference. The only requirement is that the conference initiation protocol either
provides or can be used to create a unique conference identifier. In particular, SIP [12] or H.323 [13]
may be used to invite a server to a conference.

Suitable for professional applications: RTSP supports frame-level accuracy through SMPTE time stamps
to allow remote digital editing.

Presentation description neutral: The protocol does not impose a particular presentation description or
metafile format and can convey the type of format to be used. However, the presentation description
must contain at least one RTSP URI.

Proxy and firewall friendly: The protocol should be readily handled by both application and transport-
layer (SOCKS [14]) firewalls. A firewall may need to understand theSETUP method to open a
“hole” for the UDP media stream.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 8]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

HTTP-friendly: Where sensible, RTSP reuses HTTP concepts, so that the existing infrastructure can be
reused. This infrastructure includes PICS (Platform for Internet Content Selection [15, 16]) for asso-
ciating labels with content. However, RTSP does not just add methods to HTTP since the controlling
continuous media requires server state in most cases.

Appropriate server control: If a client can start a stream, it must be able to stop a stream. Servers should
not start streaming to clients in such a way that clients cannot stop the stream.

Transport negotiation: The client can negotiate the transport method prior to actually needing to process
a continuous media stream.

Capability negotiation: If basic features are disabled, there must be some clean mechanism for the client
to determine which methods are not going to be implemented. This allows clients to present the
appropriate user interface. For example, if seeking is not allowed, the user interface must be able to
disallow moving a sliding position indicator.

An earlier requirement in RTSP was multi-client capability. However, it was determined that a better approach

was to make sure that the protocol is easily extensible to the multi-client scenario. Stream identifiers can be used

by several control streams, so that “passing the remote” would be possible. The protocol would not address how

several clients negotiate access; this is left to either a “social protocol” or some other floor control mechanism.

1.5 Extending RTSP

Since not all media servers have the same functionality, media servers by necessity will support different
sets of requests. For example:

� A server may only be capable of playback thus has no need to support theRECORD request.

� A server may not be capable of seeking (absolute positioning) if it is to support live events only.

� Some servers may not support setting stream parameters and thus not supportGET PARAMETER
andSET PARAMETER.

A server SHOULD implement all header fields described in Section 12.
It is up to the creators of presentation descriptions not to ask the impossible of a server. This situation

is similar in HTTP/1.1 [2], where the methods described in [H19.6] are not likely to be supported across all
servers.

RTSP can be extended in three ways, listed here in order of the magnitude of changes supported:

� Existing methods can be extended with new parameters, as long as these parameters can be safely
ignored by the recipient. (This is equivalent to adding new parameters to an HTML tag.) If the client
needs negative acknowledgement when a method extension is not supported, a tag corresponding to
the extension may be added in theRequire: field (see Section 12.32).

� New methods can be added. If the recipient of the message does not understand the request, it responds
with error code 501 (Not implemented) and the sender should not attempt to use this method again.
A client may also use theOPTIONS method to inquire about methods supported by the server. The
server SHOULD list the methods it supports using thePublic response header.

� A new version of the protocol can be defined, allowing almost all aspects (except the position of the
protocol version number) to change.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 9]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

1.6 Overall Operation

Each presentation and media stream may be identified by an RTSP URL. The overall presentation and the
properties of the media the presentation is made up of are defined by a presentation description file, the
format of which is outside the scope of this specification. The presentation description file may be obtained
by the client using HTTP or other means such as email and may not necessarily be stored on the media
server.

For the purposes of this specification, a presentation description is assumed to describe one or more
presentations, each of which maintains a common time axis. For simplicity of exposition and without loss
of generality, it is assumed that the presentation description contains exactly one such presentation. A
presentation may contain several media streams.

The presentation description file contains a description of the media streams making up the presenta-
tion, including their encodings, language, and other parameters that enable the client to choose the most
appropriate combination of media. In this presentation description, each media stream that is individually
controllable by RTSP is identified by an RTSP URL, which points to the media server handling that par-
ticular media stream and names the stream stored on that server. Several media streams can be located on
different servers; for example, audio and video streams can be split across servers for load sharing. The
description also enumerates which transport methods the server is capable of.

Besides the media parameters, the network destination address and port need to be determined. Several
modes of operation can be distinguished:

Unicast: The media is transmitted to the source of the RTSP request, with the port number chosen by the
client. Alternatively, the media is transmitted on the same reliable stream as RTSP.

Multicast, server chooses address:The media server picks the multicast address and port. This is the
typical case for a live or near-media-on-demand transmission.

Multicast, client chooses address:If the server is to participate in an existing multicast conference, the
multicast address, port and encryption key are given by the conference description, established by
means outside the scope of this specification.

1.7 RTSP States

RTSP controls a stream which may be sent via a separate protocol, independent of the control channel. For
example, RTSP control may occur on a TCP connection while the data flows via UDP. Thus, data delivery
continues even if no RTSP requests are received by the media server. Also, during its lifetime, a single media
stream may be controlled by RTSP requests issued sequentially on different TCP connections. Therefore,
the server needs to maintain “session state” to be able to correlate RTSP requests with a stream. The state
transitions are described in Section A.

Many methods in RTSP do not contribute to state. However, the following play a central role in defin-
ing the allocation and usage of stream resources on the server:SETUP, PLAY, RECORD, PAUSE, and
TEARDOWN.

SETUP: Causes the server to allocate resources for a stream and start an RTSP session.

PLAY and RECORD: Starts data transmission on a stream allocated viaSETUP.

PAUSE: Temporarily halts a stream without freeing server resources.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 10]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

TEARDOWN: Frees resources associated with the stream. The RTSP session ceases to exist on the server.

RTSP methods that contribute to state use theSession header field (Section 12.37) to identify the
RTSP session whose state is being manipulated. The server generates session identifiers in response
to SETUP requests (Section 10.4).

1.8 Relationship with Other Protocols

RTSP has some overlap in functionality with HTTP. It also may interact with HTTP in that the initial
contact with streaming content is often to be made through a web page. The current protocol specification
aims to allow different hand-off points between a web server and the media server implementing RTSP. For
example, the presentation description can be retrieved using HTTP or RTSP, which reduces roundtrips in
web-browser-based scenarios, yet also allows for standalone RTSP servers and clients which do not rely on
HTTP at all.

However, RTSP differs fundamentally from HTTP in that data delivery takes place out-of-band in a
different protocol. HTTP is an asymmetric protocol where the client issues requests and the server responds.
In RTSP, both the media client and media server can issue requests. RTSP requests are also not stateless; they
may set parameters and continue to control a media stream long after the request has been acknowledged.

Re-using HTTP functionality has advantages in at least two areas, namely security and proxies. The require-

ments are very similar, so having the ability to adopt HTTP work on caches, proxies and authentication is valuable.

While most real-time media will use RTP as a transport protocol, RTSP is not tied to RTP.
RTSP assumes the existence of a presentation description format that can express both static and tem-

poral properties of a presentation containing several media streams.

2 Notational Conventions

Since many of the definitions and syntax are identical to HTTP/1.1, this specification only points to the
section where they are defined rather than copying it. For brevity, [HX.Y] is to be taken to refer to Section
X.Y of the current HTTP/1.1 specification (RFC 2068 [2]).

All the mechanisms specified in this document are described in both prose and an augmented Backus-
Naur form (BNF) similar to that used in [H2.1]. It is described in detail in RFC 2234 [17], with the difference
that this RTSP specification maintains the “1#” notation for comma-separated lists.

In this draft, we use indented and smaller-type paragraphs to provide background and motivation. This
is intended to give readers who were not involved with the formulation of the specification an understanding
of why things are the way that they are in RTSP.

3 Protocol Parameters

3.1 RTSP Version

[H3.1] applies, with HTTP replaced by RTSP.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 11]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

3.2 RTSP URL

The “rtsp”, “rtspu” and “rtsps” schemes are used to refer to network resources via the RTSP protocol. This
section defines the scheme-specific syntax and semantics for RTSP URLs.

rtsp URL = (”rtsp:” j ”rtspu:” j ”rtsps:”)
”//” host [”:” port] [abs path]

host = <A legal Internet host domain name of IP address
(in dotted decimal form), as defined by Section 2.1
of RFC 1123 [18]>

port = *DIGIT

abs path is defined in [H3.2.1].

Note that fragment and query identifiers do not have a well-defined meaning at this time, with the interpretation

left to the RTSP server.

The schemertsp requires that commands are issued via a reliable protocol (within the Internet, TCP),
while the schemertspu identifies an unreliable protocol (within the Internet, UDP). The schemertsps
indicates that a TCP connection secured by TLS (RFC XXXX) [7] must be used.

If the port is empty or not given, port 554 is assumed. The semantics are that the identified resource can
be controlled by RTSP at the server listening for TCP (scheme “rtsp”) connections or UDP (scheme “rtspu”)
packets on thatport of host, and theRequest-URI for the resource isrtsp URL.

The use of IP addresses in URLs SHOULD be avoided whenever possible (see RFC 1924 [19]).
A presentation or a stream is identified by a textual media identifier, using the character set and escape

conventions [H3.2] of URLs (RFC 1738 [20]). URLs may refer to a stream or an aggregate of streams, i.e., a
presentation. Accordingly, requests described in Section 10 can apply to either the whole presentation or an
individual stream within the presentation. Note that some request methods can only be applied to streams,
not presentations and vice versa.

For example, the RTSP URL:

rtsp://media.example.com:554/twister/audiotrack

identifies the audio stream within the presentation “twister”, which can be controlled via RTSP requests
issued over a TCP connection to port 554 of hostmedia.example.com .

Also, the RTSP URL:

rtsp://media.example.com:554/twister

identifies the presentation “twister”, which may be composed of audio and video streams.

This does not imply a standard way to reference streams in URLs. The presentation description defines the

hierarchical relationships in the presentation and the URLs for the individual streams. A presentation description

may name a stream “a.mov” and the whole presentation “b.mov”.

The path components of the RTSP URL are opaque to the client and do not imply any particular file
system structure for the server.

This decoupling also allows presentation descriptions to be used with non-RTSP media control protocols simply

by replacing the scheme in the URL.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 12]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

3.3 Conference Identifiers

Conference identifiers are opaque to RTSP and are encoded using standard URI encoding methods (i.e.,
LWS is escaped with %). They can contain any octet value. The conference identifier MUST be globally
unique. For H.323, the conferenceID value is to be used.

conference-id = 1*xchar

Conference identifiers are used to allow RTSP sessions to obtain parameters from multimedia conferences the

media server is participating in. These conferences are created by protocols outside the scope of this specification,

e.g., H.323 [13] or SIP [12]. Instead of the RTSP client explicitly providing transport information, for example, it

asks the media server to use the values in the conference description instead.

3.4 Session Identifiers

Session identifiers are opaque strings of arbitrary length. Linear white space must be URL-escaped. A
session identifier MUST be chosen randomly and MUST be at least eight octets long to make guessing it
more difficult. (See Section 16.)

session-id = 1*(ALPHA j DIGIT j safe)

3.5 SMPTE Relative Timestamps

A SMPTE relative timestamp expresses time relative to the start of the clip. Relative timestamps are ex-
pressed as SMPTE time codes for frame-level access accuracy. The time code has the format

hours:minutes:seconds:frames.subframes,

with the origin at the start of the clip. The default smpte format is“SMPTE 30 drop” format, with frame
rate is 29.97 frames per second. Other SMPTE codes MAY be supported (such as ”SMPTE 25”) through
the use of alternative use of ”smpte time”. For the “frames” field in the time value can assume the values
0 through 29. The difference between 30 and 29.97 frames per second is handled by dropping the first two
frame indices (values 00 and 01) of every minute, except every tenth minute. If the frame value is zero, it
may be omitted. Subframes are measured in one-hundredth of a frame.

smpte-range = smpte-type ”=” smpte-time ”-” [smpte-time]
smpte-type = ”smpte” j ”smpte-30-drop” j ”smpte-25” ; other timecodes may be added
smpte-time = 1*2DIGIT ”:” 1*2DIGIT ”:” 1*2DIGIT [”:” 1*2DIGIT] [”.” 1*2DIGIT]

Examples:

smpte=10:12:33:20-
smpte=10:07:33-
smpte=10:07:00-10:07:33:05.01
smpte-25=10:07:00-10:07:33:05.01

3.6 Normal Play Time

Normal play time (NPT) indicates the stream absolute position relative to the beginning of the presentation.
The timestamp consists of a decimal fraction. The part left of the decimal may be expressed in either seconds

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 13]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

or hours, minutes, and seconds. The part right of the decimal point measures fractions of a second.
The beginning of a presentation corresponds to 0.0 seconds. Negative values are not defined. The special

constantnow is defined as the current instant of a live event. It may be used only for live events.
NPT is defined as in DSM-CC: “Intuitively, NPT is the clock the viewer associates with a program. It is

often digitally displayed on a VCR. NPT advances normally when in normal play mode (scale = 1), advances
at a faster rate when in fast scan forward (high positive scale ratio), decrements when in scan reverse (high
negative scale ratio) and is fixed in pause mode. NPT is (logically) equivalent to SMPTE time codes.” [5]

npt-range = (npt-time ”-” [npt-time]) j (”-” npt-time)
npt-time = ”now” j npt-sec j npt-hhmmss
npt-sec = 1*DIGIT [”.” *DIGIT]
npt-hhmmss = npt-hh ”:” npt-mm ”:” npt-ss [”.” *DIGIT]
npt-hh = 1*DIGIT ; any positive number
npt-mm = 1*2DIGIT ; 0-59
npt-ss = 1*2DIGIT ; 0-59

Examples:

npt=123.45-125
npt=12:05:35.3-
npt=now-

The syntax conforms to ISO 8601. The npt-sec notation is optimized for automatic generation, the ntp-hhmmss

notation for consumption by human readers. The “now” constant allows clients to request to receive the live feed

rather than the stored or time-delayed version. This is needed since neither absolute time nor zero time are appro-

priate for this case.

3.7 Absolute Time

Absolute time is expressed as ISO 8601 timestamps, using UTC (GMT). Fractions of a second may be
indicated.

utc-range = ”clock” ”=” utc-time ”-” [utc-time]
utc-time = utc-date ”T” utc-time ”Z”
utc-date = 8DIGIT ; < YYYYMMDD >

utc-time = 6DIGIT [”.” fraction] ; < HHMMSS.fraction >

Example for November 8, 1996 at 14h37 and 20 and a quarter seconds UTC:

19961108T143720.25Z

3.8 Option Tags

Option tags are unique identifiers used to designate new options in RTSP. These tags are used in inRequire
(Section 12.32) andProxy-Require (Section 12.27) header fields.
Syntax:

option-tag = 1*xchar

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 14]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

The creator of a new RTSP option should either prefix the option with a reverse domain name (e.g.,
“com.foo.mynewfeature” is an apt name for a feature whose inventor can be reached at “foo.com”), or
register the new option with the Internet Assigned Numbers Authority (IANA).

3.8.1 Registering New Option Tags with IANA

When registering a new RTSP option, the following information should be provided:

� Name and description of option. The name may be of any length, but SHOULD be no more than
twenty characters long. The name MUST not contain any spaces, control characters or periods.

� Indication of who has change control over the option (for example, IETF, ISO, ITU-T, other interna-
tional standardization bodies, a consortium or a particular company or group of companies);

� A reference to a further description, if available, for example (in order of preference) an RFC, a
published paper, a patent filing, a technical report, documented source code or a computer manual;

� For proprietary options, contact information (postal and email address);

4 RTSP Message

RTSP is a text-based protocol and uses the ISO 10646 character set in UTF-8 encoding (RFC 2279 [21]).
Lines are terminated by CRLF, but receivers should be prepared to also interpret CR and LF by themselves
as line terminators.

Text-based protocols make it easier to add optional parameters in a self-describing manner. Since the number
of parameters and the frequency of commands is low, processing efficiency is not a concern. Text-based protocols,
if done carefully, also allow easy implementation of research prototypes in scripting languages such as Tcl, Visual
Basic and Perl.

The 10646 character set avoids tricky character set switching, but is invisible to the application as long as US-

ASCII is being used. This is also the encoding used for RTCP. ISO 8859-1 translates directly into Unicode with

a high-order octet of zero. ISO 8859-1 characters with the most-significant bit set are represented as 1100001x

10xxxxxx. (See RFC 2279 [21])

RTSP messages can be carried over any lower-layer transport protocol that is 8-bit clean.
Requests contain methods, the object the method is operating upon and parameters to further describe

the method. Methods are idempotent, unless otherwise noted. Methods are also designed to require little or
no state maintenance at the media server.

4.1 Message Types

See [H4.1]

4.2 Message Headers

See [H4.2]

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 15]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

4.3 Message Body

See [H4.3]

4.4 Message Length

When a message body is included with a message, the length of that body is determined by one of the
following (in order of precedence):

1. Any response message which MUST NOT include a message body (such as the 1xx, 204, and 304
responses) is always terminated by the first empty line after the header fields, regardless of the entity-
header fields present in the message. (Note: An empty line consists of only CRLF.)

2. If a Content-Length header field (section 12.14) is present, its value in bytes represents the length of
the message-body. If this header field is not present, a value of zero is assumed.

3. By the server closing the connection. (Closing the connection cannot be used to indicate the end of a
request body, since that would leave no possibility for the server to send back a response.)

Note that RTSP does not (at present) support the HTTP/1.1 “chunked” transfer coding(see [H3.6]) and
requires the presence of theContent-Length header field.

Given the moderate length of presentation descriptions returned, the server should always be able to determine

its length, even if it is generated dynamically, making the chunked transfer encoding unnecessary. Even though

Content-Length must be present if there is any entity body, the rules ensure reasonable behavior even if the length

is not given explicitly.

5 General Header Fields

See [H4.5], except thatPragma, Transfer-Encoding andUpgrade headers are not defined:

general-header = Cache-Control ; Section 12.8
j Connection ; Section 12.10
j Date ; Section 12.18
j Via ; Section 12.43

6 Request

A request message from a client to a server or vice versa includes, within the first line of that message, the
method to be applied to the resource, the identifier of the resource, and the protocol version in use.

Request = Request-Line ; Section 6.1
*(general-header ; Section 5
j request-header ; Section 6.2
j entity-header) ; Section 8.1

CRLF
[message-body] ; Section 4.3

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 16]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

6.1 Request Line

Request-Line = Method SP Request-URI SP RTSP-Version CRLF

Method = "DESCRIBE" ; Section 10.2
j "ANNOUNCE" ; Section 10.3
j "GET PARAMETER" ; Section 10.8
j "OPTIONS" ; Section 10.1
j "PAUSE" ; Section 10.6
j "PLAY" ; Section 10.5
j "RECORD" ; Section 10.11
j "REDIRECT" ; Section 10.10
j "SETUP" ; Section 10.4
j "SET PARAMETER" ; Section 10.9
j "TEARDOWN" ; Section 10.7
j extension-method

extension-method = token

Request-URI = "*" | absolute_URI

RTSP-Version = "RTSP" "/" 1*DIGIT "." 1*DIGIT

6.2 Request Header Fields

request-header = Accept ; Section 12.1
j Accept-Encoding ; Section 12.2
j Accept-Language ; Section 12.3
j Authorization ; Section 12.5
j From ; Section 12.20
j If-Modified-Since ; Section 12.23
j Range ; Section 12.29
j Referer ; Section 12.30
j User-Agent ; Section 12.41

Note that in contrast to HTTP/1.1 [2], RTSP requests always contain the absolute URL (that is, including
the scheme, host and port) rather than just the absolute path.

HTTP/1.1 requires servers to understand the absolute URL, but clients are supposed to use theHost request

header. This is purely needed for backward-compatibility with HTTP/1.0 servers, a consideration that does not apply

to RTSP.

The asterisk “*” in the Request-URI means that the request does not apply to a particular resource, but
to the server itself, and is only allowed when the method used does not necessarily apply to a resource. One
example would be:

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 17]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

OPTIONS * RTSP/1.0

7 Response

[H6] applies except thatHTTP-Version is replaced byRTSP-Version. Also, RTSP defines additional
status codes and does not define some HTTP codes. The valid response codes and the methods they can be
used with are defined in Table 1.

After receiving and interpreting a request message, the recipient responds with an RTSP response mes-
sage.

Response = Status-Line ; Section 7.1
*(general-header ; Section 5
j response-header ; Section 7.1.2
j entity-header) ; Section 8.1

CRLF
[message-body] ; Section 4.3

7.1 Status-Line

The first line of a Response message is theStatus-Line, consisting of the protocol version followed by a
numeric status code, and the textual phrase associated with the status code, with each element separated by
SP characters. NoCR or LF is allowed except in the final CRLF sequence.

Status-Line = RTSP-Version SP Status-Code SP Reason-Phrase CRLF

7.1.1 Status Code and Reason Phrase

The Status-Code element is a 3-digit integer result code of the attempt to understand and satisfy the request.
These codes are fully defined in Section 11. TheReason-Phrase is intended to give a short textual de-
scription of the Status-Code. TheStatus-Code is intended for use by automata and the Reason-Phrase is
intended for the human user. The client is not required to examine or display theReason-Phrase.

The first digit of theStatus-Code defines the class of response. The last two digits do not have any
categorization role. There are 5 values for the first digit:

� 1xx: Informational - Request received, continuing process

� 2xx: Success - The action was successfully received, understood, and accepted

� 3xx: Redirection - Further action must be taken in order to complete the request

� 4xx: Client Error - The request contains bad syntax or cannot be fulfilled

� 5xx: Server Error - The server failed to fulfill an apparently valid request

The individual values of the numeric status codes defined for RTSP/1.0, and an example set of corre-
spondingReason-Phrase’s, are presented below. The reason phrases listed here are only recommended
– they may be replaced by local equivalents without affecting the protocol. Note that RTSP adopts most
HTTP/1.1 [2] status codes and adds RTSP-specific status codes starting at x50 to avoid conflicts with newly
defined HTTP status codes.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 18]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

Status-Code = ”100” ; Continue
j ”200” ; OK
j ”201” ; Created
j ”250” ; Low on Storage Space
j ”300” ; Multiple Choices
j ”301” ; Moved Permanently
j ”302” ; Moved Temporarily
j ”303” ; See Other
j ”304” ; Not Modified
j ”305” ; Use Proxy
j ”400” ; Bad Request
j ”401” ; Unauthorized
j ”402” ; Payment Required
j ”403” ; Forbidden
j ”404” ; Not Found
j ”405” ; Method Not Allowed
j ”406” ; Not Acceptable
j ”407” ; Proxy Authentication Required
j ”408” ; Request Time-out
j ”410” ; Gone
j ”411” ; Length Required
j ”412” ; Precondition Failed
j ”413” ; Request Entity Too Large
j ”414” ; Request-URI Too Large
j ”415” ; Unsupported Media Type
j ”451” ; Parameter Not Understood
j ”452” ; Conference Not Found
j ”453” ; Not Enough Bandwidth
j ”454” ; Session Not Found
j ”455” ; Method Not Valid in This State
j ”456” ; Header Field Not Valid for Resource
j ”457” ; Invalid Range
j ”458” ; Parameter Is Read-Only
j ”459” ; Aggregate operation not allowed
j ”460” ; Only aggregate operation allowed
j ”461” ; Unsupported transport
j ”462” ; Destination unreachable
j ”500” ; Internal Server Error
j ”501” ; Not Implemented
j ”502” ; Bad Gateway
j ”503” ; Service Unavailable
j ”504” ; Gateway Time-out
j ”505” ; RTSP Version not supported
j ”551” ; Option not supported
j extension-code

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 19]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

extension-code = 3DIGIT

Reason-Phrase = *<TEXT, excludingCR, LF>

RTSP status codes are extensible. RTSP applications are not required to understand the meaning of all
registered status codes, though such understanding is obviously desirable. However, applications MUST
understand the class of any status code, as indicated by the first digit, and treat any unrecognized response
as being equivalent to the x00 status code of that class, with the exception that an unrecognized response
MUST NOT be cached. For example, if an unrecognized status code of 431 is received by the client, it can
safely assume that there was something wrong with its request and treat the response as if it had received
a 400 status code. In such cases, user agents SHOULD present to the user the entity returned with the
response, since that entity is likely to include human-readable information which will explain the unusual
status.

7.1.2 Response Header Fields

The response-header fields allow the request recipient to pass additional information about the response
which cannot be placed in theStatus-Line. These header fields give information about the server and about
further access to the resource identified by theRequest-URI.

response-header = Location ; Section 12.25
j Proxy-Authenticate ; Section 12.26
j Public ; Section 12.28
j Retry-After ; Section 12.31
j Server ; Section 12.36
j Vary ; Section 12.42
j WWW-Authenticate ; Section 12.44

Response-header field names can be extended reliably only in combination with a change in the protocol
version. However, new or experimental header fields MAY be given the semantics of response-header fields
if all parties in the communication recognize them to be response-header fields. Unrecognized header fields
are treated as entity-header fields.

8 Entity

Request and Response messages MAY transfer an entity if not otherwise restricted by the request method or
response status code. An entity consists of entity-header fields and an entity-body, although some responses
will only include the entity-headers.

In this section, both sender and recipient refer to either the client or the server, depending on who sends
and who receives the entity.

8.1 Entity Header Fields

Entity-header fields define optional metainformation about the entity-body or, if no body is present, about
the resource identified by the request.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 20]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

Code reason
100 Continue all
200 OK all
201 Created RECORD
250 Low on Storage Space RECORD
300 Multiple Choices all
301 Moved Permanently all
302 Moved Temporarily all
303 See Other all
305 Use Proxy all
400 Bad Request all
401 Unauthorized all
402 Payment Required all
403 Forbidden all
404 Not Found all
405 Method Not Allowed all
406 Not Acceptable all
407 Proxy Authentication Required all
408 Request Timeout all
410 Gone all
411 Length Required all
412 Precondition Failed DESCRIBE, SETUP
413 Request Entity Too Large all
414 Request-URI Too Long all
415 Unsupported Media Type all
451 Invalid parameter SETUP
452 Illegal Conference Identifier SETUP
453 Not Enough Bandwidth SETUP
454 Session Not Found all
455 Method Not Valid In This State all
456 Header Field Not Valid all
457 Invalid Range PLAY
458 Parameter Is Read-Only SETPARAMETER
459 Aggregate Operation Not Allowed all
460 Only Aggregate Operation Allowed all
461 Unsupported Transport all
462 Destination Unreachable all
500 Internal Server Error all
501 Not Implemented all
502 Bad Gateway all
503 Service Unavailable all
504 Gateway Timeout all
505 RTSP Version Not Supported all
551 Option not support all

Table 1: Status codes and their usage with RTSP methods

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 21]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

entity-header = Allow ; Section 12.4
j Content-Base ; Section 12.11
j Content-Encoding ; Section 12.12
j Content-Language ; Section 12.13
j Content-Length ; Section 12.14
j Content-Location ; Section 12.15
j Content-Type ; Section 12.16
j Expires ; Section 12.19
j Last-Modified ; Section 12.24
j extension-header

extension-header = message-header

The extension-header mechanism allows additional entity-header fields to be defined without changing
the protocol, but these fields cannot be assumed to be recognizable by the recipient. Unrecognized header
fields SHOULD be ignored by the recipient and forwarded by proxies.

8.2 Entity Body

See [H7.2]

9 Connections

RTSP requests can be transmitted in several different ways:

� persistent transport connections used for several request-response transactions;

� one connection per request/response transaction;

� connectionless mode.

The type of transport connection is defined by the RTSP URI (Section 3.2). For the scheme “rtsp”, a
persistent connection is assumed, while the scheme “rtspu” calls for RTSP requests to be sent without setting
up a connection.

Unlike HTTP, RTSP allows the media server to send requests to the media client. However, this is
only supported for persistent connections, as the media server otherwise has no reliable way of reaching the
client. Also, this is the only way that requests from media server to client are likely to traverse firewalls.

9.1 Pipelining

A client that supports persistent connections or connectionless mode MAY “pipeline” its requests (i.e., send
multiple requests without waiting for each response). A server MUST send its responses to those requests
in the same order that the requests were received.

9.2 Reliability and Acknowledgements

Requests are acknowledged by the receiver unless they are sent to a multicast group. If there is no ac-
knowledgement, the sender may resend the same message after a timeout of one round-trip time (RTT). The

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 22]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

round-trip time is estimated as in TCP (RFC 1123) [18], with an initial round-trip value of 500 ms. An
implementation MAY cache the last RTT measurement as the initial value for future connections.

If a reliable transport protocol is used to carry RTSP, requests MUST NOT be retransmitted; the RTSP
application MUST instead rely on the underlying transport to provide reliability.

If both the underlying reliable transport such as TCP and the RTSP application retransmit requests, it is possible
that each packet loss results in two retransmissions. The receiver cannot typically take advantage of the application-
layer retransmission since the transport stack will not deliver the application-layer retransmission before the first
attempt has reached the receiver. If the packet loss is caused by congestion, multiple retransmissions at different
layers will exacerbate the congestion.

If RTSP is used over a small-RTT LAN, standard procedures for optimizing inital TCP round trip estimates,

such as those used in T/TCP (RFC 1644) [22], can be beneficial.

The Timestamp header (Section 12.38) is used to avoid the retransmission ambiguity problem [23,
p. 301] and obviates the need for Karn’s algorithm.

Each request carries a sequence number in theCSeq header (Section 12.17), which is incremented by
one for each distinct request transmitted. If a request is repeated because of lack of acknowledgement, the
request MUST carry the original sequence number (i.e., the sequence number isnot incremented).

Systems implementing RTSP MUST support carrying RTSP over TCP and MAY support UDP. The
default port for the RTSP server is 554 for both UDP and TCP.

A number of RTSP packets destined for the same control end point may be packed into a single lower-
layer PDU or encapsulated into a TCP stream. RTSP data MAY be interleaved with RTP and RTCP packets.
Unlike HTTP, an RTSP message MUST contain a Content-Length header whenever that message contains
a payload. Otherwise, an RTSP packet is terminated with an empty line immediately following the last
message header.

10 Method Definitions

Themethod token indicates the method to be performed on the resource identified by theRequest-URI .
The method is case-sensitive. New methods may be defined in the future. Method names may not start with
a $ character (decimal 24) and must be atoken . Methods are summarized in Table 2.

Notes on Table 2:PAUSE is recommended, but not required in that a fully functional server can be
built that does not support this method, for example, for live feeds. If a server does not support a particular
method, it MUST return ”501 Not Implemented” and a client SHOULD not try this method again for this
server.

10.1 OPTIONS

The behavior is equivalent to that described in [H9.2]. AnOPTIONS request may be issued at any time,
e.g., if the client is about to try a nonstandard request. It does not influence server state.

Example:

C->S: OPTIONS * RTSP/1.0
CSeq: 1
Require: implicit-play
Proxy-Require: gzipped-messages

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 23]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

method direction object requirement
DESCRIBE C ! S P,S recommended
ANNOUNCE C ! S, S ! C P,S optional
GET PARAMETER C ! S, S ! C P,S optional
OPTIONS C ! S, S ! C P,S required (S ! C: optional)
PAUSE C ! S P,S recommended
PLAY C ! S P,S required
RECORD C ! S P,S optional
REDIRECT S ! C P,S optional
SETUP C ! S S required
SET PARAMETER C ! S, S ! C P,S optional
TEARDOWN C ! S P,S required

Table 2: Overview of RTSP methods, their direction, and what objects (P: presentation, S: stream) they
operate on

S->C: RTSP/1.0 200 OK
CSeq: 1
Public: DESCRIBE, SETUP, TEARDOWN, PLAY, PAUSE

Note that these are necessarily fictional features (one would hope that we would not purposefully over-
look a truly useful feature just so that we could have a strong example in this section).

10.2 DESCRIBE

TheDESCRIBE method retrieves the description of a presentation or media object identified by the request
URL from a server. It may use theAccept header to specify the description formats that the client under-
stands. The server responds with adescriptionof the requested resource. TheDESCRIBE reply-response
pair constitutes the media initialization phase of RTSP.

Example:

C->S: DESCRIBE rtsp://server.example.com/fizzle/foo RTSP/1.0
CSeq: 312
Accept: application/sdp, application/rtsl, application/mheg

S->C: RTSP/1.0 200 OK
CSeq: 312
Date: 23 Jan 1997 15:35:06 GMT
Content-Type: application/sdp
Content-Length: 376

v=0
o=mhandley 2890844526 2890842807 IN IP4 126.16.64.4

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 24]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

s=SDP Seminar
i=A Seminar on the session description protocol
u=http://www.cs.ucl.ac.uk/staff/M.Handley/sdp.03.ps
e=mjh@isi.edu (Mark Handley)
c=IN IP4 224.2.17.12/127
t=2873397496 2873404696
a=recvonly
m=audio 3456 RTP/AVP 0
m=video 2232 RTP/AVP 31
m=whiteboard 32416 UDP WB
a=orient:portrait

The DESCRIBE response MUST contain all media initialization information for the resource(s) that
it describes. If a media client obtains a presentation description from a source other thanDESCRIBE and
that description contains a complete set of media initialization parameters, the client SHOULD use those
parameters and not then request a description for the same media via RTSP.

Additionally, servers SHOULD NOT use theDESCRIBE response as a means of media indirection.

Clear ground rules need to be established so that clients have an unambiguous means of knowing when to
request media initialization information viaDESCRIBE, and when not to. By forcing aDESCRIBE response to
contain all media initialization for the set of streams that it describes, and discouraging use ofDESCRIBE for media
indirection, we avoid looping problems that might result from other approaches.

Media initialization is a requirement for any RTSP-based system, but the RTSP specification does not dictate
that this must be done via theDESCRIBE method. There are three ways that an RTSP client may receive initializa-
tion information:

� via RTSP’sDESCRIBE method;

� via some other protocol (HTTP, email attachment, etc.);

� via the command line or standard input (thus working as a browser helper application launched with an SDP
file or other media initialization format).

In the interest of practical interoperability, it is highly recommended that minimal servers support theDE-

SCRIBE method, and highly recommended that minimal clients support the ability to act as a “helper application”

that accepts a media initialization file from standard input, command line, and/or other means that are appropriate

to the operating environment of the client.

10.3 ANNOUNCE

TheANNOUNCE method serves two purposes:
When sent from client to server,ANNOUNCE posts the description of a presentation or media object

identified by the request URL to a server. When sent from server to client,ANNOUNCE updates the session
description in real-time.

If a new media stream is added to a presentation (e.g., during a live presentation), the whole presentation
description should be sent again, rather than just the additional components, so that components can be
deleted.

Example:

C->S: ANNOUNCE rtsp://server.example.com/fizzle/foo RTSP/1.0

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 25]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

CSeq: 312
Date: 23 Jan 1997 15:35:06 GMT
Session: 47112344
Content-Type: application/sdp
Content-Length: 332

v=0
o=mhandley 2890844526 2890845468 IN IP4 126.16.64.4
s=SDP Seminar
i=A Seminar on the session description protocol
u=http://www.cs.ucl.ac.uk/staff/M.Handley/sdp.03.ps
e=mjh@isi.edu (Mark Handley)
c=IN IP4 224.2.17.12/127
t=2873397496 2873404696
a=recvonly
m=audio 3456 RTP/AVP 0
m=video 2232 RTP/AVP 31

S->C: RTSP/1.0 200 OK
CSeq: 312

10.4 SETUP

The SETUP request for a URI specifies the transport mechanism to be used for the streamed media. A
client can issue aSETUP request for a stream that is already playing to change transport parameters, which
a server MAY allow. If it does not allow this, it MUST respond with error “455 Method Not Valid In This
State”. For the benefit of any intervening firewalls, a client must indicate the transport parameters even if it
has no influence over these parameters, for example, where the server advertises a fixed multicast address.

SinceSETUP includes all transport initialization information, firewalls and other intermediate network devices

(which need this information) are spared the more arduous task of parsing theDESCRIBE response, which has

been reserved for media initialization.

TheTransport header specifies the transport parameters acceptable to the client for data transmission;
the response will contain the transport parameters selected by the server.

C->S: SETUP rtsp://example.com/foo/bar/baz.rm RTSP/1.0
CSeq: 302
Transport: RTP/AVP;unicast;client_port=4588-4589

S->C: RTSP/1.0 200 OK
CSeq: 302
Date: 23 Jan 1997 15:35:06 GMT
Session: 47112344
Transport: RTP/AVP;unicast;

client_port=4588-4589;server_port=6256-6257

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 26]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

The server generates session identifiers in response toSETUP requests. If aSETUP request to a server
includes a session identifier, the server MUST bundle this setup request into the existing session or return
error “459 Aggregate Operation Not Allowed” (see Section 11.3.10).

10.5 PLAY

The PLAY method tells the server to start sending data via the mechanism specified inSETUP. A client
MUST NOT issue aPLAY request until any outstandingSETUP requests have been acknowledged as
successful.

ThePLAY request positions the normal play time to the beginning of the range specified and delivers
stream data until the end of the range is reached.PLAY requests may be pipelined (queued); a server MUST
queuePLAY requests to be executed in order. That is, aPLAY request arriving while a previousPLAY
request is still active is delayed until the first has been completed.

This allows precise editing.

For example, regardless of how closely spaced the twoPLAY requests in the example below arrive, the
server will first play seconds 10 through 15, then, immediately following, seconds 20 to 25, and finally
seconds 30 through the end.

C->S: PLAY rtsp://audio.example.com/audio RTSP/1.0
CSeq: 835
Session: 12345678
Range: npt=10-15

C->S: PLAY rtsp://audio.example.com/audio RTSP/1.0
CSeq: 836
Session: 12345678
Range: npt=20-25

C->S: PLAY rtsp://audio.example.com/audio RTSP/1.0
CSeq: 837
Session: 12345678
Range: npt=30-

See the description of thePAUSE request for further examples.
A PLAY request without aRange header is legal. It starts playing a stream from the beginning unless

the stream has been paused. If a stream has been paused viaPAUSE, stream delivery resumes at the pause
point. If a stream is playing, such aPLAY request causes no further action and can be used by the client to
test server liveness.

TheRange header may also contain atime parameter. This parameter specifies a time in UTC at which
the playback should start. If the message is received after the specified time, playback is started immediately.
Thetime parameter may be used to aid in synchronization of streams obtained from different sources.

For a on-demand stream, the server replies with the actual range that will be played back. This may
differ from the requested range if alignment of the requested range to valid frame boundaries is required for
the media source. If no range is specified in the request, the current position is returned in the reply. The
unit of the range in the reply is the same as that in the request.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 27]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

After playing the desired range, the presentation is automatically paused, as if aPAUSE request had
been issued.

The following example plays the whole presentation starting at SMPTE time code 0:10:20 until the end
of the clip. The playback is to start at 15:36 on 23 Jan 1997.

C->S: PLAY rtsp://audio.example.com/twister.en RTSP/1.0
CSeq: 833
Session: 12345678
Range: smpte=0:10:20-;time=19970123T153600Z

S->C: RTSP/1.0 200 OK
CSeq: 833
Date: 23 Jan 1997 15:35:06 GMT
Range: smpte=0:10:22-;time=19970123T153600Z

For playing back a recording of a live presentation, it may be desirable to useclock units:

C->S: PLAY rtsp://audio.example.com/meeting.en RTSP/1.0
CSeq: 835
Session: 12345678
Range: clock=19961108T142300Z-19961108T143520Z

S->C: RTSP/1.0 200 OK
CSeq: 835
Date: 23 Jan 1997 15:35:06 GMT

A media server only supporting playback MUST support thenpt format and MAY support theclock
andsmpte formats.

10.6 PAUSE

ThePAUSE request causes the stream delivery to be interrupted (halted) temporarily. If the request URL
names a stream, only playback and recording of that stream is halted. For example, for audio, this is equiva-
lent to muting. If the request URL names a presentation or group of streams, delivery of all currently active
streams within the presentation or group is halted. After resuming playback or recording, synchronization
of the tracks MUST be maintained. Any server resources are kept, though servers MAY close the session
and free resources after being paused for the duration specified with thetimeout parameter of theSession
header in theSETUP message.

Example:

C->S: PAUSE rtsp://example.com/fizzle/foo RTSP/1.0
CSeq: 834
Session: 12345678

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 28]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

S->C: RTSP/1.0 200 OK
CSeq: 834
Date: 23 Jan 1997 15:35:06 GMT

ThePAUSE request may contain aRange header specifying when the stream or presentation is to be
halted. We refer to this point as the “pause point”. The header must contain exactly one value rather than
a time range. The normal play time for the stream is set to the pause point. The pause request becomes
effective the first time the server is encountering the time point specified in any of the currently pending
PLAY requests. If theRange header specifies a time outside any currently pendingPLAY requests, the
error “457 Invalid Range” is returned. If a media unit (such as an audio or video frame) starts presentation
at exactly the pause point, it is not played or recorded. If theRange header is missing, stream delivery is
interrupted immediately on receipt of the message and the pause point is set to the current normal play time.

A PAUSE request discards all queuedPLAY requests. However, the pause point in the media stream
MUST be maintained. A subsequentPLAY request withoutRange header resumes from the pause point.

For example, if the server has play requests for ranges 10 to 15 and 20 to 29 pending and then receives a
pause request for NPT 21, it would start playing the second range and stop at NPT 21. If the pause request is
for NPT 12 and the server is playing at NPT 13 serving the first play request, the server stops immediately.
If the pause request is for NPT 16, the server stops after completing the first play request and discards the
second play request.

As another example, if a server has received requests to play ranges 10 to 15 and then 13 to 20 (that
is, overlapping ranges), thePAUSE request for NPT=14 would take effect while the server plays the first
range, with the secondPLAY request effectively being ignored, assuming thePAUSE request arrives before
the server has started playing the second, overlapping range. Regardless of when the PAUSE request arrives,
it sets the NPT to 14.

If the server has already sent data beyond the time specified in theRange header, aPLAY would still
resume at that point in time, as it is assumed that the client has discarded data after that point. This ensures
continuous pause/play cycling without gaps.

10.7 TEARDOWN

TheTEARDOWN request stops the stream delivery for the given URI, freeing the resources associated with
it. If the URI is the presentation URI for this presentation, any RTSP session identifier associated with the
session is no longer valid. Unless all transport parameters are defined by the session description, aSETUP
request has to be issued before the session can be played again.

Example:

C->S: TEARDOWN rtsp://example.com/fizzle/foo RTSP/1.0
CSeq: 892
Session: 12345678

S->C: RTSP/1.0 200 OK
CSeq: 892

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 29]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

10.8 GET PARAMETER

TheGET PARAMETER request retrieves the value of a parameter of a presentation or stream specified in
the URI. The content of the reply and response is left to the implementation.GET PARAMETER with no
entity body may be used to test client or server liveness (“ping”).

Example:

S->C: GET_PARAMETER rtsp://example.com/fizzle/foo RTSP/1.0
CSeq: 431
Content-Type: text/parameters
Session: 12345678
Content-Length: 15

packets_received
jitter

C->S: RTSP/1.0 200 OK
CSeq: 431
Content-Length: 46
Content-Type: text/parameters

packets_received: 10
jitter: 0.3838

The “text/parameters” section is only an example type for parameter. This method is intentionally loosely

defined with the intention that the reply content and response content will be defined after further experimentation.

10.9 SET PARAMETER

This method requests to set the value of a parameter for a presentation or stream specified by the URI.
A request SHOULD only contain a single parameter to allow the client to determine why a particular

request failed. If the request contains several parameters, the server MUST only act on the request if all of
the parameters can be set successfully. A server MUST allow a parameter to be set repeatedly to the same
value, but it MAY disallow changing parameter values.

Note: transport parameters for the media stream MUST only be set with theSETUP command.

Restricting setting transport parameters toSETUP is for the benefit of firewalls.

The parameters are split in a fine-grained fashion so that there can be more meaningful error indications. How-

ever, it may make sense to allow the setting of several parameters if an atomic setting is desirable. Imagine device

control where the client does not want the camera to pan unless it can also tilt to the right angle at the same time.

Example:

C->S: SET_PARAMETER rtsp://example.com/fizzle/foo RTSP/1.0
CSeq: 421

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 30]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

Content-length: 20
Content-type: text/parameters

barparam: barstuff

S->C: RTSP/1.0 451 Invalid Parameter
CSeq: 421
Content-length: 10
Content-type: text/parameters

barparam

The “text/parameters” section is only an example type for parameter. This method is intentionally loosely

defined with the intention that the reply content and response content will be defined after further experimentation.

10.10 REDIRECT

A redirect request informs the client that it must connect to another server location. It contains the mandatory
headerLocation, which indicates that the client should issue requests for that URL. It may contain the
parameterRange, which indicates when the redirection takes effect. If the client wants to continue to send
or receive media for this URI, the client MUST issue aTEARDOWN request for the current session and a
SETUP for the new session at the designated host.

This example request redirects traffic for this URI to the new server at the given play time:

S->C: REDIRECT rtsp://example.com/fizzle/foo RTSP/1.0
CSeq: 732
Location: rtsp://bigserver.com:8001
Range: clock=19960213T143205Z-

10.11 RECORD

This method initiates recording a range of media data according to the presentation description. The times-
tamp reflects start and end time (UTC). If no time range is given, use the start or end time provided in the
presentation description. If the session has already started, commence recording immediately.

The server decides whether to store the recorded data under the request-URI or another URI. If the
server does not use the request-URI, the response SHOULD be 201 (Created) and contain an entity which
describes the status of the request and refers to the new resource, and aLocation header.

A media server supporting recording of live presentations MUST support the clock range format; the
smpte format does not make sense.

In this example, the media server was previously invited to the conference indicated.

C->S: RECORD rtsp://example.com/meeting/audio.en RTSP/1.0
CSeq: 954
Session: 12345678
Conference: 128.16.64.19/32492374

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 31]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

10.12 Embedded (Interleaved) Binary Data

Certain firewall designs and other circumstances may force a server to interleave RTSP methods and stream
data. This interleaving should generally be avoided unless necessary since it complicates client and server
operation and imposes additional overhead. Interleaved binary data SHOULD only be used if RTSP is
carried over TCP.

Stream data such as RTP packets is encapsulated by an ASCII dollar sign (24 decimal), followed by a
one-byte channel identifier, followed by the length of the encapsulated binary data as a binary, two-byte in-
teger in network byte order. The stream data follows immediately afterwards, without a CRLF, but including
the upper-layer protocol headers. Each $ block contains exactly one upper-layer protocol data unit, e.g., one
RTP packet.

The channel identifier is defined in theTransport header with theinterleaved parameter(Section 12.39).
When the transport choice is RTP, RTCP messages are also interleaved by the server over the TCP con-

nection. As a default, RTCP packets are sent on the first available channel higher than the RTP channel. The
client MAY explicitly request RTCP packets on another channel. This is done by specifying two channels
in the interleaved parameter of theTransport header(Section 12.39).

RTCP is needed for synchronization when two or more streams are interleaved in such a fashion. Also, this

provides a convenient way to tunnel RTP/RTCP packets through the TCP control connection when required by the

network configuration and transfer them onto UDP when possible.

C->S: SETUP rtsp://foo.com/bar.file RTSP/1.0
CSeq: 2
Transport: RTP/AVP/TCP;interleaved=0-1

S->C: RTSP/1.0 200 OK
CSeq: 2
Date: 05 Jun 1997 18:57:18 GMT
Transport: RTP/AVP/TCP;interleaved=0-1
Session: 12345678

C->S: PLAY rtsp://foo.com/bar.file RTSP/1.0
CSeq: 3
Session: 12345678

S->C: RTSP/1.0 200 OK
CSeq: 3
Session: 12345678
Date: 05 Jun 1997 18:59:15 GMT
RTP-Info: url=rtsp://foo.com/bar.file;

seq=232433;rtptime=972948234

S->C: $\000{2 byte length}{"length" bytes data, w/RTP header}
S->C: $\000{2 byte length}{"length" bytes data, w/RTP header}
S->C: $\001{2 byte length}{"length" bytes RTCP packet}

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 32]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

11 Status Code Definitions

Where applicable, HTTP status [H10] codes are reused. Status codes that have the same meaning are not
repeated here. See Table 1 for a listing of which status codes may be returned by which requests.

11.1 Success 2xx

11.1.1 250 Low on Storage Space

The server returns this warning after receiving aRECORD request that it may not be able to fulfill com-
pletely due to insufficient storage space. If possible, the server should use theRange header to indicate
what time period it may still be able to record. Since other processes on the server may be consuming
storage space simultaneously, a client should take this only as an estimate.

11.2 Redirection 3xx

See [H10.3].
Within RTSP, redirection may be used for load balancing or redirecting stream requests to a server

topologically closer to the client. Mechanisms to determine topological proximity are beyond the scope of
this specification.

11.3 Client Error 4xx

11.3.1 405 Method Not Allowed

The method specified in the request is not allowed for the resource identified by the request URI. The
response MUST include anAllow header containing a list of valid methods for the requested resource. This
status code is also to be used if a request attempts to use a method not indicated duringSETUP, e.g., if a
RECORD request is issued even though themode parameter in theTransport header only specifiedPLAY.

11.3.2 451 Parameter Not Understood

The recipient of the request does not support one or more parameters contained in the request.

11.3.3 452 Conference Not Found

The conference indicated by aConference header field is unknown to the media server.

11.3.4 453 Not Enough Bandwidth

The request was refused because there was insufficient bandwidth. This may, for example, be the result of a
resource reservation failure.

11.3.5 454 Session Not Found

The RTSP session identifier in theSession header is missing, invalid, or has timed out.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 33]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

11.3.6 455 Method Not Valid in This State

The client or server cannot process this request in its current state. The response SHOULD contain anAllow
header to make error recovery easier.

11.3.7 456 Header Field Not Valid for Resource

The server could not act on a required request header. For example, ifPLAY contains theRange header
field but the stream does not allow seeking.

11.3.8 457 Invalid Range

TheRange value given is out of bounds, e.g., beyond the end of the presentation.

11.3.9 458 Parameter Is Read-Only

The parameter to be set bySET PARAMETER can be read but not modified.

11.3.10 459 Aggregate Operation Not Allowed

The requested method may not be applied on the URL in question since it is an aggregate (presentation)
URL. The method may be applied on a stream URL.

11.3.11 460 Only Aggregate Operation Allowed

The requested method may not be applied on the URL in question since it is not an aggregate (presentation)
URL. The method may be applied on the presentation URL.

11.3.12 461 Unsupported Transport

TheTransport field did not contain a supported transport specification.

11.3.13 462 Destination Unreachable

The data transmission channel could not be established because the client address could not be reached.
This error will most likely be the result of a client attempt to place an invalidDestination parameter in the
Transport field.

11.3.14 551 Option not supported

An option given in theRequire or theProxy-Require fields was not supported. TheUnsupported header
should be returned stating the option for which there is no support.

12 Header Field Definitions

HTTP/1.1 [2] or other, non-standard header fields not listed here currently have no well-defined meaning
and SHOULD be ignored by the recipient.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 34]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

Table 3 summarizes the header fields used by RTSP. Type “g” designates general request headers to be
found in both requests and responses, type “R” designates request headers, type “r” designates response
headers, and type “e” designates entity header fields. Fields marked with “req.” in the column labeled
“support” MUST be implemented by the recipient for a particular method, while fields marked “opt.” are
optional. Note that not all fields marked “req.” will be sent in every request of this type. The “req.” means
only that client (for response headers) and server (for request headers) MUST implement the fields. The
last column lists the method for which this header field is meaningful; the designation “entity” refers to all
methods that return a message body. Within this specification,DESCRIBE andGET PARAMETER fall
into this class.

12.1 Accept

TheAccept request-header field can be used to specify certain presentation description content types which
are acceptable for the response.

The “level” parameter for presentation descriptions is properly defined as part of the MIME type registration,

not here.

See [H14.1] for syntax.
Example of use:

Accept: application/rtsl, application/sdp;level=2

12.2 Accept-Encoding

See [H14.3]

12.3 Accept-Language

See [H14.4]. Note that the language specified applies to the presentation description and any reason phrases,
not the media content.

12.4 Allow

TheAllow response header field lists the methods supported by the resource identified by the request-URI.
The purpose of this field is to strictly inform the recipient of valid methods associated with the resource. An
Allow header field must be present in a 405 (Method not allowed) response.

Example of use:

Allow: SETUP, PLAY, RECORD, SET_PARAMETER

12.5 Authorization

See [H14.8]

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 35]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

Header type support methods
Accept R opt. entity
Accept-Encoding R opt. entity
Accept-Language R opt. all
Allow r opt. all
Authorization R opt. all
Bandwidth R opt. all
Blocksize R opt. all but OPTIONS, TEARDOWN
Cache-Control g opt. SETUP
Conference R opt. SETUP
Connection g req. all
Content-Base e opt. entity
Content-Encoding e req. SETPARAMETER
Content-Encoding e req. DESCRIBE, ANNOUNCE
Content-Language e req. DESCRIBE, ANNOUNCE
Content-Length e req. SETPARAMETER, ANNOUNCE
Content-Length e req. entity
Content-Location e opt. entity
Content-Type e req. SETPARAMETER, ANNOUNCE
Content-Type r req. entity
CSeq g req. all
Date g opt. all
Expires e opt. DESCRIBE, ANNOUNCE
From R opt. all
If-Modified-Since R opt. DESCRIBE, SETUP
Last-Modified e opt. entity
Proxy-Authenticate
Proxy-Require R req. all
Public r opt. all
Range R opt. PLAY, PAUSE, RECORD
Range r opt. PLAY, PAUSE, RECORD
Referer R opt. all
Require R req. all
Retry-After r opt. all
RTP-Info r req. PLAY
Scale Rr opt. PLAY, RECORD
Session Rr req. all but SETUP, OPTIONS
Server r opt. all
Speed Rr opt. PLAY
Transport Rr req. SETUP
Unsupported r req. all
User-Agent R opt. all
Via g opt. all
WWW-Authenticate r opt. all

Table 3: Overview of RTSP header fields

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 36]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

12.6 Bandwidth

TheBandwidth request header field describes the estimated bandwidth available to the client, expressed as
a positive integer and measured in bits per second. The bandwidth available to the client may change during
an RTSP session, e.g., due to modem retraining.

Bandwidth = ”Bandwidth” ”:” 1*DIGIT

Example:

Bandwidth: 4000

12.7 Blocksize

This request header field is sent from the client to the media server asking the server for a particular media
packet size. This packet size does not include lower-layer headers such as IP, UDP, or RTP. The server is
free to use a blocksize which is lower than the one requested. The server MAY truncate this packet size to
the closest multiple of the minimum, media-specific block size, or override it with the media-specific size if
necessary. The block size MUST be a positive decimal number, measured in octets. The server only returns
an error (416) if the value is syntactically invalid.

12.8 Cache-Control

The Cache-Control general header field is used to specify directives that MUST be obeyed by all caching
mechanisms along the request/response chain.

Cache directives must be passed through by a proxy or gateway application, regardless of their signifi-
cance to that application, since the directives may be applicable to all recipients along the request/response
chain. It is not possible to specify a cache- directive for a specific cache.

Cache-Control should only be specified in aSETUP request and its response. Note: Cache-Control
doesnot govern the caching of responses as for HTTP, but rather of the stream identified by theSETUP
request. Responses to RTSP requests are not cacheable, except for responses toDESCRIBE.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 37]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

Cache-Control = ”Cache-Control” ”:” 1#cache-directive
cache-directive = cache-request-directive

j cache-response-directive
cache-request-directive = ”no-cache”

j ”max-stale”
j ”min-fresh”
j ”only-if-cached”
j cache-extension

cache-response-directive = ”public”
j ”private”
j ”no-cache”
j ”no-transform”
j ”must-revalidate”
j ”proxy-revalidate”
j ”max-age” ”=” delta-seconds
j cache-extension

cache-extension = token [”=” (token j quoted-string)]

no-cache: Indicates that the media stream MUST NOT be cached anywhere. This allows an origin server
to prevent caching even by caches that have been configured to return stale responses to client requests.

public: Indicates that the media stream is cacheable by any cache.

private: Indicates that the media stream is intended for a single user and MUST NOT be cached by a shared
cache. A private (non-shared) cache may cache the media stream.

no-transform: An intermediate cache (proxy) may find it useful to convert the media type of a certain
stream. A proxy might, for example, convert between video formats to save cache space or to reduce
the amount of traffic on a slow link. Serious operational problems may occur, however, when these
transformations have been applied to streams intended for certain kinds of applications. For example,
applications for medical imaging, scientific data analysis and those using end-to-end authentication
all depend on receiving a stream that is bit-for-bit identical to the original entity-body. Therefore, if a
response includes the no-transform directive, an intermediate cache or proxy MUST NOT change the
encoding of the stream. Unlike HTTP, RTSP does not provide for partial transformation at this point,
e.g., allowing translation into a different language.

only-if-cached: In some cases, such as times of extremely poor network connectivity, a client may want a
cache to return only those media streams that it currently has stored, and not to receive these from the
origin server. To do this, the client may include the only-if-cached directive in a request. If it receives
this directive, a cache SHOULD either respond using a cached media stream that is consistent with
the other constraints of the request, or respond with a 504 (Gateway Timeout) status. However, if a
group of caches is being operated as a unified system with good internal connectivity, such a request
MAY be forwarded within that group of caches.

max-stale: Indicates that the client is willing to accept a media stream that has exceeded its expiration time.
If max-stale is assigned a value, then the client is willing to accept a response that has exceeded its

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 38]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

expiration time by no more than the specified number of seconds. If no value is assigned to max-stale,
then the client is willing to accept a stale response of any age.

min-fresh: Indicates that the client is willing to accept a media stream whose freshness lifetime is no less
than its current age plus the specified time in seconds. That is, the client wants a response that will
still be fresh for at least the specified number of seconds.

must-revalidate: When themust-revalidate directive is present in aSETUP response received by a cache,
that cache MUST NOT use the entry after it becomes stale to respond to a subsequent request without
first revalidating it with the origin server. That is, the cache must do an end-to-end revalidation every
time, if, based solely on the origin server’sExpires, the cached response is stale.)

12.9 Conference

This request header field establishes a logical connection between a pre-established conference and an RTSP
stream. The conference-id must not be changed for the same RTSP session.

Conference = ”Conference” ”:” conference-id

Example:

Conference: 199702170042.SAA08642@obiwan.arl.wustl.edu%20Starr

A response code of 452 (452 Conference Not Found) is returned if theconference-id is not valid.

12.10 Connection

See [H14.10]

12.11 Content-Base

See [H14.11]

12.12 Content-Encoding

See [H14.12]

12.13 Content-Language

See [H14.13]

12.14 Content-Length

This field contains the length of the content of the method (i.e. after the double CRLF following the last
header). Unlike HTTP, it MUST be included in all messages that carry content beyond the header portion
of the message. If it is missing, a default value of zero is assumed. It is interpreted according to [H14.14].

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 39]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

12.15 Content-Location

See [H14.15]

12.16 Content-Type

See [H14.18]. Note that the content types suitable for RTSP are likely to be restricted in practice to presen-
tation descriptions and parameter-value types.

12.17 CSeq

The CSeq field specifies the sequence number for an RTSP request-response pair. This field MUST be
present in all requests and responses. For every RTSP request containing the given sequence number, there
will be a corresponding response having the same number. Any retransmitted request must contain the same
sequence number as the original (i.e. the sequence number isnot incremented for retransmissions of the
same request).

12.18 Date

See [H14.19].

12.19 Expires

TheExpires entity-header field gives a date and time after which the description or media-stream should be
considered stale. The interpretation depends on the method:

DESCRIBE response: TheExpires header indicates a date and time after which the description should be
considered stale.

A stale cache entry may not normally be returned by a cache (either a proxy cache or an user agent
cache) unless it is first validated with the origin server (or with an intermediate cache that has a fresh copy
of the entity). See section 13 for further discussion of the expiration model.

The presence of anExpires field does not imply that the original resource will change or cease to exist
at, before, or after that time.

The format is an absolute date and time as defined byHTTP-date in [H3.3]; it MUST be inRFC1123-
date format:

Expires = ”Expires” ”:” HTTP-date

An example of its use is

Expires: Thu, 01 Dec 1994 16:00:00 GMT

RTSP/1.0 clients and caches MUST treat other invalid date formats, especially including the value ”0”,
as having occured in the past (i.e., “already expired”).

To mark a response as “already expired,” an origin server should use an Expires date that is equal to
the Date header value. To mark a response as “never expires,” an origin server should use an Expires date

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 40]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

approximately one year from the time the response is sent. RTSP/1.0 servers should not send Expires dates
more than one year in the future.

The presence of anExpires header field with a date value of some time in the future on a media stream
that otherwise would by default be non-cacheable indicates that the media stream is cacheable, unless indi-
cated otherwise by aCache-Control header field (Section 12.8).

12.20 From

See [H14.22].

12.21 Host

This HTTP request header field is not needed for RTSP. It should be silently ignored if sent.

12.22 If-Match

See [H14.25].
This field is especially useful for ensuring the integrity of the presentation description, in both the case

where it is fetched via means external to RTSP (such as HTTP), or in the case where the server implemen-
tation is guaranteeing the integrity of the description between the time of theDESCRIBE message and the
SETUP message.

The identifier is an opaque identifier, and thus is not specific to any particular session description lan-
guage.

12.23 If-Modified-Since

The If-Modified-Since request-header field is used with theDESCRIBE andSETUP methods to make
them conditional. If the requested variant has not been modified since the time specified in this field, a
description will not be returned from the server (DESCRIBE) or a stream will not be set up (SETUP).
Instead, a 304 (not modified) response will be returned without any message-body.

If-Modified-Since = ”If-Modified-Since” ”:” HTTP-date

An example of the field is:

If-Modified-Since: Sat, 29 Oct 1994 19:43:31 GMT

12.24 Last-Modified

The Last-Modified entity-header field indicates the date and time at which the origin server believes the
presentation description or media stream was last modified. See [H14.29]. For the methodsDESCRIBE or
ANNOUNCE, the header field indicates the last modification date and time of the description, forSETUP
that of the media stream.

12.25 Location

See [H14.30].

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 41]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

12.26 Proxy-Authenticate

See [H14.33].

12.27 Proxy-Require

The Proxy-Require header is used to indicate proxy-sensitive features that MUST be supported by the
proxy. Any Proxy-Require header features that are not supported by the proxy MUST be negatively ac-
knowledged by the proxy to the client if not supported. Servers should treat this field identically to the
Require field.

See Section 12.32 for more details on the mechanics of this message and a usage example.

12.28 Public

See [H14.35].

12.29 Range

This request and response header field specifies a range of time. The range can be specified in a number of
units. This specification defines thesmpte (Section 3.5),npt (Section 3.6), andclock (Section 3.7) range
units. Within RTSP, byte ranges [H14.36.1] are not meaningful and MUST NOT be used. The header may
also contain atime parameter in UTC, specifying the time at which the operation is to be made effective.
Servers supporting theRange header MUST understand the NPT range format and SHOULD understand
the SMPTE range format. TheRange response header indicates what range of time is actually being played
or recorded. If theRange header is given in a time format that is not understood, the recipient should return
“501 Not Implemented”.

Ranges are half-open intervals, including the lower point, but excluding the upper point. In other words,
a range ofa � b starts exactly at timea, but stops just beforeb. Only the start time of a media unit such as
a video or audio frame is relevant. As an example, assume that video frames are generated every 40 ms. A
range of10:0 � 10:1 would include a video frame starting at 10.0 or later time and would include a video
frame starting at 10.08, even though it lasted beyond the interval. A range of10:0 � 10:08, on the other
hand, would exclude the frame at 10.08.

Range = ”Range” ”:” 1#ranges-specifier [”;” ”time” ”=” utc-time]
ranges-specifier = npt-range j utc-range j smpte-range

Example:

Range: clock=19960213T143205Z-;time=19970123T143720Z

The notation is similar to that used for the HTTP/1.1 [2]byte-range header. It allows clients to select an

excerpt from the media object, and to play from a given point to the end as well as from the current location to a

given point. The start of playback can be scheduled for any time in the future, although a server may refuse to keep

server resources for extended idle periods.

12.30 Referer

See [H14.37]. The URL refers to that of the presentation description, typically retrieved via HTTP.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 42]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

12.31 Retry-After

See [H14.38].

12.32 Require

TheRequire header is used by clients to query the server about options that it may or may not support. The
server MUST respond to this header by using theUnsupported header to negatively acknowledge those
options which are NOT supported.

This is to make sure that the client-server interaction will proceed without delay when all options are understood

by both sides, and only slow down if options are not understood (as in the case above). For a well-matched client-

server pair, the interaction proceeds quickly, saving a round-trip often required by negotiation mechanisms. In

addition, it also removes state ambiguity when the client requires features that the server does not understand.

Require = ”Require” ”:”
1#option-tag

Example:

C->S: SETUP rtsp://server.com/foo/bar/baz.rm RTSP/1.0
CSeq: 302
Require: funky-feature
Funky-Parameter: funkystuff

S->C: RTSP/1.0 551 Option not supported
CSeq: 302
Unsupported: funky-feature

C->S: SETUP rtsp://server.com/foo/bar/baz.rm RTSP/1.0
CSeq: 303

S->C: RTSP/1.0 200 OK
CSeq: 303

In this example, “funky-feature” is the feature tag which indicates to the client that the fictionalFunky-
Parameter field is required. The relationship between “funky-feature” andFunky-Parameter is not com-
municated via the RTSP exchange, since that relationship is an immutable property of “funky-feature” and
thus should not be transmitted with every exchange.

Proxies and other intermediary devices SHOULD ignore features that are not understood in this field.
If a particular extension requires that intermediate devices support it, the extension should be tagged in the
Proxy-Require field instead (see Section 12.27).

12.33 RTP-Info

This field is used to set RTP-specific parameters in thePLAY response.

url: Indicates the stream URL which for which the following RTP parameters correspond.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 43]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

seq: Indicates the sequence number of the first packet of the stream. This allows clients to gracefully deal
with packets when seeking. The client uses this value to differentiate packets that originated before
the seek from packets that originated after the seek.

rtptime: Indicates the RTP timestamp corresponding to the time value in theRange response header.
(Note: For aggregrate control, a particular stream may not actually generate a packet for theRange
time value returned or implied. Thus, there is no guarantee that the packet with the sequence num-
ber indicated byseq actually has the timestamp indicated byrtptime.) The client uses this value to
calculate the mapping of RTP time to NPT.

A mapping from RTP timestamps to NTP timestamps (wall clock) is available via RTCP. However, this
information is not sufficient to generate a mapping from RTP timestamps to NPT. Furthermore, in order to
ensure that this information is available at the necessary time (immediately at startup or after a seek), and that
it is delivered reliably, this mapping is placed in the RTSP control channel.

In order to compensate for drift for long, uninterrupted presentations, RTSP clients should additionally

map NPT to NTP, using initial RTCP sender reports to do the mapping, and later reports to check drift against

the mapping.

Syntax:

RTP-Info = ”RTP-Info” ”:” 1#stream-url 1*parameter
stream-url = ”url” ”=” url
parameter = ”;” ”seq” ”=” 1*DIGIT

j ”;” ”rtptime” ”=” 1*DIGIT

Example:

RTP-Info: url=rtsp://foo.com/bar.avi/streamid=0;seq=45102,
url=rtsp://foo.com/bar.avi/streamid=1;seq=30211

12.34 Scale

A scale value of 1 indicates normal play or record at the normal forward viewing rate. If not 1, the value
corresponds to the rate with respect to normal viewing rate. For example, a ratio of 2 indicates twice the
normal viewing rate (“fast forward”) and a ratio of 0.5 indicates half the normal viewing rate. In other
words, a ratio of 2 has normal play time increase at twice the wallclock rate. For every second of elapsed
(wallclock) time, 2 seconds of content will be delivered. A negative value indicates reverse direction.

Unless requested otherwise by theSpeed parameter, the data rate SHOULD not be changed. Imple-
mentation of scale changes depends on the server and media type. For video, a server may, for example,
deliver only key frames or selected key frames. For audio, it may time-scale the audio while preserving
pitch or, less desirably, deliver fragments of audio.

The server should try to approximate the viewing rate, but may restrict the range of scale values that it
supports. The response MUST contain the actual scale value chosen by the server.

If the request contains aRange parameter, the new scale value will take effect at that time.

Scale = ”Scale” ”:” [”-”] 1*DIGIT [”.” *DIGIT]

Example of playing in reverse at 3.5 times normal rate:

Scale: -3.5

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 44]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

12.35 Speed

This request header fields parameter requests the server to deliver data to the client at a particular speed,
contingent on the server’s ability and desire to serve the media stream at the given speed. Implementation
by the server is OPTIONAL. The default is the bit rate of the stream.

The parameter value is expressed as a decimal ratio, e.g., a value of 2.0 indicates that data is to be
delivered twice as fast as normal. A speed of zero is invalid. If the request contains aRange parameter, the
new speed value will take effect at that time.

Speed = ”Speed” ”:” 1*DIGIT [”.” *DIGIT]

Example:

Speed: 2.5

Use of this field changes the bandwidth used for data delivery. It is meant for use in specific circum-
stances where preview of the presentation at a higher or lower rate is necessary. Implementors should keep
in mind that bandwidth for the session may be negotiated beforehand (by means other than RTSP), and
therefore re-negotiation may be necessary. When data is delivered over UDP, it is highly recommended that
means such as RTCP be used to track packet loss rates.

12.36 Server

See [H14.39]

12.37 Session

This request and response header field identifies an RTSP session started by the media server in aSETUP
response and concluded byTEARDOWN on the presentation URL. The session identifier is chosen by the
media server (see Section 3.4). Once a client receives aSession identifier, it MUST return it for any request
related to that session. A server does not have to set up a session identifier if it has other means of identifying
a session, such as dynamically generated URLs.

Session = ”Session” ”:” session-id [”;” ”timeout” ”=” delta-seconds]

The timeout parameter is only allowed in a response header. The server uses it to indicate to the client
how long the server is prepared to wait between RTSP commands before closing the session due to lack of
activity (see Section A). The timeout is measured in seconds, with a default of 60 seconds (1 minute).

Note that a session identifier identifies a RTSP session across transport sessions or connections. Control
messages for more than one RTSP URL may be sent within a single RTSP session. Hence, it is possible
that clients use the same session for controlling many streams constituting a presentation, as long as all the
streams come from the same server. (See example in Section 14). However, multiple “user” sessions for the
same URL from the same client MUST use different session identifiers.

The session identifier is needed to distinguish several delivery requests for the same URL coming from the same

client.

The response 454 (Session Not Found) is returned if the session identifier is invalid.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 45]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

12.38 Timestamp

The timestamp general header describes when the client sent the request to the server. The value of the
timestamp is of significance only to the client and may use any timescale. The server MUST echo the exact
same value and MAY, if it has accurate information about this, add a floating point number indicating the
number of seconds that has elapsed since it has received the request. The timestamp is used by the client to
compute the round-trip time to the server so that it can adjust the timeout value for retransmissions.

Timestamp = ”Timestamp” ”:” *(DIGIT) [”.” *(DIGIT)] [delay]
delay = *(DIGIT) [”.” *(DIGIT)]

12.39 Transport

This request header indicates which transport protocol is to be used and configures its parameters such as
destination address, compression, multicast time-to-live and destination port for a single stream. It sets those
values not already determined by a presentation description.

Transports are comma separated, listed in order of preference. Parameters may be added to each trans-
port, separated by a semicolon.

TheTransport header MAY also be used to change certain transport parameters. A server MAY refuse
to change parameters of an existing stream.

The server MAY return aTransport response header in the response to indicate the values actually
chosen.

A Transport request header field may contain a list of transport options acceptable to the client. In that
case, the server MUST return a single option which was actually chosen.

The syntax for the transport specifier is

transport/profile/lower-transport.

The default value for the “lower-transport” parameters is specific to the profile. ForRTP/AVP, the
default isUDP.

Below are the configuration parameters associated with transport:
General parameters:

unicast j multicast : mutually exclusive indication of whether unicast or multicast delivery will be at-
tempted. Default value is multicast. Clients that are capable of handling both unicast and multicast
transmission MUST indicate such capability by including two full transport-specs with separate pa-
rameters for each.

destination: The address to which a stream will be sent. The client may specify the multicast address
with thedestination parameter. To avoid becoming the unwitting perpetrator of a remote-controlled
denial-of-service attack, a server SHOULD authenticate the client and SHOULD log such attempts
before allowing the client to direct a media stream to an address not chosen by the server. This is
particularly important if RTSP commands are issued via UDP, but implementations cannot rely on
TCP as reliable means of client identification by itself. A server SHOULD not allow a client to direct
media streams to an address that differs from the address commands are coming from.

source: If the source address for the stream is different than can be derived from the RTSP endpoint address
(the server in playback or the client in recording), the source MAY be specified.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 46]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

This information may also be available through SDP. However, since this is more a feature of transport

than media initialization, the authoritative source for this information should be in theSETUP response.

layers: The number of multicast layers to be used for this media stream. The layers are sent to consecutive
addresses starting at thedestination address.

mode: Themode parameter indicates the methods to be supported for this session. Valid values arePLAY
andRECORD. If not provided, the default isPLAY.

append: If the mode parameter includesRECORD, theappend parameter indicates that the media data
should append to the existing resource rather than overwrite it. If appending is requested and the
server does not support this, it MUST refuse the request rather than overwrite the resource identified
by the URI. Theappend parameter is ignored if themode parameter does not containRECORD.

interleaved: The interleaved parameter implies mixing the media stream with the control stream in what-
ever protocol is being used by the control stream, using the mechanism defined in Section 10.12. The
argument provides the channel number to be used in the $ statement. This parameter may be speci-
fied as a range, e.g.,interleaved=4-5 in cases where the transport choice for the media stream
requires it.

This allows RTP/RTCP to be handled similarly to the way that it is done with UDP, i.e., one channel for

RTP and the other for RTCP.

Multicast specific:

ttl: multicast time-to-live

RTP Specific:

port: This parameter provides the RTP/RTCP port pair for a multicast session. It is specified as a range,
e.g.,port=3456-3457 .

client port: This parameter provides the unicast RTP/RTCP port pair on the client where media data and
control information is to be sent. It is specified as a range, e.g.,port=3456-3457 .

server port: This parameter provides the unicast RTP/RTCP port pair on the server where media data and
control information is to be sent. It is specified as a range, e.g.,port=3456-3457 .

ssrc: The ssrc parameter indicates the RTP SSRC [24, Sec. 3] value that should be (request) or will be
(response) used by the media server. This parameter is only valid for unicast transmission. It identifies
the synchronization source to be associated with the media stream.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 47]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

Transport = ”Transport” ”:”
1#transport-spec

transport-spec = transport-protocol/profile[/lower-transport] *parameter
transport-protocol = ”RTP”
profile = ”AVP”
lower-transport = ”TCP” j ”UDP”
parameter = (”unicast” j ”multicast”)

j ”;” ”destination” [”=” address]
j ”;” ”interleaved” ”=” channel [”-” channel]
j ”;” ”append”
j ”;” ”ttl” ”=” ttl
j ”;” ”layers” ”=” 1*DIGIT
j ”;” ”port” ”=” port [”-” port]
j ”;” ”client port” ”=” port [”-” port]
j ”;” ”server port” ”=” port [”-” port]
j ”;” ”ssrc” ”=” ssrc
j ”;” ”mode” = <”> 1#mode <”>

ttl = 1*3(DIGIT)
port = 1*5(DIGIT)
ssrc = 8*8(HEX)
channel = 1*3(DIGIT)
address = host
mode = <”> *Method <”> j Method

Example:

Transport: RTP/AVP;multicast;ttl=127;mode="PLAY",
RTP/AVP;unicast;client_port=3456-3457;mode="PLAY"

The Transport header is restricted to describing a single RTP stream. (RTSP can also control multiple streams

as a single entity.) Making it part of RTSP rather than relying on a multitude of session description formats greatly

simplifies designs of firewalls.

12.40 Unsupported

The Unsupported response header lists the features not supported by the server. In the case where the
feature was specified via theProxy-Require field (Section 12.32), if there is a proxy on the path between
the client and the server, the proxy MUST insert a message reply with an error message “551 Option Not
Supported”.

See Section 12.32 for a usage example.

12.41 User-Agent

See [H14.42]

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 48]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

12.42 Vary

See [H14.43]

12.43 Via

See [H14.44].

12.44 WWW-Authenticate

See [H14.46].

13 Caching

In HTTP, response-request pairs are cached. RTSP differs significantly in that respect. Responses are not
cacheable, with the exception of the presentation description returned byDESCRIBE or included with
ANNOUNCE. (Since the responses for anything butDESCRIBE andGET PARAMETER do not return
any data, caching is not really an issue for these requests.) However, it is desirable for the continuous media
data, typically delivered out-of-band with respect to RTSP, to be cached, as well as the session description.

On receiving aSETUP or PLAY request, a proxy ascertains whether it has an up-to-date copy of the
continuous media content and its description. It can determine whether the copy is up-to-date by issuing
a SETUP or DESCRIBE request, respectively, and comparing theLast-Modified header with that of the
cached copy. If the copy is not up-to-date, it modifies theSETUP transport parameters as appropriate and
forwards the request to the origin server. Subsequent control commands such asPLAY or PAUSE then pass
the proxy unmodified. The proxy delivers the continuous media data to the client, while possibly making a
local copy for later reuse. The exact behavior allowed to the cache is given by the cache-response directives
described in Section 12.8. A cache MUST answer anyDESCRIBE requests if it is currently serving the
stream to the requestor, as it is possible that low-level details of the stream description may have changed
on the origin-server.

Note that an RTSP cache, unlike the HTTP cache, is of the “cut-through” variety. Rather than retrieving
the whole resource from the origin server, the cache simply copies the streaming data as it passes by on its
way to the client. Thus, it does not introduce additional latency.

To the client, an RTSP proxy cache appears like a regular media server, to the media origin server like
a client. Just as an HTTP cache has to store the content type, content language, and so on for the objects it
caches, a media cache has to store the presentation description. Typically, a cache eliminates all transport-
references (that is, multicast information) from the presentation description, since these are independent of
the data delivery from the cache to the client. Information on the encodings remains the same. If the cache is
able to translate the cached media data, it would create a new presentation description with all the encoding
possibilities it can offer.

14 Examples

The following examples refer to stream description formats that are not standards, such as RTSL. The
following examples are not to be used as a reference for those formats.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 49]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

14.1 Media on Demand (Unicast)

ClientC requests a movie from media serversA (audio.example.com)andV (video.example.com).
The media description is stored on a web serverW . The media description contains descriptions of the pre-
sentation and all its streams, including the codecs that are available, dynamic RTP payload types, the proto-
col stack, and content information such as language or copyright restrictions. It may also give an indication
about the timeline of the movie.

In this example, the client is only interested in the last part of the movie.

C->W: GET /twister.sdp HTTP/1.1
Host: www.example.com
Accept: application/sdp

W->C: HTTP/1.0 200 OK
Content-Type: application/sdp

v=0
o=- 2890844526 2890842807 IN IP4 192.16.24.202
s=RTSP Session
m=audio 0 RTP/AVP 0
a=control:rtsp://audio.example.com/twister/audio.en
m=video 0 RTP/AVP 31
a=control:rtsp://video.example.com/twister/video

C->A: SETUP rtsp://audio.example.com/twister/audio.en RTSP/1.0
CSeq: 1
Transport: RTP/AVP/UDP;unicast;client_port=3056-3057

A->C: RTSP/1.0 200 OK
CSeq: 1
Session: 12345678
Transport: RTP/AVP/UDP;unicast;client_port=3056-3057;

server_port=5000-5001

C->V: SETUP rtsp://video.example.com/twister/video RTSP/1.0
CSeq: 1
Transport: RTP/AVP/UDP;unicast;client_port=3058-3059

V->C: RTSP/1.0 200 OK
CSeq: 1
Session: 23456789
Transport: RTP/AVP/UDP;unicast;client_port=3058-3059;

server_port=5002-5003

C->V: PLAY rtsp://video.example.com/twister/video RTSP/1.0

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 50]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

CSeq: 2
Session: 23456789
Range: smpte=0:10:00-

V->C: RTSP/1.0 200 OK
CSeq: 2
Session: 23456789
Range: smpte=0:10:00-0:20:00
RTP-Info: url=rtsp://video.example.com/twister/video;

seq=12312232;rtptime=78712811

C->A: PLAY rtsp://audio.example.com/twister/audio.en RTSP/1.0
CSeq: 2
Session: 12345678
Range: smpte=0:10:00-

A->C: RTSP/1.0 200 OK
CSeq: 2
Session: 12345678
Range: smpte=0:10:00-0:20:00
RTP-Info: url=rtsp://audio.example.com/twister/audio.en;

seq=876655;rtptime=1032181

C->A: TEARDOWN rtsp://audio.example.com/twister/audio.en RTSP/1.0
CSeq: 3
Session: 12345678

A->C: RTSP/1.0 200 OK
CSeq: 3

C->V: TEARDOWN rtsp://video.example.com/twister/video RTSP/1.0
CSeq: 3
Session: 23456789

V->C: RTSP/1.0 200 OK
CSeq: 3

Even though the audio and video track are on two different servers, and may start at slightly different
times and may drift with respect to each other, the client can synchronize the two using standard RTP
methods, in particular the time scale contained in the RTCP sender reports.

14.2 Streaming of a Container file

For purposes of this example, a container file is a storage entity in which multiple continuous media types
pertaining to the same end-user presentation are present. In effect, the container file represents a RTSP

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 51]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

presentation, with each of its components being RTSP streams. Container files are a widely used means to
store such presentations. While the components are transported as independent streams, it is desirable to
maintain a common context for those streams at the server end.

This enables the server to keep a single storage handle open easily. It also allows treating all the streams equally

in case of any prioritization of streams by the server.

It is also possible that the presentation author may wish to prevent selective retrieval of the streams by
the client in order to preserve the artistic effect of the combined media presentation. Similarly, in such a
tightly bound presentation, it is desirable to be able to control all the streams via a single control message
using an aggregate URL.

The following is an example of using a single RTSP session to control multiple streams. It also illustrates
the use of aggregate URLs.

Client C requests a presentation from media serverM . The movie is stored in a container file. The
client has obtained a RTSP URL to the container file.

C->M: DESCRIBE rtsp://foo/twister RTSP/1.0
CSeq: 1

M->C: RTSP/1.0 200 OK
CSeq: 1
Content-Type: application/sdp
Content-Length: 164

v=0
o=- 2890844256 2890842807 IN IP4 172.16.2.93
s=RTSP Session
i=An Example of RTSP Session Usage
a=control:rtsp://foo/twister
t=0 0
m=audio 0 RTP/AVP 0
a=control:rtsp://foo/twister/audio
m=video 0 RTP/AVP 26
a=control:rtsp://foo/twister/video

C->M: SETUP rtsp://foo/twister/audio RTSP/1.0
CSeq: 2
Transport: RTP/AVP;unicast;client_port=8000-8001

M->C: RTSP/1.0 200 OK
CSeq: 2
Transport: RTP/AVP;unicast;client_port=8000-8001;

server_port=9000-9001
Session: 12345678

C->M: SETUP rtsp://foo/twister/video RTSP/1.0

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 52]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

CSeq: 3
Transport: RTP/AVP;unicast;client_port=8002-8003
Session: 12345678

M->C: RTSP/1.0 200 OK
CSeq: 3
Transport: RTP/AVP;unicast;client_port=8002-8003;

server_port=9004-9005
Session: 12345678

C->M: PLAY rtsp://foo/twister RTSP/1.0
CSeq: 4
Range: npt=0-
Session: 12345678

M->C: RTSP/1.0 200 OK
CSeq: 4
Session: 12345678
RTP-Info: url=rtsp://foo/twister/video;

seq=9810092;rtptime=3450012

C->M: PAUSE rtsp://foo/twister/video RTSP/1.0
CSeq: 5
Session: 12345678

M->C: RTSP/1.0 460 Only aggregate operation allowed
CSeq: 5

C->M: PAUSE rtsp://foo/twister RTSP/1.0
CSeq: 6
Session: 12345678

M->C: RTSP/1.0 200 OK
CSeq: 6
Session: 12345678

C->M: SETUP rtsp://foo/twister RTSP/1.0
CSeq: 7
Transport: RTP/AVP;unicast;client_port=10000

M->C: RTSP/1.0 459 Aggregate operation not allowed
CSeq: 7

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 53]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

In the first instance of failure, the client tries to pause one stream (in this case video) of the presentation.
This is disallowed for that presentation by the server. In the second instance, the aggregate URL may not be
used forSETUP and one control message is required per stream to set up transport parameters.

This keeps the syntax of theTransport header simple and allows easy parsing of transport information by

firewalls.

14.3 Single Stream Container Files

Some RTSP servers may treat all files as though they are “container files”, yet other servers may not support
such a concept. Because of this, clients SHOULD use the rules set forth in the session description for request
URLs, rather than assuming that a consistant URL may always be used throughout. Here’s an example of
how a multi-stream server might expect a single-stream file to be served:

C->S DESCRIBE rtsp://foo.com/test.wav RTSP/1.0
Accept: application/x-rtsp-mh, application/sdp
CSeq: 1

S->C RTSP/1.0 200 OK
CSeq: 1
Content-base: rtsp://foo.com/test.wav/
Content-type: application/sdp
Content-length: 48

v=0
o=- 872653257 872653257 IN IP4 172.16.2.187
s=mu-law wave file
i=audio test
t=0 0
m=audio 0 RTP/AVP 0
a=control:streamid=0

C->S SETUP rtsp://foo.com/test.wav/streamid=0 RTSP/1.0
Transport: RTP/AVP/UDP;unicast;

client_port=6970-6971;mode=play
CSeq: 2

S->C RTSP/1.0 200 OK
Transport: RTP/AVP/UDP;unicast;client_port=6970-6971;

server_port=6970-6971;mode=play
CSeq: 2
Session: 2034820394

C->S PLAY rtsp://foo.com/test.wav RTSP/1.0
CSeq: 3
Session: 2034820394

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 54]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

S->C RTSP/1.0 200 OK
CSeq: 3
Session: 2034820394
RTP-Info: url=rtsp://foo.com/test.wav/streamid=0;

seq=981888;rtptime=3781123

Note the different URL in theSETUP command, and then the switch back to the aggregate URL in the
PLAY command. This makes complete sense when there are multiple streams with aggregate control, but is
less than intuitive in the special case where the number of streams is one.

In this special case, it is recommended that servers be forgiving of implementations that send:

C->S PLAY rtsp://foo.com/test.wav/streamid=0 RTSP/1.0
CSeq: 3

In the worst case, servers should send back:

S->C RTSP/1.0 460 Only aggregate operation allowed
CSeq: 3

One would also hope that server implementations are also forgiving of the following:

C->S SETUP rtsp://foo.com/test.wav RTSP/1.0
Transport: rtp/avp/udp;client_port=6970-6971;mode=play
CSeq: 2

Since there is only a single stream in this file, it’s not ambiguous what this means.

14.4 Live Media Presentation Using Multicast

The media serverM chooses the multicast address and port. Here, we assume that the web server only
contains a pointer to the full description, while the media serverM maintains the full description.

C->W: GET /concert.sdp HTTP/1.1
Host: www.example.com

W->C: HTTP/1.1 200 OK
Content-Type: application/x-rtsl

<session>
<track src="rtsp://live.example.com/concert/audio">

</session>

C->M: DESCRIBE rtsp://live.example.com/concert/audio RTSP/1.0
CSeq: 1

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 55]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

M->C: RTSP/1.0 200 OK
CSeq: 1
Content-Type: application/sdp
Content-Length: 44

v=0
o=- 2890844526 2890842807 IN IP4 192.16.24.202
s=RTSP Session
m=audio 3456 RTP/AVP 0
a=control:rtsp://live.example.com/concert/audio
c=IN IP4 224.2.0.1/16

C->M: SETUP rtsp://live.example.com/concert/audio RTSP/1.0
CSeq: 2
Transport: RTP/AVP;multicast

M->C: RTSP/1.0 200 OK
CSeq: 2
Transport: RTP/AVP;multicast;destination=224.2.0.1;

port=3456-3457;ttl=16
Session: 0456804596

C->M: PLAY rtsp://live.example.com/concert/audio RTSP/1.0
CSeq: 3
Session: 0456804596

M->C: RTSP/1.0 200 OK
CSeq: 3
Session: 0456804596

14.5 Playing media into an existing session

A conference participantC wants to have the media serverM play back a demo tape into an existing
conference.C indicates to the media server that the network addresses and encryption keys are already
given by the conference, so they should not be chosen by the server. The example omits the simple ACK
responses.

C->M: DESCRIBE rtsp://server.example.com/demo/548/sound RTSP/1.0
CSeq: 1
Accept: application/sdp

M->C: RTSP/1.0 200 1 OK
Content-type: application/sdp
Content-Length: 44

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 56]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

v=0
o=- 2890844526 2890842807 IN IP4 192.16.24.202
s=RTSP Session
i=See above
t=0 0
m=audio 0 RTP/AVP 0

C->M: SETUP rtsp://server.example.com/demo/548/sound RTSP/1.0
CSeq: 2
Transport: RTP/AVP;multicast;destination=225.219.201.15;

port=7000-7001;ttl=127
Conference: 199702170042.SAA08642@obiwan.arl.wustl.edu%20Starr

M->C: RTSP/1.0 200 OK
CSeq: 2
Transport: RTP/AVP;multicast;destination=225.219.201.15;

port=7000-7001;ttl=127
Session: 91389234234
Conference: 199702170042.SAA08642@obiwan.arl.wustl.edu%20Starr

C->M: PLAY rtsp://server.example.com/demo/548/sound RTSP/1.0
CSeq: 3
Session: 91389234234

M->C: RTSP/1.0 200 OK
CSeq: 3

14.6 Recording

The conference participant clientC asks the media serverM to record the audio and video portions of a
meeting. The client uses theANNOUNCE method to provide meta-information about the recorded session
to the server.

C->M: ANNOUNCE rtsp://server.example.com/meeting RTSP/1.0
CSeq: 90
Content-Type: application/sdp
Content-Length: 121

v=0
o=camera1 3080117314 3080118787 IN IP4 195.27.192.36
s=IETF Meeting, Munich - 1
i=The thirty-ninth IETF meeting will be held in Munich, Germany
u=http://www.ietf.org/meetings/Munich.html

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 57]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

e=IETF Channel 1 <ietf39-mbone@uni-koeln.de>
p=IETF Channel 1 +49-172-2312 451
c=IN IP4 224.0.1.11/127
t=3080271600 3080703600
a=tool:sdr v2.4a6
a=type:test
m=audio 21010 RTP/AVP 5
c=IN IP4 224.0.1.11/127
a=ptime:40
m=video 61010 RTP/AVP 31
c=IN IP4 224.0.1.12/127

M->C: RTSP/1.0 200 OK
CSeq: 90

C->M: SETUP rtsp://server.example.com/meeting/audiotrack RTSP/1.0
CSeq: 91
Transport: RTP/AVP;multicast;destination=224.0.1.11;

port=21010-21011;mode=record;ttl=127

M->C: RTSP/1.0 200 OK
CSeq: 91
Session: 50887676
Transport: RTP/AVP;multicast;destination=224.0.1.11;

port=21010-21011;mode=record;ttl=127

C->M: SETUP rtsp://server.example.com/meeting/videotrack RTSP/1.0
CSeq: 92
Session: 50887676
Transport: RTP/AVP;multicast;destination=224.0.1.12;

port=61010-61011;mode=record;ttl=127

M->C: RTSP/1.0 200 OK
CSeq: 92
Transport: RTP/AVP;multicast;destination=224.0.1.12;

port=61010-61011;mode=record;ttl=127

C->M: RECORD rtsp://server.example.com/meeting RTSP/1.0
CSeq: 93
Session: 50887676
Range: clock=19961110T1925-19961110T2015

M->C: RTSP/1.0 200 OK
CSeq: 93

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 58]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

15 Syntax

The RTSP syntax is described in an augmented Backus-Naur form (BNF) as used in RFC 2068 [2].

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 59]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

15.1 Base Syntax

OCTET = <any 8-bit sequence of data>
CHAR = <any US-ASCII character (octets 0 - 127)>
UPALPHA = <any US-ASCII uppercase letter ”A”..”Z”>
LOALPHA = <any US-ASCII lowercase letter ”a”..”z”>
ALPHA = UPALPHA j LOALPHA
DIGIT = <any US-ASCII digit ”0”..”9”>
CTL = <any US-ASCII control character

(octets 0 - 31) and DEL (127)>
CR = <US-ASCII CR, carriage return (13)>
LF = <US-ASCII LF, linefeed (10)>
SP = <US-ASCII SP, space (32)>
HT = <US-ASCII HT, horizontal-tab (9)>
<”> = <US-ASCII double-quote mark (34)>
CRLF = CR LF
LWS = [CRLF] 1*(SP j HT)
TEXT = <any OCTET except CTLs>
tspecials = ”(” j ”)” j ”<” j ”>” j ”@”

j ”,” j ”;” j ”:” j ”\ ” j <”>
j ”/” j ”[” j ”]” j ”?” j ”=”
j ”f” j ”g” j SP j HT

token = 1*<any CHAR except CTLs or tspecials>
quoted-string = (<”> *(qdtext) <”>)
qdtext = <any TEXT except <”>>
quoted-pair = ”\ ” CHAR

message-header = field-name ”:” [field-value] CRLF
field-name = token
field-value = *(field-content j LWS)
field-content = <the OCTETs making up the field-value and

consisting
of either *TEXT or combinations of token, tspecials,
and quoted-string>

safe = ”$” j ”-” j ” ” j ”.” j ”+”
extra = ”!” j ”*” j ”0” j ”(” j ”)” j ”,”

hex = DIGIT j ”A” j ”B” j ”C” j ”D” j ”E” j ”F” j
”a” j ”b” j ”c” j ”d” j ”e” j ”f”

escape = ”%” hex hex
reserved = ”;” j ”/” j ”?” j ”:” j ”@” j ”&” j ”=”

unreserved = alpha j digit j safe j extra
xchar = unreserved j reserved j escape

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 60]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

16 Security Considerations

Because of the similarity in syntax and usage between RTSP servers and HTTP servers, the security consid-
erations outlined in [H15] apply. Specifically, please note the following:

Authentication Mechanisms: RTSP and HTTP share common authentication schemes, and thus should
follow the same prescriptions with regards to authentication. See [H15.1] for client authentication
issues, and [H15.2] for issues regarding support for multiple authentication mechanisms.

Abuse of Server Log Information: RTSP and HTTP servers will presumably have similar logging mecha-
nisms, and thus should be equally guarded in protecting the contents of those logs, thus protecting the
privacy of the users of the servers. See [H15.3] for HTTP server recommendations regarding server
logs.

Transfer of Sensitive Information: There is no reason to believe that information transferred via RTSP
may be any less sensitive than that normally transmitted via HTTP. Therefore, all of the precautions
regarding the protection of data privacy and user privacy apply to implementors of RTSP clients,
servers, and proxies. See [H15.4] for further details.

Attacks Based On File and Path Names:Though RTSP URLs are opaque handles that do not necessarily
have file system semantics, it is anticipated that many implementations will translate portions of the
request URLs directly to file system calls. In such cases, file systems SHOULD follow the precautions
outlined in [H15.5], such as checking for “..” in path components.

Personal Information: RTSP clients are often privy to the same information that HTTP clients are (user
name, location, etc.) and thus should be equally. See [H15.6] for further recommendations.

Privacy Issues Connected to Accept Headers:Since may of the same “Accept” headers exist in RTSP as
in HTTP, the same caveats outlined in [H15.7] with regards to their use should be followed.

DNS Spoofing: Presumably, given the longer connection times typically associated to RTSP sessions rel-
ative to HTTP sessions, RTSP client DNS optimizations should be less prevalent. Nonetheless, the
recommendations provided in [H15.8] are still relevant to any implementation which attempts to rely
on a DNS-to-IP mapping to hold beyond a single use of the mapping.

Location Headers and Spoofing:If a single server supports multiple organizations that do not trust one
another, then it must check the values of Location and Content-Location headers in responses that
are generated under control of said organizations to make sure that they do not attempt to invalidate
resources over which they have no authority. ([H15.9])

In addition to the recommendations in the current HTTP specification (RFC 2068 [2], as of this writing),
future HTTP specifications may provide additional guidance on security issues.

The following are added considerations for RTSP implementations.

Concentrated denial-of-service attack:The protocol offers the opportunity for a remote-controlled denial-
of-service attack.

The attacker may initiate traffic flows to one or more IP addresses by specifying them as the desti-
nation inSETUP requests. While the attacker’s IP address may be known in this case, this is not

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 61]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

always useful in prevention of more attacks or ascertaining the attackers identity. Thus, an RTSP
server SHOULD only allow client-specified destinations for RTSP-initiated traffic flows if the server
has verified the client’s identity, either against a database of known users using RTSP authentication
mechanisms (preferrably digest authentication or stronger), or other secure means.

Session hijacking: Since there is no relation between a transport layer connection and an RTSP session, it
is possible for a malicious client to issue requests with random session identifiers which would affect
unsuspecting clients. The server SHOULD use a large, random and non-sequential session identifier
to minimize the possibility of this kind of attack.

Authentication: Servers SHOULD implement both basic and digest [8] authentication. In environments
requiring tighter security for the control messages, transport layer mechanisms such as TLS (RFC
XXXX [7]) SHOULD be used.

Stream issues:RTSP only provides for stream control. Stream delivery issues are not covered in this
section, nor in the rest of this draft. RTSP implementations will most likely rely on other protocols
such as RTP, IP multicast, RSVP and IGMP, and should address security considerations brought up in
those and other applicable specifications.

Persistently suspicious behavior:RTSP servers SHOULD return error code 403 (Forbidden) upon receiv-
ing a single instance of behavior which is deemed a security risk. RTSP servers SHOULD also be
aware of attempts to probe the server for weaknesses and entry points and MAY arbitrarily disconnect
and ignore further requests clients which are deemed to be in violation of local security policy.

A RTSP Protocol State Machines

The RTSP client and server state machines describe the behavior of the protocol from RTSP session initial-
ization through RTSP session termination.

State is defined on a per object basis. An object is uniquely identified by the stream URL and the
RTSP session identifier. Any request/reply using aggregate URLs denoting RTSP presentations composed
of multiple streams will have an effect on the individual states of all the streams. For example, if the
presentation/movie contains two streams,/movie/audio and /movie/video , then the following
command:

PLAY rtsp://foo.com/movie RTSP/1.0
CSeq: 559
Session: 12345678

will have an effect on the states ofmovie/audio andmovie/video .

This example does not imply a standard way to represent streams in URLs or a relation to the filesystem. See

Section 3.2.

The requestsOPTIONS, ANNOUNCE, DESCRIBE, GET PARAMETER, SET PARAMETER do
not have any effect on client or server state and are therefore not listed in the state tables.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 62]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

A.1 Client State Machine

The client can assume the following states:

Init: SETUP has been sent, waiting for reply.

Ready: SETUP reply received orPAUSE reply received while inPlayingstate.

Playing: PLAY reply received

Recording: RECORD reply received

In general, the client changes state on receipt of replies to requests. Note that some requests are effective
at a future time or position (such as aPAUSE), and state also changes accordingly. If no explicitSETUP
is required for the object (for example, it is available via a multicast group), state begins atReady. In this
case, there are only two states,ReadyandPlaying. The client also changes state fromPlaying/Recordingto
Readywhen the end of the requested range is reached.

The “next state” column indicates the state assumed after receiving a success response (2xx). If a
request yields a status code of 3xx, the state becomesInit, and a status code of 4xx yields no change in
state. Messages not listed for each state MUST NOT be issued by the client in that state, with the exception
of messages not affecting state, as listed above. Receiving aREDIRECT from the server is equivalent to
receiving a 3xx redirect status from the server.

state message sent next state after response
Init SETUP Ready

TEARDOWN Init
Ready PLAY Playing

RECORD Recording
TEARDOWN Init
SETUP Ready

Playing PAUSE Ready
TEARDOWN Init
PLAY Playing
SETUP Playing(changed transport)

Recording PAUSE Ready
TEARDOWN Init
RECORD Recording
SETUP Recording(changed transport)

A.2 Server State Machine

The server can assume the following states:

Init: The initial state, no validSETUP has been received yet.

Ready: Last SETUP received was successful, reply sent or after playing, lastPAUSE received was suc-
cessful, reply sent.

Playing: LastPLAY received was successful, reply sent. Data is being sent.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 63]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

Recording: The server is recording media data.

In general, the server changes state on receiving requests. If the server is in statePlayingor Recording
and in unicast mode, it MAY revert toInit and tear down the RTSP session if it has not received “wellness”
information, such as RTCP reports or RTSP commands, from the client for a defined interval, with a default
of one minute. The server can declare another timeout value in theSession response header (Section 12.37).
If the server is in stateReady, it MAY revert to Init if it does not receive an RTSP request for an interval
of more than one minute. Note that some requests (such as PAUSE) may be effective at a future time or
position, and server state changes at the appropriate time. The server reverts from statePlayingor Recording
to stateReadyat the end of the range requested by the client.

TheREDIRECT message, when sent, is effective immediately unless it has aRange header specifying
when the redirect is effective. In such a case, server state will also change at the appropriate time.

If no explicit SETUP is required for the object, the state starts atReadyand there are only two states,
ReadyandPlaying.

The “next state” column indicates the state assumed after sending a success response (2xx). If a request
results in a status code of 3xx, the state becomesInit. A status code of 4xx results in no change.

state message received next state
Init SETUP Ready

TEARDOWN Init
Ready PLAY Playing

SETUP Ready
TEARDOWN Init
RECORD Recording

Playing PLAY Playing
PAUSE Ready
TEARDOWN Init
SETUP Playing

Recording RECORD Recording
PAUSE Ready
TEARDOWN Init
SETUP Recording

B Interaction with RTP

RTSP allows media clients to control selected, non-contiguous sections of media presentations, rendering
those streams with an RTP media layer[24]. The media layer rendering the RTP stream should not be
affected by jumps in NPT. Thus, both RTP sequence numbers and RTP timestamps MUST be continuous
and monotonic across jumps of NPT.

As an example, assume a clock frequency of 8000 Hz, a packetization interval of 100 ms and an initial
sequence number and timestamp of zero. First we play NPT 10 through 15, then skip ahead and play
NPT 18 through 20. The first segment is presented as RTP packets with sequence numbers 0 through 49
and timestamp 0 through 39,200. The second segment consists of RTP packets with sequence number 50
through 69, with timestamps 40,000 through 55,200.

We cannot assume that the RTSP client can communicate with the RTP media agent, as the two may be inde-
pendent processes. If the RTP timestamp shows the same gap as the NPT, the media agent will assume that there

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 64]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

is a pause in the presentation. If the jump in NPT is large enough, the RTP timestamp may roll over and the media
agent may believe later packets to be duplicates of packets just played out.

For certain datatypes, tight integration between the RTSP layer and the RTP layer will be necessary. This by

no means precludes the above restriction. Combined RTSP/RTP media clients should use theRTP-Info field to

determine whether incoming RTP packets were sent before or after a seek.

For continuous audio, the server SHOULD set the RTP marker bit at the beginning of serving a new
PLAY request. This allows the client to perform playout delay adaptation.

For scaling (see Section 12.34), RTP timestamps should correspond to the playback timing. For example,
when playing video recorded at 30 frames/second at a scale of two and speed (Section 12.35) of one, the
server would drop every second frame to maintain and deliver video packets with the normal timestamp
spacing of 3,000 per frame, but NPT would increase by 1/15 second for each video frame.

The client can maintain a correct display of NPT by noting the RTP timestamp value of the first packet
arriving after repositioning. Thesequence parameter of theRTP-Info (Section 12.33) header provides the
first sequence number of the next segment.

C Use of SDP for RTSP Session Descriptions

The Session Description Protocol (SDP, RFC XXXX [6]) may be used to describe streams or presentations
in RTSP. Such usage is limited to specifying means of access and encoding(s) for:

aggregate control: A presentation composed of streams from one or more servers that are not available
for aggregate control. Such a description is typically retrieved by HTTP or other non-RTSP means.
However, they may be received withANNOUNCE methods.

non-aggregate control: A presentation composed of multiple streams from a single server that are available
for aggregate control. Such a description is typically returned in reply to aDESCRIBE request on a
URL, or received in anANNOUNCE method.

This appendix describes how an SDP file, retrieved, for example, through HTTP, determines the op-
eration of an RTSP session. It also describes how a client should interpret SDP content returned in reply
to aDESCRIBE request. SDP provides no mechanism by which a client can distinguish, without human
guidance, between several media streams to be rendered simultaneously and a set of alternatives (e.g., two
audio streams spoken in different languages).

C.1 Definitions

The terms “session-level”, “media-level” and other key/attribute names and values used in this appendix are
to be used as defined in SDP (RFC XXXX [6]):

C.1.1 Control URL

The “a=control:” attribute is used to convey the control URL. This attribute is used both for the session
and media descriptions. If used for individual media, it indicates the URL to be used for controlling that
particular media stream. If found at the session level, the attribute indicates the URL for aggregate control.

Example:

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 65]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

a=control:rtsp://example.com/foo

This attribute may contain either relative and absolute URLs, following the rules and conventions set out
in RFC 1808 [25]. Implementations should look for a base URL in the following order:

1. The RTSPContent-Base field

2. The RTSPContent-Location field

3. The RTSP request URL

If this attribute contains only an asterisk (*), then the URL is treated as if it were an empty embedded
URL, and thus inherits the entire base URL.

C.1.2 Media streams

The “m=” field is used to enumerate the streams. It is expected that all the specified streams will be rendered
with appropriate synchronization. If the session is unicast, the port number serves as a recommendation
from the server to the client; the client still has to include it in itsSETUP request and may ignore this
recommendation. If the server has no preference, it SHOULD set the port number value to zero.

Example:

m=audio 0 RTP/AVP 31

C.1.3 Payload type(s)

The payload type(s) are specified in the “m=” field. In case the payload type is a static payload type from
RFC 1890 [1], no other information is required. In case it is a dynamic payload type, the media attribute
“rtpmap” is used to specify what the media is. The “encoding name” within the “rtpmap” attribute may be
one of those specified in RFC 1890 (Sections 5 and 6), or an experimental encoding with a “X-” prefix as
specified in SDP (RFC XXXX [6]). Codec-specific parameters are not specified in this field, but rather in
the “fmtp” attribute described below. Implementors seeking to register new encodings should follow the
procedure in RFC 1890 [1]. If the media type is not suited to the RTP AV profile, then it is recommended
that a new profile be created and the appropriate profile name be used in lieu of “RTP/AVP” in the “m=”
field.

C.1.4 Format-specific parameters

Format-specific parameters are conveyed using the “fmtp” media attribute. The syntax of the “fmtp” attribute
is specific to the encoding(s) that the attribute refers to. Note that the packetization interval is conveyed using
the “ptime” attribute.

C.1.5 Range of presentation

The “a=range” attribute defines the total time range of the stored session. (The length of live sessions can
be deduced from the “t” and “r” parameters.) Unless the presentation contains media streams of different
durations, the length attribute is a session-level attribute. The unit is specified first, followed by the value
range. The units and their values are as defined in Section 3.5, 3.6 and 3.7.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 66]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

Examples:

a=range:npt=0-34.4368
a=range:clock=19971113T2115-19971113T2203

C.1.6 Time of availability

The “t=” field MUST contain suitable values for the start and stop times for both aggregate and non-
aggregate stream control. With aggregate control, the server SHOULD indicate a stop time value for which
it guarantees the description to be valid, and a start time that is equal to or before the time at which the
DESCRIBE request was received. It MAY also indicate start and stop times of 0, meaning that the session
is always available. With non-aggregate control, the values should reflect the actual period for which the
session is available in keeping with SDP semantics, and not depend on other means (such as the life of the
web page containing the description) for this purpose.

C.1.7 Connection Information

In SDP, the “c=” field contains the destination address for the media stream. However, for on-demand
unicast streams and some multicast streams, the destination address is specified by the client via theSETUP
request. Unless the media content has a fixed destination address, the “c=” field is to be set to a suitable null
value. For addresses of type “IP4”, this value is “0.0.0.0”.

C.1.8 Entity Tag

The optional “a=etag” attribute identifies a version of the session description. It is opaque to the client.
SETUP requests may include this identifier in theIf-Match field (see section 12.22) to only allow session
establishment if this attribute value still corresponds to that of the current description. The attribute value is
opaque and may contain any character allowed within SDP attribute values.

Example:

a=etag:158bb3e7c7fd62ce67f12b533f06b83a

One could argue that the “o=” field provides identical functionality. However, it does so in a manner that would

put constraints on servers that need to support multiple session description types other than SDP for the same piece

of media content.

C.2 Aggregate Control Not Available

If a presentation does not support aggregate control and multiple media sections are specified, each section
MUST have the control URL specified via the “a=control:” attribute.

Example:

v=0
o=- 2890844256 2890842807 IN IP4 204.34.34.32
s=I came from a web page
t=0 0
c=IN IP4 0.0.0.0

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 67]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

m=video 8002 RTP/AVP 31
a=control:rtsp://audio.com/movie.aud
m=audio 8004 RTP/AVP 3
a=control:rtsp://video.com/movie.vid

Note that the position of the control URL in the description implies that the client establishes separate
RTSP control sessions to the serversaudio.com andvideo.com .

It is recommended that an SDP file contains the complete media initialization information even if it
is delivered to the media client through non-RTSP means. This is necessary as there is no mechanism to
indicate that the client should request more detailed media stream information viaDESCRIBE.

C.3 Aggregate Control Available

In this scenario, the server has multiple streams that can be controlled as a whole. In this case, there are
both a media-level “a=control:” attributes, which are used to specify the stream URLs, and a session-level
“a=control:” attribute which is used as the request URL for aggregate control. If the media-level URL is
relative, it is resolved to absolute URLs according to Section C.1.1 above.

If the presentation comprises only a single stream, the media-level “a=control:” attribute may be omitted
altogether. However, if the presentation contains more than one stream, each media stream section MUST
contain its own “a=control” attribute.

Example:

v=0
o=- 2890844256 2890842807 IN IP4 204.34.34.32
s=I contain
i=<more info>
t=0 0
c=IN IP4 0.0.0.0
a=control:rtsp://example.com/movie/
m=video 8002 RTP/AVP 31
a=control:trackID=1
m=audio 8004 RTP/AVP 3
a=control:trackID=2

In this example, the client is required to establish a single RTSP session to the server, and uses the URLs
rtsp://example.com/movie/trackID=1 and rtsp://example.com/movie/trackID=2
to set up the video and audio streams, respectively. The URLrtsp://example.com/movie/ controls
the whole movie.

D Minimal RTSP implementation

D.1 Client

A client implementation MUST be able to do the following :

� Generate the following requests:SETUP, TEARDOWN, and one ofPLAY (i.e., a minimal playback

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 68]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

client) orRECORD (i.e., a minimal recording client). IfRECORD is implemented,ANNOUNCE
must be implemented as well.

� Include the following headers in requests:CSeq, Connection, Session, Transport. If ANNOUNCE
is implemented, the capability to include headersContent-Language,Content-Encoding,Content-
Length, andContent-Type should be as well.

� Parse and understand the following headers in responses:CSeq, Connection, Session, Transport,
Content-Language, Content-Encoding, Content-Length, Content-Type. If RECORD is imple-
mented, theLocation header must be understood as well. RTP-compliant implementations should
also implement RTP-Info.

� Understand the class of each error code received and notify the end-user, if one is present, of error
codes in classes 4xx and 5xx. The notification requirement may be relaxed if the end-user explicitly
does not want it for one or all status codes.

� Expect and respond to asynchronous requests from the server, such asANNOUNCE. This does not
necessarily mean that it should implement theANNOUNCE method, merely that it MUST respond
positively or negatively to any request received from the server.

Though not required, the following are highly recommended at the time of publication for practical
interoperability with initial implementations and/or to be a “good citizen”.

� Implement RTP/AVP/UDP as a valid transport.

� Inclusion of theUser-Agent header.

� Understand SDP session descriptions as defined in Appendix C

� Accept media initialization formats (such as SDP) from standard input, command line, or other means
appropriate to the operating environment to act as a “helper application” for other applications (such
as web browsers).

There may be RTSP applications different from those initially envisioned by the contributors to the RTSP

specification for which the requirements above do not make sense. Therefore, the recommendations above serve

only as guidelines instead of strict requirements.

D.1.1 Basic Playback

To support on-demand playback of media streams, the client MUST additionally be able to do the following:

� generate thePAUSE request;

� implement theREDIRECT method, and theLocation header.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 69]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

D.1.2 Authentication-enabled

In order to access media presentations from RTSP servers that require authentication, the client MUST
additionally be able to do the following:

� recognize the 401 status code;

� parse and include theWWW-Authenticate header;

� implement Basic Authentication and Digest Authentication.

D.2 Server

A minimal server implementation MUST be able to do the following:

� Implement the following methods:SETUP, TEARDOWN, OPTIONS and eitherPLAY (for a min-
imal playback server) orRECORD (for a minimal recording server).

If RECORD is implemented,ANNOUNCE should be implemented as well.

� Include the following headers in responses:Connection, Content-Length,Content-Type, Content-
Language, Content-Encoding, Transport, Public. The capability to include theLocation header
should be implemented if theRECORD method is. RTP-compliant implementations should also
implement theRTP-Info field.

� Parse and respond appropriately to the following headers in requests:Connection, Session, Trans-
port, Require.

Though not required, the following are highly recommended at the time of publication for practical
interoperability with initial implementations and/or to be a “good citizen”.

� Implement RTP/AVP/UDP as a valid transport.

� Inclusion of theServer header.

� Implement theDESCRIBE method.

� Generate SDP session descriptions as defined in Appendix C

There may be RTSP applications different from those initially envisioned by the contributors to the RTSP

specification for which the requirements above do not make sense. Therefore, the recommendations above serve

only as guidelines instead of strict requirements.

D.2.1 Basic Playback

To support on-demand playback of media streams, the server MUST additionally be able to do the following:

� Recognize theRange header, and return an error if seeking is not supported.

� Implement thePAUSE method.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 70]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

In addition, in order to support commonly-accepted user interface features, the following are highly
recommended for on-demand media servers:

� Include and parse theRange header, with NPT units. Implementation of SMPTE units is recom-
mended.

� Include the length of the media presentation in the media initialization information.

� Include mappings from data-specific timestamps to NPT. When RTP is used, thertptime portion of
theRTP-Info field may be used to map RTP timestamps to NPT.

Client implementations may use the presence of length information to determine if the clip is seekable, and
visably disable seeking features for clips for which the length information is unavailable. A common use of the
presentation length is to implement a “slider bar” which serves as both a progress indicator and a timeline positioning
tool.

Mappings from RTP timestamps to NPT are necessary to ensure correct positioning of the slider bar.

D.2.2 Authentication-enabled

In order to correctly handle client authentication, the server MUST additionally be able to do the following:

� Generate the 401 status code when authentication is required for the resource.

� Parse and include theWWW-Authenticate header

� Implement Basic Authentication and Digest Authentication

E Author Addresses

Henning Schulzrinne
Dept. of Computer Science
Columbia University
1214 Amsterdam Avenue
New York, NY 10027
USA
electronic mail:schulzrinne@cs.columbia.edu

Anup Rao
Netscape Communications Corp.
501 E. Middlefield Road
Mountain View, CA 94043
USA
electronic mail:anup@netscape.com

Robert Lanphier
RealNetworks
1111 Third Avenue Suite 2900
Seattle, WA 98101
USA
electronic mail:robla@prognet.com

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 71]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

F Acknowledgements

This draft is based on the functionality of the original RTSP draft submitted in October 96. It also borrows
format and descriptions from HTTP/1.1.

This document has benefited greatly from the comments of all those participating in the MMUSIC-WG.
In addition to those already mentioned, the following individuals have contributed to this specification:

Rahul Agarwal, Torsten Braun, Brent Browning, Bruce Butterfield, Ema Patki, Steve Casner, Francisco
Cortes, Kelly Djahandari, Martin Dunsmuir, Eric Fleischman, Jay Geagan, Andy Grignon, V. Guruprasad,
Peter Haight, Mark Handley, Brad Hefta-Gaub, John K. Ho, Philipp Hoschka, Anne Jones, Anders Klemets,
Ruth Lang, Stephanie Leif, Jonathan Lennox, Eduardo F. Llach, Rob McCool, David Oran, Maria Pa-
padopouli, Sujal Patel, Alagu Periyannan, Igor Plotnikov, Pinaki Shah, David Singer, Jeff Smith, Alexander
Sokolsky, Dale Stammen, and John Francis Stracke.

References

[1] H. Schulzrinne, “RTP profile for audio and video conferences with minimal control,” RFC 1890, In-
ternet Engineering Task Force, Jan. 1996.

[2] R. Fielding, J. Gettys, J. Mogul, H. Nielsen, and T. Berners-Lee, “Hypertext transfer protocol –
HTTP/1.1,” RFC 2068, Internet Engineering Task Force, Jan. 1997.

[3] F. Yergeau, G. Nicol, G. Adams, and M. Duerst, “Internationalization of the hypertext markup lan-
guage,” RFC 2070, Internet Engineering Task Force, Jan. 1997.

[4] S. Bradner, “Key words for use in RFCs to indicate requirement levels,” RFC 2119, Internet Engineer-
ing Task Force, Mar. 1997.

[5] ISO/IEC, “Information technology – generic coding of moving pictures and associated audio in-
formaiton – part 6: extension for digital storage media and control,” Draft International Standard
ISO 13818-6, International Organization for Standardization ISO/IEC JTC1/SC29/WG11, Geneva,
Switzerland, Nov. 1995.

[6] M. Handley and V. Jacobson, “SDP: Session description protocol,” Request for Comments XXXX,
Internet Engineering Task Force, Feb. 1998.

[7] A. Freier, P. Karlton, and P. Kocher, “The TLS protocol,” Request for Comments XXXX, Internet
Engineering Task Force, Feb. 1998.

[8] J. Franks, P. Hallam-Baker, and J. Hostetler, “An extension to HTTP: digest access authentication,”
RFC 2069, Internet Engineering Task Force, Jan. 1997.

[9] J. Postel, “User datagram protocol,” RFC STD 6, 768, Internet Engineering Task Force, Aug. 1980.

[10] B. Hinden and C. Partridge, “Version 2 of the reliable data protocol (RDP),” RFC 1151, Internet
Engineering Task Force, Apr. 1990.

[11] J. Postel, “Transmission control protocol,” RFC STD 7, 793, Internet Engineering Task Force, Sept.
1981.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 72]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

[12] H. Schulzrinne, “A comprehensive multimedia control architecture for the Internet,” inProc. Interna-
tional Workshop on Network and Operating System Support for Digital Audio and Video (NOSSDAV),
(St. Louis, Missouri), May 1997.

[13] International Telecommunication Union, “Visual telephone systems and equipment for local area net-
works which provide a non-guaranteed quality of service,” Recommendation H.323, Telecommunica-
tion Standardization Sector of ITU, Geneva, Switzerland, May 1996.

[14] P. McMahon, “GSS-API authentication method for SOCKS version 5,” RFC 1961, Internet Engineer-
ing Task Force, June 1996.

[15] J. Miller, P. Resnick, and D. Singer, “Rating services and rating systems (and their machine readable
descriptions),” Recommendation REC-PICS-services-961031, W3C (World Wide Web Consortium),
Boston, Massachusetts, Oct. 1996.

[16] J. Miller, T. Krauskopf, P. Resnick, and W. Treese, “PICS label distribution label syntax and communi-
cation protocols,” Recommendation REC-PICS-labels-961031, W3C (World Wide Web Consortium),
Boston, Massachusetts, Oct. 1996.

[17] D. Crocker and P. Overell, “Augmented BNF for syntax specifications: ABNF,” RFC 2234, Internet
Engineering Task Force, Nov. 1997.

[18] B. Braden, “Requirements for internet hosts - application and support,” RFC STD 3, 1123, Internet
Engineering Task Force, Oct. 1989.

[19] R. Elz, “A compact representation of IPv6 addresses,” RFC 1924, Internet Engineering Task Force,
Apr. 1996.

[20] T. Berners-Lee, L. Masinter, and M. McCahill, “Uniform resource locators (URL),” RFC 1738, Internet
Engineering Task Force, Dec. 1994.

[21] F. Yergeau, “UTF-8, a transformation format of ISO 10646,” RFC 2279, Internet Engineering Task
Force, Jan. 1998.

[22] B. Braden, “T/TCP – TCP extensions for transactions functional specification,” RFC 1644, Internet
Engineering Task Force, July 1994.

[23] W. R. Stevens,TCP/IP illustrated: the implementation, vol. 2. Reading, Massachusetts: Addison-
Wesley, 1994.

[24] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: a transport protocol for real-time
applications,” RFC 1889, Internet Engineering Task Force, Jan. 1996.

[25] R. Fielding, “Relative uniform resource locators,” RFC 1808, Internet Engineering Task Force, June
1995.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 73]

INTERNET-DRAFT draft-ietf-mmusic-rtsp-09.ps February 2, 1998

Full Copyright Statement

Copyright (C) The Internet Society (1998). All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that

comment on or otherwise explain it or assist in its implmentation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and
this paragraph are included on all such copies and derivative works. However, this document itself may not
be modified in any way, such as by removing the copyright notice or references to the Internet Society or
other Internet organizations, except as needed for the purpose of developing Internet standards in which case
the procedures for copyrights defined in the Internet Standards process must be followed, or as required to
translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or
its successors or assigns.

This document and the information contained herein is provided on an ”AS IS” basis and THE IN-
TERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WAR-
RANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

H. Schulzrinne, A. Rao, R. Lanphier Expires August 2, 1998 [Page 74]

