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Abstract. A Halin graph is a graph obtained from a plane tree by running a cycle through its

leaf vertices in the order they are encountered along a counterclockwise pre-order traversal. Using
a vectorized production matrix, we give a matrix formula for the partitioned genus polynomial of

any cubic Halin graph and for the genus polynomial as well. We prove log-concavity of the genus
polynomial and of the partitioned genus polynomials for several sequences of cubic Halin graphs,

which serves as further support of the conjecture that the genus polynomial of every graph is log-

concave.

Our general concern is enumerating all possible cellular imbeddings f : G→ S of a given graph G in
an oriented surface S. An imbedding is cellular if the interior of every face (component of S − f(G))
is homeomorphic to an open disk. Two imbeddings f : G → S and g : G → S are regarded as the
same if there is an orientation-preserving homeomorphism of the surface S taking f(G) to g(G) that
induces the identity automorphism of G.

Our enumeration of imbeddings is according to the genus of the imbedding surface. We define the
genus distribution of a finite graph G to be the sequence

〈gi(G) | i = 0, 1, 2, . . .〉

where gi(G) counts the cellular imbeddings of G in the closed orientable surface Si of genus i. The
genus polynomial gG(z) of G is the generating function Σgi(G)zi.

To understand the derivation of genus distributions, we must understand how adding an edge to
a graph G affects the genus distribution and its properties. Adding an edge between two 2-valent
vertices having a common neighbor is one of the simplest versions of this situation. In this paper, we
are within a context for this kind of edge-adding in which the graph G to be modified is from a family
of known genus distribution. One way of looking at the two other families of Halin graphs, beyond
Ringel ladders, for which we derive genus polynomials and prove their log-concavity, is that each of
the graphs in these other families is obtained by adding a single edge to a Ringel ladder.

Section 1 reviews the quadrangulation of plane cubic Halin graphs, from [Gr13]. Section 2 shows
how they fit with the subsequently invented construct [GMT13] called a vectorized production matrix.
In Section 3, we prove that the cubic Halin graphs can be counted with Catalan numbers. The genus
polynomials of some infinite sequences of Halin graphs are derived in Section 4. They are proved to
be log-concave in Section 5. Moreover, we show that the partitioned genus polynomials of the graphs
in that sequence are log-concave, which supports a secondary log-concavity conjecture. In Section 6,
we give a few research problems concerned with extending these results.
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1. Quadrangulation of cubic Halin graphs

An algorithm is given by [Gr13] for calculating the genus distribution of a cubic Halin graph G,
which is specified as the 1-skeleton of a 2-complex K on the plane disk D bounded by the outer cycle
of G. We construe the graph G to be colored black. We give a 3-step process for constructing a
3-colorable quadrangulation of the 2-complex K.

Step 1. In each cycle edge of the Halin graph, insert a red midpoint. This is illustrated in Figure 1.

Step 2. Join each red vertex v to all of the non-leaf vertices on the boundary of the face on whose
boundary v lies, as shown in Figure 2.

Figure 1. Halin graph plus red midpoints on the exterior cycle.

Figure 2. Halin graph plus all of the red edges.

Proposition 1.1. The red and black edges together triangulate the plane disk D bounded by the exterior
cycle of a plane Halin graph G.

Proof. This is Proposition 3.1 of [Gr13]. �

Proposition 1.2. Every black tree edge lies on two of the triangles formed by Steps 1 and 2.

Proof. This is Proposition 3.2 of [Gr13]. �

Step 3a. For each black tree edge, we pair the two incident triangles into a quadrangle.

Step 3b. We assign (unseen) colors blue, green, and pink to the tree edges, so as to form a proper
edge 3-coloring. This is possible because any tree of maximum degree 3 is edge-3-colorable (via greedy
algorithm).

Step 3c. We visibly color each quadrangle with the unseen color of the tree edge that bisects it, as
shown in Figure 3.

The graph that results from deleting from a plane Halin graph G all the vertices on the outer cycle
and all the edges incident on them is called the inner tree of G.
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Figure 3. Quadrangulation of a plane Halin graph.

2. VP-matrix for the π-merge operation

In this section, we reinterpret the genus distribution algorithm of [Gr13] for a cubic Halin graph, in
terms of a vectorized production matrix (abbr. vp-matrix ), a new construct introduced by [GMT13].
Some familiarity with partitioned genus distributions and productions, which are constructs introduced
in [GKP10], [PKG10], [KPG10], and [Gr11a], is assumed. (A completely general version of these
constructs is developed in [Gr14].)

2.1. Partials for cubic Halin graphs. For a doubly vertex-rooted cubic Halin graph (G, u, v), with
the roots u and v inserted at the midpoints of adjacent edges, we split gi(G) into six partials. Here is
what they count:

dd′i: Each of the roots u and v lies on two distinct fb-walks. One and only one of these fb-walks
traverses both roots.
dd′′i : Each of the roots u and v lies on two distinct fb-walks. Both of these fb-walks traverse
both roots.
ds′i: Root u lies on two distinct fb-walks. One of these fb-walks traverses root v twice.
sd′: Root v lies on two distinct fb-walks. One of these fb-walks traverses root u twice.
ss1i : A single fb-walks traverses roots u and v twice. The occurrences of each root are consec-
utive.
ss2i : A single fb-walks traverses roots u and v twice. The occurrences of the two roots alternate.

These configurations are illustrated in Figure 4.

ss1 ss2sd'ds'dd"dd'

u uuuuu

v v vvvv

Figure 4. The six double-rooted partials for a π-merge.

2.2. Productions for a π-merge. We regard the quadrangles of our decomposition of the 2-complex
K as atomic fragments, to be reassembled into K itself. During the reassembly, we calculate the
partitioned genus distributions of the larger fragments that we construct by iterative mergers, until we
have obtained the genus distribution of the entire Halin graph G.
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We merge three fragments at a time, always ordered so that the third fragment is a designated
quadrangle Q ∼= K4 − e with four root-vertices. Envisioning this configuration as a small pie cut into
three slices, we call such a 3-fragment merger a π-merge

(2.1) ((A, r, s), (B, t, r′), (Q, s′, t′, p, q)) −→ (X, p, q)

as illustrated in Figure 5.

A
Q

X

B
v
v

v v ww
r

s
q

p

s'

t'
t

r'

Figure 5. A π-merge ((A, r, s), (B, t, r′), (Q, s′, t′, p, q))→ (X, p, q) at vertex v.

We observe the following properties of a π-merge operation (2.1).

(1) The fragments (A, r, s), (B, t, r′), and (Q, s′, t′, p, q) are arranged counterclockwise.
(2) The root-mergers are r ∗ r′, s ∗ s′, and t ∗ t′.
(3) The vertices p, w, and q lie in counterclockwise order on the resulting fragment (X, p, q).

2.3. Vectorized production matrices. When calculating the partitioned genus distribution of a
recursively specified sequence of graphs

G1, G2, G3, . . .

by iterative application of a fixed graph operation, one can either apply a list of productions rep-
resenting the effect of that graph operation, or one can combine the productions into an ordinary
production matrix, whose application to the pgd-vector of the graph Gn yields the pgd-vector of the
graph Gn+1. Assuming that the components of the pgd-vector are polynomials in an indeterminate z,
the components of the (ordinary) production matrix are polynomials in z.

By way of contrast, a graph operation f that combines two graphs G and H into a graph J can
be represented by a vectorized production matrix (abbr. vp-matrix ) Mf that is applied to the
respective pgd-vectors XG and XH so that

(2.2) XGMfX
t

H = XJ

The algebraic objects here have the following properties:

(1) XG and XH are row-vectors of polynomials in z.
(2) Each entry of the matrix Mf is a row-vector of polynomials in z.
(3) XJ is a row-vector of polynomials in z.

Theorem 2.1. The π-merge operation of [Gr13] corresponds to the following vectorized production
matrix:

Mπ = 1
4×

dd′

dd′′

ds′

sd′

ss1

ss2

∣∣∣∣∣∣∣∣∣∣

dd′ dd′′ ds′ sd′ ss1 ss2

dd′+2zdd′′+zss2 2dd′+2zss2 2dd′+2zss2 2sd′+2zss1 4sd′ 2ds′+2sd′

2dd′+2zss2 4dd′′ 4ds′ 4sd′ 4ss1 2z-1dd′+2ss2

2ds′+2zss1 4ds′ 4ds′ 4ss1 4ss1 2z-1ds′+2ss1

2dd′+2zss2 4sd′ 2z-1dd′+2ss2 4sd′ 4z-1sd′ 2z-1dd′+2ss2

4ds′ 4ss1 4z-1ds′ 4ss1 4z-1ss1 4z-1ds′

2ds′+2sd′ 2z-1dd′+2ss2 2z-1dd′+2ss2 2z-1sd′+2ss1 4z-1sd′ z-2dd′+2z-1dd′′+z-1ss2
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Proof. This follows from Theorem 4.3 of [Gr13], where all 36 productions are listed. Theorem 4.3 of
[Gr13] lists the productions for all 36 (= 6× 6) ordered pairs of partials. �

In the vp-matrix Mπ, each entry has the same algebraic type as the pgd-vectors to which it is to be
applied. For a π-merge, each of the six coordinates corresponds to the partial genus polynomials for
that category. We now define six elementary pgd-vectors:

(2.3)

abbreviation elementary pgd-vector

dd′
(
1 0 0 0 0 0

)
dd′′

(
0 1 0 0 0 0

)
ds′

(
0 0 1 0 0 0

)
sd′

(
0 0 0 1 0 0

)
ss1

(
0 0 0 0 1 0

)
ss2

(
0 0 0 0 0 1

)
Thus, here are the meanings of some entries for matrix Mπ above.

entry abbreviation pgd-vector

Mf [1, 1] dd′ + 2zdd′′ + zss2
(
1 2z 0 0 0 z

)
Mf [6, 2] 2z-1dd′ + 2ss2

(
2z-1 1 0 0 0 2

)
Mf [6, 6] z-2dd′ + 2z-1dd′′ + z-1ss2

(
z-2 2z-1 0 0 0 z-1

)
In what follows, we abbreviate the pgd-vector of a quadrangular fragment as

(2.4) A = [2 0 0 0 0 2z]

We abbreviate the matrix Mπ as M . When we first π-merge three quadrangles at vertex z into a
3-wheel, the combined fragment has the pgd-vector

(2.5) Y = AMAt = [2 4z 4z 4z 0 2z]

Remark. In general, when we apply the π-merge operation, we mention two fragments (the two
explicit operands) in counterclockwise order. The third fragment must always be a quadrangle. The
virtual roots always lie on the boundary of whatever quadrangle is the third fragment of the π-merge.

3. Pgd-Vectors of Cubic Halin Graphs

In this section, we establish a bijective correspondence between cubic Halin graphs and rooted binary
trees. We also derive the matrix formula for calculating the partitioned genus polynomials and the
genus polynomial of any cubic Halin graph. A quadrangulated cubic Halin graph is shown in Figure 6.

1

2

3
4

5

6
7

Figure 6. A Halin graph with quadrangulation and virtual roots.
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The five thicker edges in Figure 6 and the vertices at which they are incident form the inner tree.
The pentagonal vertex on the outer cycle is called the anchor. The two hollow vertices on the outer
cycle are the virtual roots. The one that occurs immediately before the anchor in a counterclockwise
traversal of the outer cycle is regarded as the first root of the Halin graph. We regard the interior
vertex that is adjacent to the anchor as the root of the inner tree.

Proposition 3.1. The inner tree of a cubic Halin graph is a rooted binary tree.

Proof. We assign an ordering to the neighbors of the root by proceeding counterclockwise from the
anchor vertex. At any vertex of the inner tree with two children in the inner tree), the ordering of the
children is induced by proceeding counterclockwise from the parent node.

A vertex with only one child in the inner tree has its third neighbor on the outer cycle. If the edge to
this outer cycle vertex precedes the child in the inner tree, then that child is a right-child. Otherwise,
it is a left-child. Of course, a vertex with no chidden in the inner tree is a leaf-node of the binary
tree. �

Theorem 3.2. The cubic Halin graphs are in bijective correspondence with the rooted binary trees.

Proof. An empty inner tree for a Halin graph corresponds to the notion of an empty binary tree that
lets us say the there is one binary tree with no vertices, corresponding to the Catalan number c0 = 1.
Our model for such a Halin graph is a circle with a diameter. One endpoint of the diameter is the
anchor. Since the other endpoint is on the circle, the inner tree is empty

The rooted binary tree corresponding to any given cubic Halin graph is the inner tree, as per
Proposition 3.1. Conversely, let T be a rooted binary tree. Draw a circle around it, without touching
the tree T , place an anchor node on that circle, and draw an edge joining the root r of the tree with
the anchor node. If the root r has only one child v (in the inner tree), then draw an edge to a new
node w on the circle so that tree-node v precedes cycle-node w at root r if v is a left-child of r, and so
that tree-node v follows cycle-node w if v is a right-child.

We proceed breadth-first in tree T as we join some of its vertices to new vertices on the circle. Thus,
when we arrive at any particular vertex u, we have already fully installed its parent. The rules for
drawing leaf-edges from vertex u to new vertices on the circle depend on the number of children of
vertex u, which can be 0, 1, or 2.

(0) Install two consecutive vertices on the arc of the circle that is accessible to vertex u without
crossing any edges.

(1) If u is a left-child of its parent, then draw an edge from u to a new vertex on the circle, so that
the new edge follows the edge from u to its child. Otherwise, draw an edge from u to a new
vertex on the circle so that the new edge precedes the edge to the child of u.

(2) No new edges are drawn from vertex u.

It is clear that the resulting graph is a cubic Halin graph. �

Corollary 3.3. The number of cubic Halin graphs with n vertices in its inner tree is the Catalan
number cn. ♦

We now give a recursive algorithm for calculating the pgd-vector of a cubic Halin graph that is the
union of a tree T with a cycle C, installed in the plane so that C is the outer cycle. We are proceeding
with a pre-order traversal of the binary tree (not just the inner tree).

(0) Start at root vertex of the inner tree.
(1) If the left-child is on the cycle C, then record the row-vector A from Equation (2.4). Otherwise,

inside a pair of parentheses, record the pgd-vector of the cubic Halin graph for which that left-
child is root of the inner tree.
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(2) Record the vp-matrix M from Theorem 2.1.
(3) If the right-child is on the cycle C, then record the column vector At. Otherwise, after a left

parenthesis, record the pgd-vector of the cubic Halin graph or which that right-child is root of
the inner tree, followed by )t, that is, a right parenthesis and then a transpose notation.

WIth pgd-vectors A and Y defined by Equations (2.4) and (2.5), the matrix formula for the pgd-
vector of the Halin graph of Figure 6 is

(3.1) (AMAt)M((AM(AM(AMAt)t)t)M(AMAt)t)t

Replacing (AMAt) by Y yields the simplified formula

(3.2) YM((AM(AMY t)t)MY t)t

Either matrix formula yields the following genus polynomial:

2 + 286z + 6912z2 + 31968z3 + 26368z4.

4. Log-concavity results for cubic Halin graphs

We now consider some special sequences of cubic Halin graphs whose genus polynomials are provably
log-concave. For this purpose, we rewrite the vp-matrix M of Theorem 2.1 in the form

M =
1

4



1
2v + 2ze2 v v v 4e4 2e3 + 2e4

v 4e2 4e3 4e4 4e5
1
z v

2e3 + 2ze5 4e3 4e3 4e5 4e5
2
z e3 + 2e5

v 4e4
1
z v 4e4

4
z e4

1
z v

4e3 4e5
4
z e3 4e5

4
z e5

4
z e3

2e3 + 2e4
2
z e1 + 2e6

2
z e1 + 2e6

2
z e4 + 2e5

4
z e4

1
2z2 v + 2

z e2

 ,

where v = (2, 0, 0, 0, 0, 2z)t, and where ej is the jth unit vector in R6.

4.1. Revisiting Ringel ladders. The cubic Halin graph in Figure 7(a) is recognizable as the Ringel
ladder RL4, whose genus polynomial is already known [GMTW13b] to be log-concave.

(a)

4 3 2 1

(b)

Figure 7. (a) A Halin graph isomorphic to the Ringel ladder RL4.
(b) Quadrangulation of its plane imbedding.

From the quadrangulation in Figure 7(b), we see that the pgd-vectors of the corresponding infinite
sequence of Halin graphs (i.e., the Ringel ladders) are of the form

(4.1) ((· · · (AMAt) · · ·MAt)MAt)MAt

where A = (2, 0, 0, 0, 0, 2z), as in Equation (2.4).
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4.2. A second family of cubic Halin graphs. We now seek an explicit general formula for the
pdg-vectors of various infinite sequence of cubic Halin graphs exemplified by Figure 8(a). The general
pattern of each of these infinite sequences is that there is a rectangularized cycle with a subdivided
horizontal diameter. From each interior vertex v of this diameter, there is a tree, all of whose leaves
(other than v) lie on the arc above the diameter. Each sequence is characterized by a fixed finite
sequence of trees at the right, after which (proceeding leftward), all the remaining trees have only one
edge.

(a)

...

...

...

(b)
Figure 8. (a) A sequence of Halin graphs Y I0, Y I1, Y I2, . . ..

(b) Quadrangulation of a plane imbedding of Y I2.

In order to find such a formula, we define the following recurrence:

Fn(z) = (Fn−1)MAt,(4.2)

F1(z) = (v1, . . . , v6),(4.3)

where A = (2, 0, 0, 0, 0, 2z). If we denote the jth coordinate of the vector Fn(z) by F
(j)
n , we see from

(4.2) that the coordinates F
(j)
n satisfy the following recurrence system:

F (1)
n =

1

2
F

(1)
n−1 + 2F

(2)
n−1 + 2F

(4)
n−1 +

1

2z
F

(6)
n−1,

F (2)
n = zF

(1)
n−1 + F

(6)
n−1,

F (3)
n = zF

(1)
n−1 + 2F

(3)
n−1 + 4F

(5)
n−1 + F

(6)
n−1,

F (4)
n = zF

(1)
n−1 + F

(6)
n−1,

F (5)
n = 2zF

(3)
n−1,

F (6)
n =

z

2
F

(1)
n−1 + 2zF

(2)
n−1 + 2zF

(4)
n−1 +

1

2
F

(6)
n−1

with the initial conditions (from (4.3)) F
(j)
1 = vj for all j = 1, 2, . . . , 6.

Remark. The following theorem and corollary hold with v1, v2, . . . , v6 equal to arbitrary functions
of z.
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Theorem 4.1. For n ≥ 2, the vector Fn(z) = (F
(1)
n , . . . , F

(6)
n ) is given by

F (1)
n = v1hn−1 +

1

2z
(4zv2 − zv1 + 4zv4 + v6)hn−2 − 4z(v1z − v6))hn−3,

F (2)
n = v2hn−1 + (zv1 − v2 + v6)hn−2 − 4z(v2 − v4)hn−3,

F (3)
n = −(zv1 + v6)hn−1 −

1

2
(v2 + v4)(hn − hn−1)

+
1

2z
(zv2 + zv4 + v5)(h′n − h′n−1) + (zv1 + v3 + v6)h′n−1,

F (4)
n = v4hn−1 + (zv1 − v4 + v6)hn−2 + 4z(v2 − v4)hn−3,

F (5)
n = −1

8
(2zv1 − v2 − v4 + 2v6)(hn − hn−1)− z(v2 + v4)hn−1

+
1

2z
(z2v1 − zv2 + zv3 − zv4 − v5 + zv6)(h′n − 2h′n−1) + 2(zv2 + zv4 + v5)h′n−1,

F (6)
n = v6hn−1 +

1

2
(zv1 + 4zv2 + 4zv4 − v6)hn−2 + 4z(zv1 − v6)hn−3,

where hn =
√
−8z

n
Un

(
1

2
√
−8z

)
and h′n =

√
−8z

n
Un

(
1√
−8z

)
.

Proof. We define the generating functions F (j)(t) =
∑
n≥1 F

(j)
n tn, for j = 1, 2, . . . , 6. By multiplying

the recurrence system above by tn, next summing over n ≥ 2, and then solving for F (j)(t), we obtain
that

F (1)(t) =
2zv1t+ (4zv2 − zv1 + 4zv4 + v6)t2 − 8z(v1z − v6))t3

2z(1− t− 8zt2)
,

F (2)(t) =
v2t+ (zv1 − v2 + v6)t2 − 4z(v2 − v4)t3

1− t− 8zt2
,

F (3)(t) =
v3t+ (zv1 − v3 + 4v5 + v6)t2

(1− 2t− 8zt2)(1− t− 8zt2)
+

4(zv2 − 2zv3 + zv4 − v5)t3 − 32zv5t
4

(1− 2t− 8zt2)(1− t− 8zt2)
,

F (4)(t) =
v4t+ (zv1 − v4 + v6)t2 + 4z(v2 − v4)t3

1− t− 8zt2
,

F (5)(t) =
v5t+ (2zv3 − 3v5)t2 + 2(z2v1 − zv3 + (1− 4z)v5 + zv6)t3 + 8z(zv2 − 2zv3 + zv4 + 2v5)t4

(1− 2t− 8zt2)(1− t− 8zt2)
,

F (6)(t) =
2v6t+ (zv1 + 4zv2 + 4zv4 − v6)t2 + 8z(zv1 − v6)t3

2(1− t− 8zt2)
.

Using the fact that Chebyshev polynomials Un(x) of the second kind have the generating function
1

1−2xt+t2 , we obtain the conclusion. �

Corollary 4.2. A closed formula for the generating function G(t) =
∑
n≥1 gnt

n = F (1)(t) + · · · +
F (6)(t) is

G(t) = −2z(v1 + v3) + (1 + z)(v2 + v4) + 2(v5 + v6)

8z
+

(1− z)(zv1 − v6)t

2z

+
(1− z)

(
2(zv1 + v6)(1 + t) + (v2 + v4)(1 + 8zt− t)

)
8z(1− t− 8zt2)

+
z(zv1 + v3 + v6)(1 + 2t) + (zv2 + zv4 + v5)(1 + 4zt− 2t)

4z(1− 2t− 8zt2)
.



10 J. L. GROSS, T. MANSOUR, AND T. W. TUCKER

Moreover, for n ≥ 2, the polynomial gn is given by

gn =
(1− z)

(
2(zv1 + v6)(hn + hn−1) + (v2 + v4)(hn + (8z − 1)hn−1)

)
8z

+
z(zv1 + v3 + v6)(h′n + 2h′n−1) + (zv2 + zv4 + v5)(h′n + 2(2z − 1)h′n−1)

4z
,

where hn =
√
−8z

n
Un

(
1

2
√
−8z

)
and h′n =

√
−8z

n
Un

(
1√
−8z

)
. �

We are now ready to give applications of Corollary 4.2.

Example 4.1. Ringel ladders are illustrated by Figure 7. We apply Corollary 4.2 with F1(z) =
(v1, . . . , v6) = (2, 0, 0, . . . , 2z) = A (see (2.4)), which gives

G(t) = −1 +
(1− z)(1 + t)

1− t− 8zt2
+

z(1 + 2t)

1− 2t− 8zt2

and for n ≥ 1,

gn = (1− z)(hn + hn−1) + z(h′n + 2h′n−1).

Note that
√
−8z

n
Un

(
1

m
√
−8z

)
=
∑
j≥0

(
n− j
j

)
(2/m)n−2j8jzj .(4.4)

Thus, the coefficient of zj in gn is given by

gn(j) =

[(
n− j
j

)
+

(
n− 1− j

j

)]
8j +

[(
n+ 1− j
j − 1

)
+

(
n− j
j − 1

)]
(2n−1+j − 8j−1).(4.5)

This formula is consistent with Theorem 5.2 of [GMTW13b].

Example 4.2. For the sequence of cubic Halin graphs Y In of Figure 8, we apply Corollary 4.2 with

F1(z) = (v1, . . . , v6) = (AMAt)M(AMAt)t = YMY t as in (2.5)

= 2((1 + 20z), 2z(1 + 4z), 6z(1 + 4z), 6z(1 + 4z), 16z2, z(1 + 20z)),

which gives

G(t) = −3 − 41z − 20z2 +
(1− z)(1 + 20z)(1 + t) + 2(1− z)(1 + 4z)(1 + 8zt− t)

1− t− 8zt2

+
4z(1 + 8z)(1 + 2t) + 4z(3 + 4z)(1 + 4zt− 2t)

1− 2t− 8zt2
.

Moreover, for n ≥ 2, the polynomial gn is given by

gn = (1− z)(3 + 28z)hn + (1− z)(64z2 + 28z − 1)hn−1 + 16z(1 + 3z)h′n + 16z(4z2 + 5z − 1)h′n−1.

Thus, by (4.4) we establish that the coefficient of zj in gn is given by

gn(j)

4 · 8j−2
= 48

(
n− j
j

)
− 16

(
n− 1− j

j

)
+

(
n+ 1− j
j − 1

)
(50 + 2n+7−2j)(4.6)

+

(
n− j
j − 1

)
(58− 2n+6−2j) +

(
n+ 2− j
j − 2

)
(3 · 2n+6−2j − 7)

+

(
n+ 1− j
j − 2

)
(9 + 5 · 2n+5−2j) + 2

(
n+ 2− j
j − 3

)
(2n+11−2j − 1).
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Example 4.3. The sequence of cubic Halin graphs depicted in Figure 9 has

F1(z) = (v1, . . . , v6) = AM(AMAt)t = AMY t = 2((1 + 8z), 2z, 2z, 6z, 4z2, z(1 + 8z)),

(a)

...

...

...

(b)
Figure 9. (a) A sequence of Halin graphs HY0, HY1, HY2, . . ..

(b) Quadrangulation of a plane imbedding of HY2.

Applying Corollary 4.2 gives

G(t) = −3 − 13z +
(1− z)(3 + 8z)− (1− z)(1− 24z)t

1− t− 8zt2
+

8z(1 + z + (5z − 1)t)

1− 2t− 8zt2
.

Moreover, for n ≥ 2, the polynomial gn is given by

gn = (1− z)((3 + 8z)hn − (1− 24z)hn−1) + 8z((1 + z)h′n + (5z − 1)h′n−1).

Thus, by (4.4) we establish that the coefficient of zj in gn is given by

gn(j)

8j−1
= 24

(
n− j
j

)
− 8

(
n− 1− j

j

)
+

(
n− j + 1

j − 1

)
(2n−2j+5 + 5)(4.7)

+

(
n− j + 2

j − 2

)
(2n−2j+4 − 1) +

(
n− j + 1

j − 2

)
(5 · 2n−2j+3 − 3)−

(
n− j
j − 1

)
(2n−2j+4 − 25).

Example 4.4. For the following vectors F1(z), by using similar techniques as in above examples, ones
can get explicit formula for the genus polynomials, and prove they are log-concave polynomials:

(a) F1 = AM(AMY t)t,
(b) F1 = AM(AM(AMY t)t)t,
(c) F1 = YM(YMY t)t.

5. Log-concavity

In this final section, we provide a procedure via Theorem 5.1 to prove that the genus polynomials of
our example sequences and similar sequences of cub is Halin graphs are log-concave. Note that most
of the steps of Theorem 5.1 require the help of a mathematical programming system (such as Maple
or Mathematica).

Theorem 5.1. Let n ≥ n0 and let j = j0, j0 + 1, . . . , n−m2 , where n0 and m are any constants with
n0 ≥ m. Assume that the function pn(j) can be written as a sum

pn(j) =

r∑
`=0

a(`)n (j)t`(n−sj),

where a
(`)
n (j) is a polynomial in n and j, for ` = 0, 1, . . . , r, such that
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(i) There exist constants m′ > 0 and q > 0 with m′ < m and tn−sj ≥ q(n − sj), for all j =
j0, j0 + 1, . . . , n−m2 and n > n0;

(ii) For all ` = r, r − 1, . . . , 1, for all j = j0, j0 + 1, . . . , n−m2 , and for n > n0, the polynomial

q(`)n (j) =

r∑
d=`

a(d)n (j)(q(n− sj))`−d+1

is non-negative;
(iii) For all j = j0, j0 + 1, . . . , n−m2 and for n > n0, the polynomial

q(0)n (j) =

r∑
d=0

a(d)n (j)(q(n− sj))`

is non-negative.

Then pn(j) ≥ 0, for all j = j0, j0 + 1, . . . , n−m2 and n > n0.

Proof. Let j0, j0 + 1, . . . , n−m2 and n > n0. Then, by (i) and (ii) we have

pn(j) =

r∑
`=0

a(`)n (j)t`(n−sj) ≥
r−1∑
`=0

a(`)n (j)t`(n−sj) + t(r−1)(n−sj)q(r)n (j)

≥
r−2∑
`=0

a(`)n (j)t`(n−sj) + t(r−2)(n−sj)q(r−1)n (j)

...

≥ a(0)n (j) + t(r−r)(n−sj)q(1)n (j) = q(0)n ≥ 0,

which completes the proof. �

In what follows, we use this theorem to prove the log-concavity of the sequence of Halin graphs
corresponding to Figure 8.

Theorem 5.2. The genus polynomial of any graph Y In, as defined in Example 4.2 is log-concave.

Proof. Let gn(j) be defined as in (4.6). By direct calculations, with the help of a mathematical
programming sytem, we can see that the function gn(j) can be expressed as

g′n(j) = (gn(j))2 − gn(j − 1)gn(j + 1) =
82j−2pn(j)(n− 2− j)!(n− 1− j)!

4j!(j + 1)!(n+ 5− 2j)!(n+ 7− 2j)!

=
82j−2

(
an(j) + bn(j)2n−2j + cn(j)22n−4j

)
(n− 2− j)!(n− 1− j)!

4j!(j + 1)!(n+ 5− 2j)!(n+ 7− 2j)!
,

for all j = 0, 1, 2, . . . , n+5
2 . Fix n0 = 6. (It is not hard to see that gn(z) is a log-concave polynomial,

for n = 0, 1, . . . , n0 − 1). Note that

pn(
n+ 5

2
) = 0,

pn(
n+ 4

2
) =

3

2048
n
2
(n

2 − 36)(n
2 − 16)

2
(n

2 − 4)
2
(n+ 5)

2
,

pn(
n+ 3

2
) =

3

1024
(n

2 − 25)(n
2 − 9)

2
(n

2 − 1)
2
(3n

2
+ 34n+ 147)

2
,

pn(
n+ 2

2
) =

1

2048
n
2
(n

2 − 16)(n
2 − 4)

2
(397n

6
+ 13980n

5
+ 220735n

4
+ 1993620n

3
+ 10632868n

2
+ 30850320n+ 37347840),

pn(
n+ 1

2
) =

3

2048
(n

2 − 9)(n
2 − 1)

2
(747n

8
+ 35544n

7
+ 746372n

6
+ 9088392n

5
+ 69658658n

4
+ 333822696n

3

+ 939437828n
2
+ 1222667448n+ 765895275),
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pn(
n

2
) =

1

2048
n
2
(n

2 − 4)(11291n
10

+ 675250n
9
+ 17648355n

8
+ 264445080n

7
+ 2482032168n

6
+ 14576852640n

5

+ 52682726320n
4
+ 116037096320n

3
+ 142037711616n

2
+ 69500252160n+ 178362777600),

pn(
n− 1

2
) =

3

2048
(n

2 − 1)(17919n
12

+ 1288812n
11

+ 40367354n
10

+ 716390340n
9
+ 7773709197n

8
+ 49651550136n

7

+ 170799321372n
6
+ 389074688520n

5
+ 1094324663209n

4 − 2218709032548n
3 − 1350300915126n

2

+ 3681801409140n+ 3248256660075),

pn(0) = 1024(n− 1)(n+ 7)(n+ 6)
5∏

j=0

(n+ j)
2
,

which shows that g′n(j) ≥ 0, for all j = 0, n−12 , n2 , . . . ,
n+5
2 , where n ≥ n0. Thus, it remains to show

that pn(j) ≥ 0 for all n ≥ n0 and j = j0, j0 + 1, . . . , n−m2 , where j0 = 1 and m = 2. With the help of
a mathematical programming system, we have

1024cn(j)

j(j + 1)
= 8j

2
(j + 4)(j − 1)(11j

8
+ 286j

7
+ 3071j

6
+ 17416j

5
+ 53039j

4
+ 54334j

3 − 57201j
2
+ 8604j − 19080)

+ 4j(4j
11

+ 402j
10

+ 8939j
9
+ 90957j

8
+ 497247j

7
+ 1395669j

6
+ 1177232j

5 − 1971312j
4 − 1395206j

3

+ 390324j
2
+ 181584j + 228960)(n− 2j)

+ 2(104j
11

+ 6136j
10

+ 109656j
9
+ 926037j

8
+ 4059491j

7
+ 8116030j

6
+ 2237454j

5 − 8016639j
4 − 3138925j

3

+ 284896j
2
+ 1161360j + 152640)(n− 2j)

2

+ (1236j
10

+ 53364j
9
+ 776436j

8
+ 5320878j

7
+ 17795955j

6
+ 23122341j

5 − 2142995j
4 − 16365059j

3 − 5818844j
2

+ 1555440j + 863136)(n− 2j)
3

+ 2(2208j
9
+ 74391j

8
+ 874547j

7
+ 4695037j

6
+ 11291981j

5
+ 8632927j

4 − 3562392j
3 − 5591366j

2 − 1190365j

+ 331328)(n− 2j)
4

+ (10488j
8
+ 280134j

7
+ 2600136j

6
+ 10440012j

5
+ 16923714j

4
+ 6073626j

3 − 6496343j
2 − 4606231j

− 301592)(n− 2j)
5

+ 2(8642j
7
+ 181381j

6
+ 1281383j

5
+ 3639157j

4
+ 3627281j

3 − 28577j
2 − 1482453j − 394844)(n− 2j)

6

+ (20037j
6
+ 321783j

5
+ 1647039j

4
+ 3075621j

3
+ 1513563j

2 − 771963j − 534076)(n− 2j)
7

+ 6(2706j
5
+ 31869j

4
+ 110650j

3
+ 120008j

2
+ 5457j − 29684)(n− 2j)

8

+ (8978j
4
+ 72980j

3
+ 155567j

2
+ 71019j − 28092)(n− 2j)

9
+ 2(1622j

3
+ 8319j

2
+ 8965j − 116)(n− 2j)

10

+ (713j
2
+ 1975j + 620)(n− 2j)

11
+ 4(21j + 22)(n− 2j)

12
+ 4(n− 2j)

13
.

Note that each coefficient (n−2j)k in cn(j) is non-negative (to see this, only we expand it as Taylor
series at j = 1) for all j = j0, j0+1, . . . , n−m2 and n ≥ n0, which implies that cn(j) ≥ 0. By considering
the polynomial b′n(j) = bn(j) + 2cn(j)(n− 2j), we can write

b′n(j)

8j
= 8j(j + 1)

2
(3359j

10
+ 137587j

9
+ 2474130j

8
+ 25534710j

7
+ 165097407j

6
+ 672129051j

5
+ 1671707200j

4

+ 2557644380j
3
+ 2543193744j

2 − 165807648j − 1143486720)

+ 4(j + 1)(7747j
12

+ 412775j
11

+ 9333398j
10

+ 118822058j
9
+ 942021519j

8
+ 4771988847j

7
+ 15308677484j

6

+ 31451733376j
5
+ 44615065324j

4
+ 34671470368j

3 − 173351232j
2 − 13052970144j − 2472768000)(n− 1− 2j)

+ (108612358968j
7 − 45138303360 + 26012075984j

8
+ 3968242096j

9
+ 292813370748j

6
+ 4132j

13
+ 9325299320j

2

+ 449831171016j
3
+ 673112160978j

4
+ 538602971756j

5 − 146796524832j + 580702j
12

+ 379199116j
10

+ 21236192j
11

)(n− 1− 2j)
2

+ (80626832420j
7 − 88533656352 + 15572317741j

8
+ 1842574904j

9
+ 260687588355j

6
+ 187233730744j

2
+ 699548570060j

3

+ 798915799817j
4
+ 551850290224j

5 − 166611425240j + 53734j
1
2 + 127490377j

10
+ 4498816j

11
)(n− 1− 2j)

3

+ (35675350102j
7 − 98278308272 + 5294994995j

8
+ 451108199j

9
+ 143683488548j

6
+ 306497318284j

2
+ 648436841636j

3

+ 603760615611j
4
+ 361133337659j

5 − 90643987752j + 19764754j
10

+ 319116j
11

)(n− 1− 2j)
4
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+ (9625397822j
7 − 68165947912 + 1025337775j

8
+ 55508120j

9
+ 50546339680j

6
+ 263400467899j

2
+ 394239255688j

3

+ 307651107681j
4
+ 156646603268j

5 − 4752345186j + 1137885j
10

)(n− 1− 2j)
5

+ (1549116448j
7 − 30446407420 + 105024767j

8
+ 2691309j

9
+ 11334565970j

6
+ 143251611327j

2
+ 164418909245j

3

+ 108006666476j
4
+ 45392365846j

5
+ 26966512544j)(n− 1− 2j)

6

+ (136322798j
7 − 8455327772 + 4401646j

8
+ 1564079386j

6
+ 52546612872j

2
+ 47842040960j

3
+ 26102159596j

4

+ 8659627328j
5
+ 20007371186j)(n− 1− 2j)

7

+ (5035206j
7 − 1160961432 + 120783064j

6
+ 13283885674j

2
+ 9683554956j

3
+ 4252205974j

4
+ 1041006618j

5

+ 7810138580j)(n− 1− 2j)
8

+ (78816648 + 3986757j
6
+ 2306804195j

2
+ 1332617530j

3
+ 444672304j

4
+ 71304732j

5
+ 1929407114j)(n− 1− 2j)

9

+ (69916004 + 267949619j
2
+ 118478031j

3
+ 26882473j

4
+ 2117297j

5
+ 312314304j)(n− 1− 2j)

10

+ 2(356273j
4
+ 3055873j

3
+ 9809533j

2
+ 16224399j + 7329122)(n− 1− 2j)

11

+ 4(34571j
3
+ 199944j

2
+ 501349j + 407656)(n− 1− 2j)

12
+ 8(1653j

2
+ 7604j + 12223)(n− 1− 2j)

13

+ 64(7j + 39)(n− 1− 2j)
14
.

Note that each coefficient (n− 1− 2j)k in b′n(j) is non-negative (to see this, we need only expand it
as a Taylor series at j = 1) for all j = j0, j0 + 1, . . . , n−m2 and n ≥ n0, which implies that b′n(j) ≥ 0.
By considering the polynomial

b′′n(j) = an(j) + 2bn(j)(n− 2j) + 4cn(j)(n− 2j)2

we can write

b′′n(j)

8j
= 84(2 + j)(j + 1)(738j

11
+ 39107j

10
+ 917633j

9
+ 12468630j

8
+ 107337732j

7
+ 594633627j

6
+ 2072871045j

5

+ 4501421380j
4
+ 6663188260j

3
+ 5522412936j

2
+ 606323952j − 2082767040)

+ (39252j
13

+ 3004694j
12

+ 96229988j
11

+ 1738239628j
10

+ 19805704462j
9
+ 148564775634j

8
+ 740545509960j

7

+ 2462154899440j
6
+ 5606752930834j

5
+ 8882467342316j

4
+ 9113367582272j

3
+ 4427711474352j

2 − 856666567008j

− 1349274426624)(n− 2− 2j)

+ (4132j
13

+ 741904j
12

+ 36647336j
11

+ 891637621j
10

+ 12798066837j
9
+ 116420182998j

8
+ 687039446306j

7

+ 2648830069601j
6
+ 6821967996661j

5
+ 12073498551092j

4
+ 14177247540744j

3
+ 8764452468528j

2 − 109247190144j

− 2241928217376)(n− 2− 2j)
2

+ (53734j
12

+ 5775280j
11

+ 217928243j
10

+ 4255915080j
9
+ 49260228421j

8
+ 355617809474j

7
+ 1629417776429j

6

+ 4838323990676j
5
+ 9642997729381j

4
+ 12868013286330j

3
+ 9724631343008j

2
+ 1305605888632j

− 2115368087952)(n− 2− 2j)
3

+ (319116j
11

+ 25454179j
10

+ 769018434j
9
+ 12151112985j

8
+ 112162848282j

7
+ 630133600870j

6
+ 2210638290031j

5

+ 5035255325010j
4
+ 7633112561321j

3
+ 6895083660004j

2
+ 1857495684480j − 1242677879448)(n− 2− 2j)

4

+ (1137885j
10

+ 71655974j
9
+ 1747920943j

8
+ 22064846804j

7
+ 158665585572j

6
+ 678667297916j

5
+ 1805092282349j

4

+ 3128414069026j
3
+ 3338181686847j

2
+ 1353036592424j − 457675977244)(n− 2− 2j)

5

+ (2691309j
9
+ 135836289j

8
+ 2644361802j

7
+ 25999935052j

6
+ 141592172304j

5
+ 453110540038j

4
+ 910224394831j

3

+ 1142893366573j
2
+ 630308256138j − 92383564512)(n− 2− 2j)

6

+ 2(2200823j
8
+ 88302223j

7
+ 1336933575j

6
+ 9904363132j

5
+ 39794523636j

4
+ 94814236258j

3
+ 140573505160j

2

+ 100913577315j − 105330538)(n− 2− 2j)
7

+ (5035206j
7
+ 156663877j

6
+ 1778027571j

5
+ 9581538085j

4
+ 28085512791j

3
+ 49752910582j

2
+ 45655305104j

+ 6053721216)(n− 2− 2j)
8

+ (3986757j
6
+ 92477702j

5
+ 752687064j

4
+ 2883966350j

3
+ 6250754895j

2
+ 7322812940j + 2017829940)(n− 2− 2j)

9

+ (2117297j
5
+ 34720479j

4
+ 194833981j

3
+ 540326625j

2
+ 819453618j + 369242592)(n− 2− 2j)

10

+ 2(356273j
4
+ 3885577j

3
+ 15123925j

2
+ 30710759j + 21380714)(n− 2− 2j)

11
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+ 4(34571j
3
+ 242922j

2
+ 709245j + 782238)(n− 2− 2j)

12
+ 8(1653j

2
+ 8388j + 16591)(n− 2− 2j)

13

+ 64(7j + 39)(n− 2− 2j)
14
.

Note that each coefficient (n− 2− 2j)k in b′′n(j) is non-negative. To see this, we expand it as a Taylor
series at j = 1, for all j = j0, j0 + 1, . . . , n−m2 and n ≥ n0, which implies that b′′n(j) ≥ 0. Therefore, by

Theorem 5.1, the polynomial g′n(j) ≥ 0 for all j = j0, j0 + 1, . . . , n−m2 and n ≥ 6. It follows that the
polynomial gn(z) is log-concave. �

Theorem 5.3. The genus polynomials of the cubic Halin graphs defined in Examples 4.3 and 4.4 are
log-concave.

Proof. Proof that the cubic Halin graph sequence of Example 4.3 has log-concave genus polynomials
is given in Appendix A. Proofs of log-concavity for Example 4.4 are similar. �

6. Conclusions and conjectures

We have seen here how the use of vectorized production matrices, which were introduced in [GMT13]
for calculating genus distributions of graphs that are ring-like in structure, enables us to give formulas
and to prove log-concavity for genus distributions of various infinite sequences of cubic Halin graphs.
In the course of this, we have established a bijective correspondence between rooted cubic Halin graphs
and rooted binary trees.

Like iterated claws [GMTW13a], Ringel ladders [GMTW13b], and bar-rings [GMT13] of copies
of K4, all of which have previously been proved to have log-concave genus distributions, Halin graphs
have treewidth 3. However, whereas these previously investigated families of graphs are linear or
ring-like in structure, Halin graphs are tree-like in structure, which is a fully general kind of structure.

We conclude with two conjectures regarding the log-concavity of the genus distributions of several
infinite sequences of cubic Halin graphs. Of course, both conjectures are true if the general conjecture
that all graphs have log-concave genus polynomials is true.

Conjecture 6.1. Consider the sequence of cubic Halin graphs with genus polynomial formulas given
by the recursion (4.2) with initial condition (4.3). Extend Examples 4.1–4.4 by showing that the genus
polynomial Fn(z) is log-concave for any initial pgd-vector F1(z).

It is not hard to extend Theorem 4.1 and its proof for other sequences of cubic Halin graphs. Here,
let us give one more example. We define the following recurrence:

Pn(z) = (Pn−1)MY t,(6.1)

P1(z) = (v1, . . . , v6).(6.2)

If we denote the jth coordinate of the vector Pn(z) by P
(j)
n , we see from (6.1) that the coordinates

P
(j)
n satisfy the following recurrence system:

P (1)
n =

1 + 8z

2
P

(1)
n−1 + 2P

(2)
n−1 + 4P

(4)
n−1 +

1 + 8z

2z
P

(6)
n−1,

P (2)
n = zP

(1)
n−1 + 4zP

(2)
n−1 + P

(6)
n−1,

P (3)
n = zP

(1)
n−1 + 4zP

(2)
n−1 + 2(1 + 4z)P

(3)
n−1 + 8P

(5)
n−1 + P

(6)
n−1,

P (4)
n = 3zP

(1)
n−1 + 4zP

(2)
n−1 + 8zP

(4)
n−1 + 3P

(6)
n−1,

P (5)
n = 2z2P

(3)
n−1 + 6zP

(3)
n−1 + 8zP

(5)
n−1 + 2zP

(6)
n−1,
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P (6)
n =

z(1 + 8z)

2
P

(1)
n−1 + 2zP

(2)
n−1 + 4zP

(4)
n−1 +

1 + 8z

2
P

(6)
n−1

with the initial conditions (from (6.2)) P
(j)
1 = vj for all j = 1, 2, . . . , 6. Again, note that the above

recurrences system holds with v1, v2, . . . , v6 equal to arbitrary functions of z. By similar arguments as

in the proof of Theorem 4.1, we establish that the generating function G(t) =
∑
n≥1

(∑6
j=1 P

(j)
n

)
tn

is given by

Q(t) =
Q′(t)t

2z(1− (1 + 20z)t− 16z(1− 8z)t2 + 64z2(1− 4z)t3)(1− 2(1 + 8z)t− 32z(1− 2z)t2)
,(6.3)

where

Q
′
(t) = 2z

6∑
i=1

vi −
(
z(5 + 53z + 12z

2
)v1 + 2z(1 + 22z)(v2 + v3)− 2z(1− 24z)v4 − 2z(5− 28z)v5 − (1 + 13z − 60z

2
)v6
)
t

+ 2
(
z(1− 9z + 314z

2 − 152z
3
)v1 − 2z(1 + 18z − 96z

2
)v2 − 14z

2
(1− 12z)v3 − 2z(3 + 32z − 112z

2
)v4

− 2z(3 + 64z − 144z
2
)v5 − (1 + 15z + 190z

2 − 360z
3
)v6
)
t
2

+ 32z
(
2z(1 + 11z − 69z

2
+ 44z

3
)v1 − z(1− 27z + 52z

2
)v2 + 2z

2
(2− 16z)v3 − z(5− 39z + 60z

2
)v4

− 2z(3− 30z + 40z
2
)v5 − 2(1 + 7z − 63z

2
+ 68z

3
)v6
)
t
3

− 128z
2
(
z(−3 + 47z − 138z

2
+ 88z

3
)v1 − 2z(1− 4z)(2− 3z)(v2 + v4) + 2z

2
(1− 4z)v3 − 2z(1− 4z)(3− 4z)v5

+ (3− 47z + 142z
2 − 104z

3
)v6
)
t
4 − 2048z

3
(1− z)(1− 2z)(1− 4z)(v1z − v6)t5

Conjecture 6.2. We define the polynomial qn(z) to be the coefficient of tn in the generating function
Q(t) =

∑
n≥1 qn(z)tn, for Q(t) as in (6.3). Then the genus polynomials for the sequence of cubic Halin

graphs with genus polynomial qn(z) are log-concave for any initial vector P1(z) = (v1, v2, . . . , v6).

For example, if P1(z) = (v1, v2, . . . , v6) = A = (2, 0, 0, 0, 0, 2z), then Q(t) is the generating function
for the genus polynomial (((AMY t)MY t) · · ·MY t)MY t, which is given by

2t((1 + z)− 2(1 + 10z + 12z2)t− 4z(3 + 4z)(2− 13z)t2 + 64z2(2− 3z − 12z2)t3 − 256z4(1− 4z)t4)

(1− (1 + 20z)t− 16z(1− 8z)t2 + 64z2(1− 4z)t3)(1− 2(1 + 8z)t− 32z(1− 2z)t2)
.

This genus polynomial corresponds to the sequence of cubic Halin graphs illustrated in Figure 10.

(a)

...

...

...

(b)
Figure 10. (a) A sequence of Halin graphs AY0, AY1, AY2, . . ..

(b) Quadrangulation of a plane imbedding of AY3.
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Appendix A. Log-concavity proof for Example 4.3

Theorem A.1. The genus polynomial as defined in Example 4.3 is log-concave.

Proof. Let gn(j) be defined as in (4.7). By direct calculations, with the help of mathematical pro-
gramming, we can see that the function gn(j) can be expressed as

g′n(j) = (gn(j))2 − gn(j − 1)gn(j + 1) =
82j−2pn(j)(n− 2− j)!(n− 1− j)!
j!(j + 1)!(n+ 4− 2j)!(n+ 6− 2j)!

=
82j−2

(
an(j) + bn(j)2n−2j + cn(j)22n−4j

)
(n− 2− j)!(n− 1− j)!

j!(j + 1)!(n+ 5− 2j)!(n+ 7− 2j)!
,

for all j = 0, 1, 2, . . . , n+4
2 . Fix n0 = 5. (It is not hard to see that gn(z) is a log-concave polynomial,

for n = 0, 1, . . . , n0 − 1). Note that

pn(
n+ 4

2
) = 0,

pn(
n+ 3

2
) =

3

2048
(n− 5)(n

2 − 1)
2
(n

2 − 9)
2
(n+ 5)

3
,

pn(
n+ 2

2
) =

3

1024
n
2
(n

2 − 16)(n
2 − 4)

2
(3n

2
+ 34n+ 104)

2
,

pn(
n+ 1

2
) =

1

2048
(n

2 − 3)(n
2 − 1)

2
(397n

6
+ 13980n

5
+ 191365n

4
+ 1300200n

3
+ 5232943n

2
+ 11254140n+ 14170815),

pn(
n

2
) =

3

2048
n
2
(n

2 − 4)(747n
8
+ 35544n

7
+ 635960n

6
+ 5330304n

5
+ 27585968n

4
+ 96775296n

3
+ 207246080n

2

+ 328052736n+ 424673280),

pn(0) = 256(n− 1)(n+ 6)(n+ 5)(n+ 4)
2
(n+ 3)

2
(n+ 2)

2
(n+ 1)

2
n
2
,
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which shows that g′n(j) ≥ 0, for all j = 0, n/2, . . . , n+4
2 , where n ≥ n0. Thus, it remains to show that

pn(j) ≥ 0 for all n ≥ n0 and j = j0, j0+1, . . . , n−m2 , where j0 = 1 and m = 1. By help of mathematical
programming, we have

cn(j)

64j(j + 1)

= 2j(j + 1)(44j
8
+ 1496j

7
+ 19099j

6
+ 108761j

5
+ 272641j

4
+ 223379j

3
+ 91976j

2 − 70836j − 41760)

+ (16j
10

+ 1616j
9
+ 38136j

8
+ 372814j

7
+ 1694724j

6
+ 3580360j

5
+ 3479084j

4
+ 1362866j

3 − 519000j
2 − 549816j

− 83520)(n− 2j − 1)

+ (192j
9
+ 10986j

8
+ 186496j

7
+ 1333805j

6
+ 4356455j

5
+ 6563369j

4
+ 4379461j

3
+ 350132j

2 − 1071664j

− 324624)(n− 2j − 1)
2

+ (984j
8
+ 38618j

7
+ 477683j

6
+ 2465405j

5
+ 5699415j

4
+ 5896237j

3
+ 2059190j

2 − 795164j − 510384)(n− 2j − 1)
3

+ (2816j
7
+ 79327j

6
+ 708717j

5
+ 2585905j

4
+ 4088631j

3
+ 2548087j

2 − 8383j − 413140)(n− 2j − 1)
4

+ (4945j
6
+ 100227j

5
+ 633035j

4
+ 1576145j

3
+ 1562517j

2
+ 370267j − 175156)(n− 2j − 1)

5

+ (5524j
5
+ 79080j

4
+ 340468j

3
+ 538758j

2
+ 263590j − 27396)(n− 2j − 1)

6

+ (+3946j
4
+ 38480j

3
+ 105812j

2
+ 90034j + 7740)(n− 2j − 1)

7
+ (1768j

3
+ 11031j

2
+ 16901j + 4740)(n− 2j − 1)

8

+ (473j
2
+ 1671j + 996)(n− 2j − 1)

9
+ 4(25 + 17j)(n− 2j − 1)

10
+ 4(n− 2j − 1)

11
.

Note that each coefficient (n − 1 − 2j)k in cn(j) is non-negative (to see this, only we expand it as
Taylor series at j = 1) for all j = j0, j0 + 1, . . . , n−m2 and n ≥ n0, which implies that cn(j) ≥ 0. By
considering the polynomial b′n(j) = bn(j) + 2cn(j)(n− 2j), we can write

b′n(j)

2j
= 4j(j + 1)

2
(2114j

8
+ 71731j

7
+ 925904j

6
+ 5579116j

5
+ 17427686j

4
+ 32050309j

3
+ 43226256j

2
+ 9744324j − 11049840)

+ (j + 1)(10082j
10

+ 454321j
9
+ 7680439j

8
+ 61907776j

7
+ 262181550j

6
+ 645130555j

5
+ 1119325261j

4
+ 1174012884j

3

+ 367290188j
2 − 182491296j − 49544640)(n− 2j − 1)

+ (+1554j
11

+ 176992j
10

+ 4935781j
9
+ 59186354j

8
+ 358814772j

7
+ 1221679428j

6
+ 2695500871j

5
+ 4142206876j

4

+ 3806547986j
3
+ 1327933310j

2 − 336379012j − 201485808)(n− 2j − 1)
2

+ (+18657j
10

+ 1179722j
9
+ 22969084j

8
+ 198950098j

7
+ 886460794j

6
+ 2332944710j

5
+ 4149168772j

4
+ 4798258248j

3

+ 2670254581j
2
+ 9055894j − 335614096)(n− 2j − 1)

3

+ (95517j
9
+ 4102990j

8
+ 57791208j

7
+ 366417456j

6
+ 1231628848j

5
+ 2585411604j

4
+ 3623269603j

3
+ 2789382330j

2

+ 509187784j − 290774124)(n− 2j − 1)
4

+ (272217j
8
+ 8360350j

7
+ 85575280j

6
+ 399853916j

5
+ 1040794390j

4
+ 1756122824j

3
+ 1767468877j

2
+ 626324782j

− 130173756)(n− 2j − 1)
5

+ (473154j
7
+ 10454268j

6
+ 77270344j

5
+ 269375610j

4
+ 558835786j

3
+ 720028758j

2
+ 394308268j − 15248716)(n− 2j − 1)

6

+ (517065j
6
+ 8103196j

5
+ 43007904j

4
+ 115604554j

3
+ 191125107j

2
+ 151161034j + 14704212)(n− 2j − 1)

7

+ +353319j
5
+ 3832486j

4
+ 14871169j

3
+ 32398334j

2
+ 36637976j9011484)(n− 2j − 1)

8

+ (145113j
4
+ 1072206j

3
+ 3300683j

2
+ 5503362j + 2483116)(n− 2j − 1)

9

+ (32808j
3
+ 176084j

2
+ 471768j + 382764)(n− 2j − 1)

10
+ (3396j

2
+ 18384j + 31884)(n− 2j − 1)

11

+ (96j + 1120)(n− 2j − 1)
12
.

Note here that each coefficient (n − 1 − 2j)k in b′n(j) is non-negative (again, we need only expand
it as a Taylor series at j = 1) for all j = j0, j0 + 1, . . . , n−m2 and n ≥ n0, which implies that b′n(j) ≥ 0.
By considering the polynomial

b′′n(j) = an(j) + 2bn(j)(n− 2j) + 4cn(j)(n− 2j)2
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we can write
b′′n(j)

2j
= 4j(j + 1)

2
(2114j

8
+ 71731j

7
+ 925904j

6
+ 5579116j

5
+ 17427686j

4
+ 32050309j

3
+ 43226256j

2
+ 9744324j − 11049840)

+ (j + 1)(10082j
10

+ 454321j
9
+ 7680439j

8
+ 61907776j

7
+ 262181550j

6
+ 645130555j

5
+ 1119325261j

4
+ 1174012884j

3

+ 367290188j
2 − 182491296j − 49544640)(n− 2j − 1)

+ (1554j
11

+ 176992j
10

+ 4935781j
9
+ 59186354j

8
+ 358814772j

7
+ 1221679428j

6
+ 2695500871j

5
+ 4142206876j

4

+ 3806547986j
3
+ 1327933310j

2 − 336379012j − 201485808)(n− 2j − 1)
2

+ (+18657j
10

+ 1179722j
9
+ 22969084j

8
+ 198950098j

7
+ 886460794j

6
+ 2332944710j

5
+ 4149168772j

4
+ 4798258248j

3

+ 2670254581j
2
+ 9055894j − 335614096)(n− 2j − 1)

3

+ (95517j
9
+ 4102990j

8
+ 57791208j

7
+ 366417456j

6
+ 1231628848j

5
+ 2585411604j

4
+ 3623269603j

3
+ 2789382330j

2

− 290774124 + 509187784j)(n− 2j − 1)
4

+ (272217j
8
+ 8360350j

7
+ 85575280j

6
+ 399853916j

5
+ 1040794390j

4
+ 1756122824j

3
+ 1767468877j

2
+ 626324782j

− 130173756)(n− 2j − 1)
5
+

(473154j
7
+ 10454268j

6
+ 77270344j

5
+ 269375610j

4
+ 558835786j

3
+ 720028758j

2
+ 394308268j − 15248716)(n− 2j − 1)

6

+ (517065j
6
+ 8103196j

5
+ 43007904j

4
+ 115604554j

3
+ 191125107j

2
+ 151161034j + 14704212)(n− 2j − 1)

7

+ (353319j
5
+ 3832486j

4
+ 14871169j

3
+ 32398334j

2
+ 36637976j + 9011484)(n− 2j − 1)

8

+ (145113j
4
+ 1072206j

3
+ 3300683j

2
+ 5503362j + 2483116)(n− 2j − 1)

9

+ (32808j
3
+ 176084j

2
+ 471768j + 382764+)(n− 2j − 1)

10
+ (3396j

2
+ 18384j + 31884)(n− 2j − 1)

11

+ (96j + 1120)(n− 2j − 1)
12
.

Note here, too, that each coefficient (n− 1− 2j)k in b′′n(j) is non-negative (once again, we need only
expand it as Taylor series at j = 1) for all j = j0, j0 + 1, . . . , n−m2 and n ≥ n0, which implies that

b′′n(j) ≥ 0. Therefore, by Theorem 5.1, the polynomial g′n(j) ≥ 0 for all j = j0, j0 + 1, . . . , n−m2 and
n ≥ 5. It follows that the polynomial gn(z) is log-concave. �
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