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Abstract

The Internet and intranets have been used to deliver con-
tinuous media, both stored and live, for a number of years.
Most of the attention has focused on providing guaranteed
quality of service (RSVP) and end-to-end data transport
(RTP), with every application using its own control proto-
col. In this paper, we describe a control architecture that
offers most standard advanced telephony features and in-
tegrates stored and conference multimedia. The protocol
re-uses much of the “infrastructure” of HTTP, including
its security and proxy mechanisms. The architecture is in-
stantiated by two related, but independent protocols: the
Session Initiation Protocol (SIP) for inviting participants
to a multimedia session and the Real-Time Stream Proto-
col (RTSP) to control playback and recording for stored
continuous media.

1 Introduction

In the last few years, the Internet has become a viable in-
frastructure to support multimedia services, including one-
way retrieval of stored multimedia content on demand,
live, broadcast-like live events and real-time interactive
services such as telephony and conferencing.

Stored, live and conferencing multimedia services re-
quire a number of new Internet services for both data trans-
port and control. Protocols for transporting real-time data
[1] and for reserving resources to guarantee quality of ser-
vice [2] have been developed, standardized and are begin-
ning to be widely used in products. However, protocols to
initiate and control multimedia sessions are less well de-
veloped. In this paper, we present two independent, but in-
teracting protocols that initiate and control stored, live and
interactive multimedia sessions in the Internet. They lever-
age the evolving infrastructure of the world-wide web and
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also provide it with a major missing ingredient, namely in-
teroperable continuous media services. The protocols sup-
port the following scenarios:

Phone call: Two-party and multi-party multimedia calls
with standard telephone services such as call forward-
ing, automatic call distribution, third-party signaling
and answering services.

Invitation to a multi-party conference: It is possible to
invite users to sessions announced through a multicast
session directory [3] or a web page.

Near video-on-demand: Popular movies are shown stag-
gered in time across a set of multicast groups and may
be controlled by a teacher, for example.

Video-on-demand: Movies are requested by individual
viewers and can be controlled in VCR-like fashion.
Movies can have several audio and video tracks, to be
played alternatively or in parallel, possibly located at
different places.

Virtual presentations: A client can assemble synchro-
nized multimedia presentations from a distributed set
of servers, without the individual servers having to be
aware of that fact.

Distributed digital editing: With content possibly dis-
tributed among multiple sites, new content can be cre-
ated and stored at yet another location.

Combining stored, live and interactive multimedia: A
media server can be invited to a conference or phone
call and play into this interactive session or record
the session, controlled by one or more conference
participants. There are many applications for this,
such as a group of people watching a movie or
training video together.
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We describe two protocols that support the scenarios de-
scribed above, namely the Session Initiation Protocol (SIP)
[4] in Section 4 to establish and control multimedia con-
ferences and the Real-Time Stream Protocol (RTSP) [5] in
Section 5 to control delivery of stored and live streaming
multimedia content. In addition, we briefly mention ef-
forts towards an improved description format in Section 6.
Section 2 motivates the protocol design. While this set of
protocols enables interoperable deployment of a wide va-
riety of Internet multimedia services, Section 8 alludes to
some pieces which are still missing.

1.1 Related Work

Efforts to design multimedia applications and protocols
for packet-switched networks [6, 7] date back to the early
days of the Internet; systems have been developed for vari-
ous combinations of packet-switched and circuit-switched
networks [8, 9]. In particular, the set of tools commonly
known as the Mbone conferencing tools [10, 11, 12, 13]
has achieved widespread use. Examples of multimedia
control include Etherphone [14], Rapport [15] and MMCC
[16, 17].

Delivery of stored multimedia content in a streaming
mode, that is, playing back the multimedia content as it ar-
rives rather than downloading the whole presentation, has
been commercialized successfully by a number of compa-
nies, however with proprietary and limited control func-
tionality. In the telecom-oriented version of video-on-
demand, a control protocol called DSM-CC [18] has been
specified by the DAVIC consortium for transport of MPEG
streams over a broad range of ATM and CATV networks.
RTSP borrows one of the time concepts from DSM-CC,
but, in the tradition of Internet protocols, does not depend
on a whole set of supporting protocols. Unlike DSM-CC,
RTSP also offers recording and device control and, due to
its state machine, is more suited for remote digital editing.

For conferencing and telephony, H.323 [19, 20] offers a
basic two-party signaling protocol built on top of the Q.931
ISDN call signaling protocol. However, it is complex, re-
quiring about 300 pages of specifications, not including
ASN.1. The complexity is evident in the high latency for
call setup, particularly in the wide area, since it needs to
establish TCP control connections for H.225.0 and H.245,
with application-level handshakes on each. SIP only re-
quires a single round-trip time in the common case where
caller and callee simply indicate their capabilities to each
other. H.323 also does not support security (authentication
and key exchange), or multipoint signaling.

While little of the basic control functionality described
in this paper is fundamentally new, the protocols described
here for the first time offer an integrated, standardized ar-

chitecture that ties in with other Internet protocols, in par-
ticular, email and the web.

2 Protocol Design

In the past, upper-layer Internet protocols evolved largely
independently, with little re-use of syntax and semantics
between protocols. (For example, ftp, SMTP, NNTP, POP
and IMAP all are text-based protocols exchanging data be-
tween clients and servers across TCP connections, yet they
allow little reuse of security features, for example.)

It appears that during the initial discussions for each
new application-specific Internet protocol, there is a heated
debate on the general format of the protocol, namely,
“Internet-style” binary, ASN.1, text-based or layering on
top of an RPC mechanism like CORBA or DCOM. Here,
Internet-style binary refers to C-like structures with ele-
ments aligned on word size multiples or type-length-value
tuples. In addition to the core Internet protocols, RTP,
RSVP and the RADIUS accounting protocol [21] are ex-
amples of this approach. This works well as long as pro-
tocol requests are flat lists of integers, with few optional
parameters and variable-sized structures.

ASN.1 allows the specification of nested data structures
with optional elements and a wide variety of basic data
types. It can be storage-efficient if the packed encoding
rules (PER) are used. The basic encoding rules, which
have the advantage of being self-describing in terms of
data types, are fairly verbose. Parsing is cumbersome. The
only ASN.1-based protocols in widespread Internet use are
SNMP and H.323.

Most current Internet application protocols including
NNTP, SMTP, ftp, and HTTP are text-based. The
parameter-value structure works well where parameters are
not structured and values are simple lists, possibly mod-
ified by attributes. Binary data is not important for the
control protocols discussed here, but can, with loss of ef-
ficiency, be carried encoded as base 64. A general parser
for headers of that type can be implemented in about 500
lines of C, far less than a general ASN.1 parser. Textual
formats are generally less space-efficient than ASN.1 PER
or Internet binary formats, but for both protocols discussed
here, the number of data bytes exchanged is likely to far
exceed those produced by the control protocol. However,
space efficiency is still a concern, as it is highly desirable
to avoid UDP packet fragmentation. This limits the maxi-
mum message size to 1500 bytes.

While the author is not aware of any performance com-
parisons, it is anticipated that for both SIP and RTSP,
the header parsing and space overhead would be a very
small. However, the largest advantage is the low cost
of entry, since simple client and server implementations



can be rapidly built using scripting languages such as Perl
or Tcl whose “natural” data type is text. Unlike ASN.1
and Internet binary, headers are self-describing, simplify-
ing debugging and extensions. On the downside, HTTP
and SMTP implementations have suffered from a number
of security breaches when implementations made unwar-
ranted assumptions about the maximum length of header
fields.

In the past, text-based protocols were restricted to US-
ASCII or, at best, ISO 8859-1 (for HTTP); SIP and RTSP
are not burdened by this legacy and can express any ISO
10646 (Unicode) character in the UTF-8 encoding [22].
(UTF-8 is a variable-length character set encoding that is
upward compatible with US-ASCII.)

The final design alternative is to recognize that most
control functionality can be modeled as remote-procedure
calls. Thus, systems like the OMG’s CORBA or Mi-
crosoft’s DCOM could provide the underlying foundation,
removing the need for each new protocol design to specify
data representation and transport reliability. Indeed, one
could probably replace most of the Internet application-
layer protocols such as HTTP, NNTP, SMTP, LDAP and ftp
with CORBA implementations. It appears unlikely for this
to happen any time soon, because of the relative immaturity
of current implementations and their lack of interoperabil-
ity or widespread cross-platform availability. For reasons
that deserve study but are beyond the scope of this paper,
RPC protocols have never been widely used for general-
purpose applications beyond NFS. The principal additional
deterrents in our case were the lack of security support and
the high cost of entry.

Based on the discussion above, a text-based approach
was chosen for the design of SIP and RTSP. Rather
than inventing a new protocol representation from whole
cloth, reusing the most successful Internet protocol, HTTP,
seemed the more appropriate choice. By using HTTP as
a base, the protocols can immediately re-use a number of
evolving protocols for electronic commerce [23], authen-
tication [24], content labels and client-side access control
[25], protocol extensions [26], state management [27] and
content negotiation [28]. Also, servers, proxies and fire-
walls, all already tuned for high performance, manageabil-
ity and reliability, can be easily modified to accommodate
these new protocols. The commonality between SIP and
RTSP also simplifies implementations as many clients and
servers can be expected to implement both, given the sce-
narios described in Section 1.

It has been suggested that one could just extend
HTTP/1.1 [29] by adding new headers to existing methods.
However, none of the existing methods fit particularly well
with the out-of-band control of streaming media. Also, it is
likely that web servers and multimedia-on-demand servers

will, in many cases, remain distinct, so that burdening a
media server with the whole complexity of HTTP incurred
by caching and maintaining backward compatibility to ear-
lier versions of HTTP is not warranted.

While RTSP and SIP try to leverage the HTTP infras-
tructure, they clearly are not object retrieval protocols.
This is particularly apparent in terms of caching, where
caching responses of RTSP and SIP requests makes no
sense, since the actual data is carried “out-of-band”, e.g.,
as an RTP data stream (see Section 5.1).

Another important difference to HTTP is that end points
have to maintain state across RTSP requests. Unlike other
protocols with an out-of-band control channel like ftp or
telnet, RTSP does not tie the RTSP-level session (“connec-
tion”) to a TCP session. A session is defined only through
a globally unique identifier chosen by the server. A client
may choose to stay connected to the server for the whole
RTSP session or issue each request on a new TCP connec-
tion or as a UDP packet, as described below. This is neces-
sary if UDP is to be used without completely rebuilding a
TCP-like connection establishment mechanism, but it also
greatly simplifies moving stream control between different
participants in a conference.

HTTP assumes a reliable byte stream protocol such as
TCP as its underlying transport mechanism. For control
protocols, the use of TCP simplifies client implementa-
tions. (For example, a simple design can useinetd to
have a process handle exactly one control connection.)
TCP also makes it possible to use transport-level security
protocols such as SSL.

On the other hand, a flow- and congestion-controlled
protocol with strict reliability may not be particularly ap-
propriate for multimedia signaling protocols. TCP timer
back-off, for example, may delay retransmission more
than necessary, particularly when packet losses are high.
Given the query-response nature and low control band-
width, flow and congestion control are not particularly
helpful. Also, for call distribution, user location, group
control and awareness, multicasting of control messages
is very valuable. Thus, both SIP and RTSP can use ei-
ther TCP or UDP. For UDP, a request sequence number
and timestamp1 are added to the HTTP-like request and
response lines. Unlike TCP, data throughput and flow con-
trol are not of concern for these control protocols. While
the protocols allow pipelining of requests, i.e., sending a
number of requests without waiting for the first one to be
acknowledged, this is expected to be needed infrequently.
Also, an RTSP or SIP response is needed for each request
in any event. Thus, acknowledgments are for one request

1Adding a timestamp avoids the need for Karn’s algorithm [30] in
estimating round-trip times. While almost all requests are idempotent,
some like RTSPPLAY are not, so that a per-message sequence number is
not sufficient.



only rather than a window of data.
HTTP is asymmetric, with clients issuing requests to

servers. In both RTSP and SIP, this is mostly true, however,
there are a number of occasions where the server needs to
contact the client. For RTSP, the server may want to tell the
client about a new media stream, e.g., from an additional
camera, that has become available during a live presenta-
tion. However, a functional media server application can
be written such that only the client issues commands, mak-
ing it easy to extend existing web servers into continuous
media servers. In SIP (with extensions proposed in Sec-
tion 4), either caller or callee have the ability to terminate
or redirect a call.

3 Internet Conferencing and Media-
on-Demand Architecture

In contrast to other conferencing architectures, members of
Internet conferences are not “connected” at the level of a
conference control protocol. Amedia sessionis defined
by the membership in a multicast group or a two-party
UDP port/address association. Members are identified by
their RTP CNAME [31]. Asessionconsists of several me-
dia sessions and exists only as a common abstraction in
each participant, not in a central registry. A conference is
an example of a session. Not all participants in a confer-
ence need to be in every media session. Access control is
through encryption. This session model is often called the
“light-weight session model” [32]; unlike central-registry
models, it scales to very large conferences and survives
network partitions. Currently, these sessions and their at-
tributes are announced using a well-known multicast ad-
dress and a simple textual description (SDP) [3], which
is also used to arbitrate use of the dynamically assigned
multicast addresses. This directory model is well suited
for public and private pre-planned group events, but does
not support telephone calls or inviting participants to a ses-
sion, nor does it deal with controlling multimedia streams.
The “light-weight” conferences depend on the availability
of receiver-oriented multicast, where new receivers do not
have to acquire the current list of participants.

4 SIP: Conference Session Initiation
and Call Control

Conference control applications use SIP to invite humans
and media servers into a multicast conference or establish
a two-party phone call. The conference initiation phase has
to accomplish three goals:

1. locate the terminal (phone, workstation, mobile
phone, answering machine,. . . ) where the called
party can be reached,

2. agree on a set of media and possible encodings for
communication,

3. determine if the called party wants to be reached.

A call can fail at any of these stages; one can argue
whether agreement or reachability should be determined
first. SIP supports all three phases, but it may hand off to
another protocol for any of these. In particular, SIP may be
used to only choose the terminal type, with H.323 or ISDN
signaling handling the call establishment.

To be invited and identified, the invitees have to be
named. Since it is the most common form of user address-
ing in the Internet, SIP chose an email-like identifier of
the form “user@domain” or “user@IPaddress”. The do-
main name can be either the name of the host that a user
is logged in at the time, an email address or the name of
a domain-specific translation service. A user at a specific
host will be derived through zero or more translations. A
single externally visible address may well lead to a differ-
ent host depending on time of day, media to be used, and
any number of other factors. In many cases, the address
will be derived through a directory service such as LDAP
[33], but it may well be a click on amailto URL.
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Figure 1: SIP address resolution

The name resolution mechanism is shown in Fig. 1. At
every step, the client attempts to resolve the host name



via the DNS service (SRV) records [34] first, then checks
whether the domain name refers to a physical host and fi-
nally checks whether it is a mail exchange host. At each
host, the client tries to contact a SIP server; if that fails,
it tries to connect to an SMTP server and, if successful,
uses SMTP commands to obtain alternate addresses. If all
else fails, an email message with the invitation can be sent.
If the called party is not at the SIP server named, the SIP
server may know where the called party might be located
and issues a redirection response, as indicated in Fig. 2 and
the client tries again with the new address. Alternatively,
the server can act as a proxy and issue an invitation (Fig. 3).
The latter case is particularly appropriate for firewalled in-
tranets.
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Figure 2: SIP redirection

This naming mechanism, combined with redirection,
readily supports “personal mobility”2. It has been argued
that this functionality should reside with directory services,
e.g., X.500, ULS [36] or some other LDAP-accessed di-
rectory. While SIP does not preclude doing all user loca-
tion through a directory service, using SIP has a number
of advantages. For example, the answer to the redirection
request may well depend on the urgency, time of day or
source of the call invitation, not just the name.

The call handling intelligence can be located at either a
service provider “in the network” offering a permanent ad-
dress, at a corporate gateway or at the user’s workstation
or some combination of the three. Compared to advanced
intelligent networks (AIN) [35], this offers greater flexibil-
ity, privacy and user control. In particular, some informa-
tion such as a person’s schedule or room occupancy should
only be available locally.

2“Personal mobility is the ability of end users to originate and receive
calls and access subscribed telecommunication services on any terminal
in any location, and the ability of the network to identify end users as they
move. Personal mobility is based on the use of a unique personal identity
(i.e., ’personal number’).” [35, p. 44].

Calls are identified by a globally unique conference
identifier, consisting of a timestamp and host name, which
is created by the conference originator. Every signaling
message contains such an identifier, so that proxies main-
tain state only for a single request, not the whole call or
conference. If forwarded through proxies, SIP requests
record their route, so that responses can find their way back
to the source of the request. This also makes it possible for
the called party to send a request to the calling party.

SIP does not address other aspects of conference control,
such as floor control, but it can be used to introduce these
protocols.

4.1 Choosing Terminals and Locating
Callees

Many people have several ways of being reached, includ-
ing a telephone, email, fax, or a pager, each with widely
differing media handling capabilities [37]. Borrowing the
concept of HTTP transparent content negotiation [28], a
SIP server can return a descriptive list of alternative termi-
nals, their capabilities and addresses.

In a local area, a person may move around from terminal
to terminal, e.g., from lab to office to meeting room. Also,
a call may be addressed to more than one individual (e.g.,
a whole department or any member of the sales division).
Since SIP can also work over a connectionless transport
protocol, it can multicast a “search” for a particular party,
to which one or more individuals can respond.

4.2 Negotiating Media Types and Encodings

The SIPINVITE request to join a conference or phone call
contains a listing of the media types and associated encod-
ings that the calling party is willing to use. The called party
simply responds with a subset of media types and encod-
ings that it is willing to use. Thus, in most cases, negotia-
tion incurs no further delay.

This one-shot negotiation fails to work when a multi-
party conference is to be set up, as the session description
agreed upon between the conference initiator and the first
callee may not be applicable to all participants. Thus, SIP
adds anOPTIONS request by which the organizer of a
conference call can inquire about a terminal’s capabilities
without actually initiating a session.

There may be a need for a more expressive capability
language similar to H.245 that can describe asymmetric
capabilities (where a terminal can send but not receive a
certain encoding), or where only certain combinations of
audio and video codings are possible. The latter case may
occur if capability sets correspond to different multimedia
applications or they may express CPU or screen real-estate
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Figure 3: SIP proxying

limitations. With software codecs, the likelihood that elab-
orate capability descriptions and negotiation protocols [38]
are needed, however, appears to be much lower.

4.3 In-Call Signaling

Currently, SIP methods only support call initiation and a
limited form of media negotiation, described above. Even
so, the standard telephony services of call forwarding, call
waiting, caller ID, camp-on, call park and call pickup can
be supported.

The services of call termination and call transfer require
additional methods. Without SIP support, conference par-
ticipants simply send RTCP BYE messages and drop their
multicast membership when they want to leave the confer-
ence. However, BYE messages are unreliable. Thus the
author proposes that a call is terminated by having either
party issue aBYE request. Call forwarding is a straight-
forward extension: the party that wants to transfer the call
sends aBYE request containing the new destination to the
other party. Signaling is greatly simplified compared to
standard telephony procedures since the number of simul-
taneous calls is not limited. Also, a logical call established
by SIP may or may not have reserved resources set aside
for it at any given time.

5 RTSP: Control of Stored and Live
Multimedia

RTSP initiates and controls delivery of stored and live mul-
timedia content to both unicast and multicast destinations.
The basic operation of RTSP is illustrated in Fig. 4. The
client obtains a description of the multimedia presentation
consisting of several media streams, such as the movie de-
scription shown in Fig. 6. The description can, for ex-
ample, be retrieved by HTTP or ftp, be contained within
VRML data or a scripting language, sent via email or
stored on a CD ROM. The format of the presentation de-
scription is outside the scope of RTSP3. It is likely that
different formats will emerge, with a range of complexity
and capabilities. For live sessions, SDP might be used. The
browser invokes a helper application based on the content
type of the presentation description. Note that the server
does not have to be aware of the presentation description,
so that synchronized “virtual presentations” can be created
where each media type resides on a different server, as long
as these servers share a common clock. (While RTSP does
not make any assumptions about the protocol used to carry
the multimedia data, RTP makes this type of synchroniza-
tion possible, as it associates media timestamps with an
absolute or wall clock time reference.)

Regardless of the description format, each media stream
is identified by a new URL method,rtsp://, which can refer
to either a single media stream or a presentation consisting

3The terms session description and presentation description are used
by SIP and RTSP and differ in scope and functionality, as indicated in
Section 6.



of several streams. Due to unresolved issues about nam-
ing and the interaction with presentation descriptions, pre-
sentations where each stream sends to a different network
port are currently not supported; also, all media streams
in a presentation can only be controlled together, i.e., just
pausing the audio is not possible in this arrangement. As
in HTTP, the hierarchical naming structure does not neces-
sarily correspond to a hierarchical directory structure.

Unlike HTTP, a client will typically continue to inter-
act with a stream once it has been started, e.g., to pause
or fast-forward the stream. Thus, RTSP requires the no-
tion of a session. As explained in Section 2, maintaining
a single TCP connection for the duration of delivering a
presentation is too constraining. Thus, RTSP defines a
session identifier, chosen by the server. The client initi-
ates a session with theSETUP request, which optionally
returns an opaque session identifier and the transport pa-
rameters actually chosen by the server. If available, the
client simply repeats that session identifier for each request
that applies to that particular media stream, until the client
closes the session with theTEARDOWN request. Instead
of this session identifier, a server may also employ dynamic
RTSP URLs, so that each session description retrieved has
a unique URL. TheSETUP request also indicates where
the server is to send the data, if not provided in the presen-
tation description. For unicast delivery, the server should
still allow specification of the destination port since fire-
walls may restrict traffic to certain port ranges. For inte-
gration into conferences (Section 5.2), the client may also
specify a destination unicast or multicast address. This fea-
ture must be used with care (and authentication) to prevent
remote-controlled denial-of-service attacks.

Load balancing is even more important for media servers
than for web servers since the resource commitment is typ-
ically larger and lasts longer. Using standard HTTP re-
sponses, a server can ask a client to connect to a different
server which may be less loaded or topologically closer to
the client. RTSP does not specify how this decision is to
be made.

The presentation itself can be controlled withPLAY,
RECORD andPAUSE. PLAY supports absolute position-
ing in the logical play time of the media stream. Time can
be specified as either SMPTE timestamps, that is, hours,
minutes, seconds and frames, or as “normal play time”
measured in seconds and microseconds. Ranges of time,
with automatic pausing after the range has been played, can
be specified, simplifying remote editing and applications
like assembly of presentations from stock footage.PLAY
requests are queued by the server, rather than preempting
the current play as in DSM-CC. Again, this makes remote
editing possible. TheScale header field of thePLAY re-
quest causes the server to deliver media at other than the

normal play rate, e.g., for fast-forwarding. APAUSE re-
quest halts evolution of play time at the first opportunity
or at a designated point in time. For example, if the client
issues a request to play seconds 10 to 15, then seconds 20
to 30 and finally seconds 10 to 15 again, and then pauses
at second 12, only the first segment will be played.

To allow the virtual presentations described earlier,
PLAY requests can be scheduled for a particular wall clock
time, so that all servers start delivering media content to
within their clock synchronization offset, regardless of any
transmission, processing or staging delays. This feature
also helps with cueing stored presentations into a live con-
ference or broadcast.

In addition, the RTSP requestsSET PARAMETER and
GET PARAMETER may be used to change coding pa-
rameters or for device control applications such as remote-
controlled motorized video cameras. The protocol does not
currently specify the set of parameters to be used.

The client can ask for a description of a media stream
with theDESCRIBE command; the server can push a new
description to the client usingSESSION.

A client may inquire via theOPTIONS request as to
which requests the server supports for a particular RTSP
URL. In connection with the HTTP protocol extension pro-
tocol (PEP) [26], this facilitates future protocol extensions.

PLAY

PAUSE

SETUP

RTP audio

RTP video

RTCP

HTTP GET

session description

server
media

client

server
web

TEARDOWN

Figure 4: RTSP operation

Authentication, encryption, content labeling and pay-
ment are handled by standard HTTP mechanisms. If forced
to by ill-designed firewalls, the control stream may be in-
terleaved with the audio or video data.

Since RTSP does not rely on lower-layer transport con-
nections to maintain state, but rather on a server-issued ses-
sion identifier, activities like “passing the remote” or mo-
bile systems pose no problems. RTSP does not address
the issue of how to arbitrate between multiple clients that



want to control a single stream. In many cases, informal,
social mechanisms coordinated, say, via the audio channel
in a conference, will be sufficient. Indeed, it may be desir-
able to allow many participants to have potential control, so
that, for example, any group member that wants to pause a
video to ask a question can do so.

5.1 Caching

One of the differences in functionality between ftp and
HTTP is the ability of HTTP to support caching of re-
sponses. For RTSP, caching of RTSP responses makes
little sense, except possibly for presentation descriptions
returned byDESCRIBE. However, it is clearly desirable
to cache retrieved media-on-demand streams closer to the
client. Given its derivation from HTTP, this turns out
to be reasonably straightforward. A caching proxy lis-
tens in on the media stream passing through it towards
the client and stores it locally. Subsequent requests are
then served from the cache. Since the proxy cache has
to buffer data in any event, it may decide to retrieve a
presentation at the fastest speed that the network can sup-
port, using TCP, while delivering the cached material to
the client using UDP. In many cases, this will result in
better client and network performance. The normal ex-
piration and validity-checking mechanisms employed by
HTTP such asIf-Modified-Since apply here as well.

HTTP/1.1 supports retrieval of ranges of data rather than
the whole object referenced by the URL; this seems to be
rarely used. For RTSP, the case of a proxy cache only hold-
ing time segments of a media stream is likely to be much
more common. This means that a proxy cache may start
serving a client from its local cache and then discover that
the previous recipient skipped a piece of the presentation,
now missing in the cache. The proxy cache then has to
connect to the origin server and fill in the missing material,
hopefully without introducing gaps at the client.

5.2 Combining SIP and RTSP

While SIP could also be used to initiate a pure media-on-
demand session, this is not likely to be necessary in most
cases. Note the difference between the conference invi-
tation and initiating delivery of stored or live content. In
the conference case, the calling party uses SIP to send the
session description to the called party. The session descrip-
tion is likely to exist only for this call and is not stored on
a server. The called party signals the call disposition and
selects a suitable subset of the offered media types for com-
munication. There is no concept of a media object with a
long-term name.

For stored and live media, the presentation descrip-
tion, uniquely identified by an RTSP URL, is assumed to

announces
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SDF: audio only

SDF: audio + video

play audio! stop!
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SIP
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member chair
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directory
session

Figure 5: Internet conferencing example combining SIP
and RTSP

be available to the client through some means outside of
RTSP, as discussed above. The client thus only has to refer
to the URL when communicating with the server.

For playing media into a conference, several methods
are available. H.323 conferences, for example, require a
new member to register with the RAS or an MCU. SIP-
initiated conferences may require that participants encrypt
data using a session key transferred as part of the session
description. A media server cannot just play data to a given
network address. In that case, the server has to “speak” the
appropriate control protocol such as H.323 and is invited
to the conference by a participant, just like a human partic-
ipant. Any member of the conference can then initiate an
RTSP session with the media server and direct the server
to send media data to the conference identified by aCon-
ference header field in the RTSPSETUP message. This
assumes that conferences are named and that the server
can associate stored media content with appropriate media
in the conference session description. Note that the party
inviting the server into the conference and the one control-
ling the playback or recording do not have to be the same
(Fig. 5).

For Internet multicast conferences, it is often suffi-
cient that the conference participant simply describes the
network addresses used by the conference in an RTSP
SETUP request, without formally inviting the server us-
ing SIP.

As mentioned earlier, RTSP offers the ability to “pass
around the remote control” between conference partici-



pants. Participants have to know the session identifier and
stream URL to control a media stream. SIP may be used
to convey this information, either passing it on to the indi-
vidual next in line to control the media stream or making
the information generally available and relying on a floor
control protocol to avoid conflicts.

6 RTSL: Description of Multimedia
Presentations

Both SIP and RTSP need a data structure to describe the
session or presentation they are initiating and controlling.
The current session description protocol [3] works well
when describing “live” multimedia sessions as found on
the Mbone. However, it is not as well suited for describ-
ing stored sessions where a user can, for example, piece
together a movie from different sound tracks and video
versions. We have developed a simple hierarchical de-
scription called SDF, suitable for both SIP and RTSP. It
describes presentations as a hierarchy of sequential, alter-
native and time-parallel streams. Each stream might well
reside on a different server for load sharing or copyright
reasons. The design of SDF found its way into a pro-
posed SGML-based description called RTSL proposed by
Progressive Networks which is currently under study by a
working group of the World-Wide Web Consortium. An
example is shown in Fig. 6, however, functionality and
syntax are likely to change. (Using a language similar to
HTML has the advantage that a backward-compatible page
can be authored which only contains RTSP URLs within
regular HTML. Also, search engines can index these pages
without having to parse RTSL.) For simplicity, RTSL is
intentionally purely descriptive and contains no scripting
functionality.

7 Implementation

A client-side architecture is under development that sup-
ports stored, live and conferencing multimedia. An out-
line is shown in Fig. 7. The same media agents are used
by all three applications. Each media agent has only a
minimum user interface to achieve maximum reusability.
Media agents and controllers communicate through a host-
local conference control bus [39] implemented as either a
central server or multicast with a time-to-live value of zero.
This is a generalization of the conference bus employed by
vat and vic.

The session directory shown in Fig. 7 listens to Mbone-
style conference announcements formatted as SDP carried
in SAP messages [40]. Rather than maintaining its own
calendar, the session directory client communicates with

the user’s general calendar using a subset of SIP. Only the
invitation message is needed here, indicated by the proto-
col designation SIP*. The calendar notes Mbone confer-
ences along with the user’s other appointments. Similarly,
a user can enter a conference directly into the calendar.
The session directory listens for these invitations and an-
nounces them to the world at large, after adding dynami-
cally allocated multicast addresses to the description.

The SIP protocol is implemented for each logged-in user
by the integrated session controller,isc. Since users may
not always be logged on or may not have the conferenc-
ing tools running, and since there may be several users per
host, a daemon receives incoming SIP requests on a well-
known port and passes them on to the user-specific session
controller. In the implementation described here, there is
only a single session controller per user, showing all active
sessions and their members in a single interface, saving
screen real-estate. The session controller asks the owner
whether she wants to accept an incoming call, while auto-
mated call handling is done by the daemon. A call may be
rejected, forwarded or accepted based on the caller’s iden-
tity, the urgency of the call or the subject matter indicated.
However, an interface with the user’s calendar offers much
richer functionality. For example, a call could be automati-
cally forwarded to the secretary when a time slot is blocked
with a meeting. Depending on the identity of the caller and
the privacy level indicated for an appointment, the caller
may be provided with different levels of detail from “busy”
to “in a meeting with Mark until 4 pm”.

The functionality of the common resource reservation
agent and the floor controller are discussed elsewhere [41].

8 Status and Future Work

We are currently completing an ISDN gateway through
which POTS callers can reach those connected through
SIP and RTP and vice versa [42]. This gateway uses a
new call processing language, CPL, to handle both ISDN
and SIP calls and can connect the two [43]. CPL com-
bines the features of a Tcl-like scripting language with a
state-based language to reflect the nature of ISDN calls as
well as to simplify implementations of voice response sys-
tems. The system already supports remote participation
in Mbone conferences, simply by selecting by touch tones
from the menu of current sessions, read from the received
SDP packets by text-to-speech software, or punching in a
multicast address.

An extension of SIP to support MCUs and fully-meshed
unicast conferences is required, as not all networks support
network-layer multicast.

An initial RTSP server using a telnet client was imple-
mented shortly after the first draft of the specification. Sev-



<title>Twister</title>
<session>

<group language=en lipsync>
<switch>

<track type=audio
e="PCMU/8000/1"
src="rtsp://audio.example.com/twister/audio.en/lofi">

<track type=audio
e="DVI4/16000/2" pt="90 DVI4/8000/1"
src="rtsp://audio.example.com/twister/audio.en/hifi">

</switch>
<track type="video/jpeg"

src="rtspu://video.example.com/twister/video">
</group>

</session>

Figure 6: Sample RTSP session description
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eral freely available server and client implementations on
different operating system platforms are expected to be
available by the end of summer 1997, with standard Mbone
tools as media clients.

We are currently studying how to offer near media-on-
demand services where the server maintains a dynamic
set of multicast groups and directs clients to the multicast
group that is closest in time to the client’s desired play
point. For that, responses to thePLAY request must be
able to change the client’s multicast address.

The Internet multimedia architecture is still missing two
pieces, namely a floor control protocol and a shared draw-
ing protocol. (Shared applications are likely to be ad-
dressed by sharing either Windows or X.) The ITU T.120
series of protocols offers both, but offers opportunities for
simplification and support of large multicast groups with-
out a central server.

In the future, the author believes that the emphasis will
shift from conferencing and stored media applications that
are visible to the user as such to “embedded applications”
that work behind the scenes of web pages, games and vir-
tual reality. For example, approaching an object in VRML
space may well trigger, via RTSP, delivery of a Foley
sound.
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