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ABSTRACT. The total embedding polynomial of a graph G is the bivariate polynomial
oo . o0 .
la(@y) = D> aw’ + Y by
i=0 j=1

where a; is the number of embeddings, fori = 0,1, ..., into the orientable surface S;, and b; is
the number of embeddings, for j = 1,2, ..., into the non-orientable surface N;. The sequence
{a;(G)]i > 0}U{b;(G)|j > 1} is called the total embedding distribution of the graph Gj it is
known for relatively few classes of graphs, compared to the genus distribution {a;(G)|i > 0}.
The circular ladder graph CL,, is the Cartesian product KoOC), of the complete graph on
two vertices and the cycle graph on n vertices. In this paper, we derive a closed formula for
the total embedding distribution of circular ladders.

1. INTRODUCTION

Genus distributions of graphs have frequently been calculated in the past quarter-century, since
the topic was inaugurated by Gross and Furst [7]. The contributions include [1, 6, 8, 10, 11, 14,
20, 21, 22, 23] and [25]. Quite recently, Gross [12] has derived a quadratic-time algorithm for any
class of graphs of fixed treewidth and bounded degree, which yields a system of simultaneous
recurrences, but no closed formulas. Total embedding distributions are known for somewhat
fewer classes of graphs. Chen, Gross and Rieper [2] computed total embedding distributions
for necklaces of type (r,0), closed-end ladders, and cobblestone paths. Kwak and Shim [15]
computed it for bouquets of circles and dipoles. Also recently, Chen, Ou and Zou [4] obtained
an explicit formula for the total embedding distributions of Ringel ladders.

Our concern in this paper is circular ladders. McGeoch [18] derived an explicit formula for the
genus distributions of circular ladders and for Mobius ladders (and Li [16, 17] has re-calculated
them). Yang and Liu [26] counted the embeddings of circular ladders and Mébius ladders in
the projective plane and in the Klein bottle. In this paper, we derive an explicit formula for the
total embedding distributions of circular ladders, with the aid of Mohar’s overlap matrix [19]
and of the Chebyshev polynomials of the second kind.

It is assumed that the reader is at least somewhat familiar with the basics of topological graph
theory, as found in Gross and Tucker [9]. All graphs considered in this paper are connected.
A graph G = (V(G), E(G)) is permitted to have loops and multiple edges. A surface is a
compact 2-dimensional manifold, without boundary. In topology, surfaces are classified into
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the orientable surfaces S, with g handles (¢ > 0), and the non-orientable surfaces Ny, with k
crosscaps (k > 0). The graph embeddings under discussion here are cellular embeddings. For
any spanning tree of a graph G, the number of co-tree edges is called the Betti number of G, or
the cycle rank of G, and is denoted by 5(G).

1.1. Background. A rotation at a vertex v of a graph G is a cyclic ordering of all the edge-ends
(or equivalently, the half-edges) incident with v. A pure rotation system p of a graph G is the
collection of rotations at all the vertices of G. An embedding of G into an orientable surface S
induces a pure rotation system as follows:

the rotation of the edge-ends at vertex v is the cyclic permutation corresponding
to the order in which the edge-ends are encountered in an orientation-preserving
tour around v.

Conversely, by the Heffter-Edmonds principle, every rotation system induces a unique embedding
(up to homeomorphism) of G into some oriented surface S. The bijectivity of this correspondence
implies that the total number of oriented embeddings is [[, .~ (d, — 1)!, where d, is the degree
of vertex v.

veG

A general rotation system for a graph G is a pair (p, A), where p is a pure rotation system and
A is a mapping F(G) — {0,1}. The edge e is said to be twisted (respectively, untwisted) if
A(e) =1 (respectively, A(e) = 0). It is well-known that every oriented embedding of a graph G
can be described uniquely by a general rotation system (p, ) with A(e) = 0, for all e € E(G).

1.2. Total embedding polynomial. By allowing the parameter A to take non-zero values,
we can describe the non-orientable embeddings of a graph G. For any fixed spanning tree T,
a T-rotation system (p,\) of G is a general rotation system (p,\) such that A(e) = 0, for all
e € E(T). Any two embeddings of G are considered to be the same if their T-rotation systems
are combinatorially equivalent. Let @g denote the set of all T-rotation systems of G. It is

known that
@5 = 29T (dy —1)!
veV(G)
This implies that the number of non-orientable embeddings of G is

@D —1) ] (do—1)

veV(G)
Suppose that among these |®%| embeddings of G, there are a; embeddings, for i = 0,1,.. ., into
the orientable surface S;, and there are b; embeddings, for j = 1,2,..., into the non-orientable

surface INV;. We call the bivariate polynomial

oo oo
IG(@,y) =Y '+ by
i=0 j=1

the T'-distribution polynomial of G.

It should be noted that the T-distribution polynomial is independent of the choice of spanning

tree T'. Thus, we may define the total embedding polynomial of G as the bivariate polynomial

Ig(z,y) = IL(x,y), for any choice of a spanning tree T. We call the first and second parts of

I (z,y) the genus polynomial of G and the crosscap number polynomial of G, respectively, and
o0

we denote them by gg(z) = Y i a;z’ and fg(y) = Doio) biy', respectively. Thus, we have
Ie(z,y) = 96(2) + fa(y).
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1.3. Overlap matrices. Mohar [19] introduced an invariant that has been used numerous times
in the calculation of graph embedding distributions, starting with [2]. Let T' be a spanning tree
of a graph G, and let (p,\) be a T-rotation system. Let ey, ea,...,eg(g) be the cotree edges
of T. The overlap matriz of (p,\) is the S(G) x B(G) matrix M = [m;;] over Za such that

1, ifi=j and e; is twisted,;
S 1, if i # j and the restriction of .the underlying pure rotation system
to the subgraph T" + e; + e; is nonplanar;
0, otherwise.

When the restriction of the underlying pure rotation system to the subgraph 7"+ e; + e; is
nonplanar, we say that edges e; and e; overlap. The power of the overlap matrix is indicated
by this theorem.

Theorem 1.1 (Mohar [19]). Let (p, \) be a general rotation system for a graph, and let M be
the overlap matriz with respect to any spanning tree. Then the rank of M equals twice the genus
of the corresponding embedding surface, if that surface is orientable, and it equals the crosscap
number otherwise. It is independent of the choice of a spanning tree.

2. OVERLAP MATRICES OF CIRCULAR LADDERS

The circular ladder graph C'L,, is the graph Cartesian product C), x K2, where K> is the complete
graph on two nodes and C), is the cycle graph on n nodes. Figure 1 depicts the circular ladder
graph CLy.

FIGURE 1. The circular ladder C'Ly4

2.1. Gustin’s represention of rotation systems for cubic graphs. For drawing a planar
representation of a rotation system on a cubic graph, we adopt the graphic “nomogram” (ter-
minology due to Youngs) introduced by Gustin [13], and used extensively by Ringel and Youngs
(see [24]) in their solution to the Heawood map-coloring problem. A trivalent vertex has two
possible rotations. There are two possible cyclic orderings of each trivalent vertex. Under this
convention, we color a vertex black if the rotation of the edge-ends incident on it is clockwise,
and we color it white if the rotation is counterclockwise. We call any drawing of a graph that uses
this convention to indicate a rotation system a Gustin representation of that rotation system.

In a Gustin nomogram, an edge is called matched if it has the same color at both endpoints;
otherwise, it is called unmatched. In Figure 2, we have indicated our choice of a spanning tree for
a generic circular ladder C'L, 11 by thicker lines, so that the cotree edges are e, f,eq1,¢e2, -, €n,
and our partial choice of rotations at the vertices.
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FIGURE 2. A Gustin nomogram for a circular ladder

2.2. Overlap matrices for circular ladder graphs. In the Gustin nomogram of Figure 2,
we observe the following properties:

Property 2.1. Two cotree edges e and e; overlap if and only if the edge a; is unmatched, for
1=2,3,---,n—1.

Property 2.2. Two cotree edges f and e; overlap if and only if the edge a; is unmatched, for
i=1,2,---,n.

Property 2.3. Two cotree edges e; and e;11 overlap if and only if the edge b; 1 is unmatched,
fori=1,2,--- n—1.

Property 2.4. The cotree edges e and ey overlap if and only if the vertices us and vy are colored
differently.

Property 2.5. The cotree edges e and e,, overlap if and only if the vertices u, and v,y1 are
colored differently.

It follows that the overlap matrix of C'L,41 has this form, where x;,y;, 21 € Zs:

Te c T zZ2 Zz3 T Zn—1 Yy
& Zf Z1 z9 z3 cee Zn—1 Zn
21 1 Y
vy 22 Z2 Y1 T2 Y2 0
Cc,T,Y, s Yy .
Moea N z3 z3 Y2 T3
Yn—2
Zn—1 2Zn-—1 0 Yn—2 Tpn—1 Yn-—1
Yy Zn Yn—1 T

Note that z. = 1 if and only if the edge e is twisted, and that zy = 1 if and only if the edge f
is twisted. Also note that
e x; = 1 if and only if the edge e; is twisted, for all i = 1,2,...,n;
e y; = 1if and only if b;;, is unmatched, for all j =1,2,...,n —1; and
e 2z = 1 if and only if af is unmatched, for all k =1,2,...,n.
1

Moreover, we have x = 1 if and only if the colors of vertices v; and us are different, and we have
y = 1 if and only if the colors of vertices v,41 and u, are different. Furthermore, we have
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Property 2.6. The constant ¢ = 1 (i.e., edges e and [ overlap) if and only if the number of
values of z1,z2,...,2zn equal to 1 is odd.

Proof. The proof is by induction on n. Note that the edges e and f overlap if only if the vertices
of u; and u,41 are colored differently. For n = 1, this means the edge a; unmatched, this is
equivalent to saying z; = 1.

Suppose that this is true for n = k and the number of values of z1,2s,...,2; equal to 1 is
2m +1, (2m + 1 < n). It should be noted that the vertex set of uy,us,...,ur1 of CLki1 can
be obtained by inserting a vertex u between u; and w;4+1, ¢ = 1,...,k — 1 of C'Lj and relabel
them. If the coloring of u; and w,4+1 are differently, no matter what assignment of colors to u,
the number of values of z1, 29, ..., zx4+1 equal to 1 also equals 2m + 1. Otherwise the coloring of
u; and u;+1 are the same (black or white), the number of values of 21, 29, ..., zk+1 equal to 1
equals 2m + 1 or 2m + 3 according to the assignment of colors of u is the same or different from
that of u; and wu;41 respectively. ]

Property 2.7. For each fized matriz of the form ﬁféy’X’Y’Z, there are exactly two different

T-rotation systems of the circular ladder CL,, for which széy’X’Y’Z is the overlap matrix.

. . X,v,Z
Proof. Given a matrix M 5”77 the values of x,y, 21,2, -, 2, and y1,y2, -+ ,yn—1 are

determined.

z1 = 0: If the vertex u; is black, then uy is also black, by Property 2.2. Alternatively, if the
vertex uq is white, then the color of us is also white. In either case, since the values of
T, Y, 22,y 2n and Yy1,Y2, - -+, Yn—1 are given, all the colors of vy, va, U2, -+, Vpg1, Unt1
are determined, by Properties 2.2, 2.3, 2.4, 2.5, and 2.6. That is, all the rotations at
vertices of C'L,, are determined.

z1 = 1: The proof is similar to the case z; = 0. Details are omitted. 0

We define (with x and y ranging over Zs)
(1) Ani2 as the set of all matrices over Zy of the form M,f’féy’x’y’z;

(2) Apia(z) = Z?;LOQ Ani2(j)27 as the rank-distribution polynomial of the set A, 12, where
Ay42(j) denotes the number of matrices in A,, 2 of rank j, that is, the number of overlap
matrices of rank j for general rotation systems for the circular ladder C'Ly;

(3) But2 as the set of all matrices of the form MS"3"""?; and

(4) Bpyo(z) = E;joz By i2(j)27 as the rank-distribution polynomial of the set B, 12, where
By 42(j) denotes the number of matrices in Bj,12 of rank j, that is, the number of
overlap matrices of rank j for pure rotation systems for the circular ladder C'L,,.

It should be mentioned that the orientable case is precisely when X is identically 0.

In a matrix of the form Mﬁféy’X’Y’Z, suppose that we first add the second row to the first row

and next add the second column to the first column. Without changing the rank of the matrix,
this produces a matrix of the following form:
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Te c+zxzy x 0 - 0 0 Y
c+ Xf Xf Z1 z2 e Zn—2 Zn—1 Zn

x 21 1 Y

0 Z9 Yyr T2 0

0 Zn—2 0 Yn—2

0 Zn—1 0 Yn—2 Tn—1 Yn—-1

Yy Zn Yn—1 Tn

For each single specific choice zy € {00,01, 10,11}, we define

(1) A, as the set of all matrices over Zs of the form Mg Y7

(2) Apo(2) = Zn+2 AT, (j)27 as the rank-distribution polynomzal of the set A} ;
(3) B, as the set of all matrices of the form M} T 02 and

(4) Blo(2) = Zn+2 ByY,(j)27 as the rank- dzstmbutzon polynomial of the set B

Clearly, we have the following property.
Property 2.8. Foralln > 1,

n+2 Z ‘An+2 and B"+2 (Z) = Z ‘B"+2

xy=00,01,10,11 xy=00,01,10,11

3. RANK-DISTRIBUTION POLYNOMIALS OF SOME LADDER GRAPHS

We recall that the n-rung closed-end ladder L, can be obtained from the graphical cartesian

product of an n-vertex path with the complete graph Ky by doubling both its end edges. Figure 3
illustrates the 4-rung closed-end ladder L.

FI1GURE 3. The 4-rung closed-end ladder L,

We recall also that the Ringel ladder R,, can be formed by subdividing the end-rungs of the

closed-end ladder, L,,, and then adding an edge between these two new vertices. Figure 4 shows
the Ringel ladder Ry.

F1GURE 4. The Ringel ladder Ry
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3.1. Rank-distribution polynomial for Ringel ladders. For the vectors X = (o, 21, ..., 2n),
Y = (y1,Y2,- -+ Yn—1), and Z = (21, 22, ..., 2n), With z;,y;, zx € Z2, we define the matrices

1 Y1
Y1 T2 Y2 0
Y2 T3 Y3
(1) MY = L : and
0 Yn—2 Tn—1 Yn-—1
Yn—1 Tn
Zo zZ1 z9 z3 Zn—1 Zn
21 T Y1
Zo Y1 T2 Y2 0
2) M7 = v
Yn—2
Zn—1 0 Yn—2 Tp—1 Yn—1
Zn Yn—1 In

As described by [2, 4], every overlap matrix of the closed-end ladder L,,_; has the form M> +1 ,
and every overlap matrix of the Ringel ladder R,,_; has the form M,‘ZX +11/Z. (Note that the
subscripts of R,_; and Mr)f Jfl/’Z differ by two.) Now we further define

(1) R, as the set of all matrices over Zy of the form MXY:Z;
/) as the number of overlap matrices for R, that are of rank j;

(2) C
(3) Rn(z) = ZnJrl Cn(j)2? as the rank-distribution polynomial of the set R,; and
(4) £

n(J

(2

4) L,(z) as the rank-distribution polynomial of the overlap matrices of the closed-end
ladder L,,_1.

In the calculations of this section, we use the following two previously derived results:
Theorem 3.1. [3] The polynomial L,(z) satisfies the recurrence relation
Ln(2) = (1422)L,1(2) +422L,_2(2)

with the initial conditions £1(2) = 1+ z and Lo(2) = 422 + 3z + 1. Moreover, the generating
function L(t;z) = >, <, Ln(2)t" is given by the formula

t(1+ 2 +22%)
1—t— 2tz —422t2°

L(t;z) =

Theorem 3.2. [4] The polynomial R,,(z) (n > 3) satisfies the recurrence relation
Ro1(2) = (424 1D)Rp(2) +162°R,,_1(2) +2"22L,1(2).
with the initial condition Ra(2) = 42% +32+1 and R3(z) = 2823+ 2822+ 72+ 1. Moreover, the
generating function R(t;2) =3, <, Rn(2)t" is given by
t2(1+ 32 + 422 — 2(1 + 52 + 422 4+ 223)t — 162%(2 4 62 + 522)t2 — 12824(1 + 2)t3)
(1 =2t — 4tz — 162262)(1 — t — 4tz — 162212) '

R(t;z) =

O
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Here we split the enumeration into even and odd parts:

(1) let M,ﬁ’_’l/’zwen be the number of matrices of the form Mf_:lfz and such that the sum of

the elements of the vector Z is even;

(2) let M _;)f’Z"dd be the number of matrices of the form M, _;)f’z with 2o = 0 and such that

the sum of the elements of the vector Z is odd;

(3) let Mfff"Z”C" be the number of matrices of the form Mﬁ‘f’z with g = 0 and such

that the sum of the elements of the vector Z is even;

(4) let Mfffz"dd’l be the number of matrices of that form with 9 = 1 and such that the

sum of the elements of Z is odd;

let RZ, | (2) be the rank-distribution polynomial over the set Mr)f fl/’zﬁ“";

let RY,;(z) be the rank-distribution polynomial over the set MY _;)f’z"dd;
MY Zeven 0

)
(2)

let Rffl (2) be the rank-distribution polynomial over the set M~} ; and
(2)

let fRS_fl z

be the rank-distribution polynomial over the set M.\, _;)f’z"dd’l.

—~ o~ o~
o 3 O Ot
L oD

Lemma 3.3. The polynomial RE-C(2) + R-1(2) (n > 4) satisfies the recurrence
R0 (2) + RN (2) = (224 1) (REO(2) + RO(2)) + 2R (2) + 827 R1(2) + 27127 L1 (2)

with initial condition fRf’O(z) + 3330’1(2) = 1+5z+ 1422 + 1223 (where R,,_1(2) and L,,_1(2)
are the rank-distribution polynomials of the overlap matrices of the Ringel ladder R,_3 and of
the closed-end ladder L,,_o, respectively).

Proof. We first prove the following claim.
Claim 1: The polynomial RE-0(2) (n > 4) satisfies the recurrence
Rt (z) = RPO(z) + 2 (REO(2) + RTN (=) + 2R (2)
+422R0(2) +22%R,1(2) + 272220, 4 (2).
with initial condition R °(2) = 1 + 3z 4 822 + 423,
We analyze the form (see Equation (2)) of the overlap matrix Mf 4’_}1/’Z into possible cases.
(1) Case 1: x, = 1.

e subcase 1: y,_1 = 1. We first add the last row to row n and then add the last
column to column n. The resulting matrix has the following form.

0 21 22 't 2Zp—2 Zn-_1t2n Zn
21 1 Y
29 o ow2 - 0
Zn—2 Tp—2 Yn—2
Zn—1 + Zn 0 Yn—2 Tn—1 0
Zn 0 1

If z, = 0, this matrix contributes a term 2RZ%(z) to the polynomial Rffl (2).
Otherwise z, = 1, and it contributes a term zRZ"1(z)

e subcase 2: y,_1 = 0. As seen by a discussion similar to that for subcase 1, this
subcase contributes a term zRZ0(z) + 2RO (2).
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(2) Case 2: x,, = 0. This case, given by the following matrix, has four subcases.

0 21 22 - Zn2 2Zn-1 Zn
21 1 Y
29 Y1 T . 0
(3)
Zn—2 Tp—2 Yn—2
Zn—1 0 Yn—2 Tn-1 1
Zn 1 0

e subcase 1: y,—1 = 1,2z, = 0. No matter what the values of y,,_2,2,-1 and x,_1,
we can transform the above matrix to the following form, with no change of rank.

0 Z1 z9 Zn—2 0 0

21 1 Y

Z0 oy m 0
Zn—2 Tn—2

0 0 0 0 1

0 1 0

There are four different combinations of values for the variables ,_2 and x,_1.
When z,_; = 0, this matrix contributes 4228 (2) to the polynomial Rffl(z).
When z,_; = 1, it contributes 422RS"% (2). Since R (2) + RZY (2) = RO, (),

this case contributes in all a term 422RY | (z).

e subcase 2: y,_1 = 1,2z, = 1. We add row n to the first row then add column n to
the first column, as indicated by this matrix.

Tp—1 21 22 't Zp—2+tYn-2 Zn-1tTp-1 O
21 1 Y
22 Y1 T2 0
Zn—2 + Yn—2 Tn—2 Yn—2
Zn—1+Xpn_1 0 Yn—2 Tn—1 1
0 1 0

If x,_1 = 0, this case contributes 22:2R0_,(2) to the polynomial R’ (2). Other-

n—1
wise 2,1 = 1, and this case contributes 222R}._,(2).

e subcase 3: y,_1 = 0, z, = 0. This case also contributes RE:°(2) to the polynomial

Rfjrol (2)-



10 YICHAO CHEN, JONATHAN L. GROSS, AND TOUFIK MANSOUR

e subcase 4: y,—1 = 0,2, = 1. No matter what values of z1, z2,...,2,-1 occur, we
can transform Matrix (3) into the following form.

o 0 0 - 0 0 1
O X yl
0 y1 x2 0
0 Tn—2 Yn-2
0 0 Yn—2 Tp-1 0
1 0 0
Since there are 2”2 possible choices of values for z1, 2o, . . ., 2,1 with an even sum,

this subcase contributes 2" ~222£,,_1(z) to the polynomial Rffl(z).

By a similar analysis, we can substantiate a second claim.

Claim 2: The polynomial R1(2) satisfies this recursion, for (n > 4):

Roi1(2) = R2ME) + 2 (RPN (=) + R 0(2)) + 2R3 (2)
+42°RE L (2) +222R,1(2) + 2772220, 1 (2).

n—1
with initial conditions RS (2) = 2z + 622 + 823,
From the above two claims, the lemma follows. O

Proposition 3.4. The generating function R’ (t;2) = >, o5 (REO(2) +RI1(2))t" has the closed
form B

2 (t: 2)
(1 =2t — 4tz —162242)(1 — t — 4tz — 16222)(1 — t — 2tz)’

where

f(t;2) = 1422 +122° + 1 4 5z + (202" — 3 — 842° — 222 — 6327)t
+ (24202 4 3422 — 2722 — 2722° — 562%)t? — 162%(82" — 4327 — 202 — 3 — 3423)¢3
+ 25624 (1 + 22)(1 + 2)2t™.

Proof. Multiplying the recurrence relation of Lemma 3.3 for the polynomial RZ-0(z) + RO:1(z)
by t" and then summing over all n > 3, we establish that a closed form for R'(¢; z) is given by

£ f(t;2)
(1 —2t — 4tz — 1622t2)(1 — t — 4tz — 1622¢2)(1 — t — 2tz)’

We have used the explicit formulas for the generating functions R(¢; z) and L(¢; z), as given in
Theorem 3.1 and Theorem 3.2, respectively. 0
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3.2. Expressing polynomials for circular ladders as a combination of polynomials for
Ringel ladders and closed-end ladders. We are now ready to approach the circular ladders.

Lemma 3.5. The polynomial A% (2) satisfies this equation for n > 4:

(4) Ania(z) =

where Rp11(2) is the rank-distribution polynomial of the Ringel ladder R, 1 and L,(z) is the
rank-distribution polynomial of the closed-end ladder L, 1.

(22 +1) (aszl (2) + RO, (z)) F2"220,(2)

Proof. There are two cases.

(1) Case 1: x, = 1. Here the overlap matrix has the following form:

1 zp+c 0 0 0 0 0
Ty +cC Ty zZ1 22 Zn—2  Fn—1 Zn

0 Z1 1 Y1

O zZ9 Y1 i) 0

0 Zn—2 Tn—2 Yn—2

0 Zn—1 0 Yn—2 Tn—1 Yn-—1

O Zn Yn—1 Tn

e subcase 1: ¢ = 0. When zy = 0, this subcase contributes a term zﬂszl(z); when
zy = 1, we add the first row to the second row, and then add the first column to

the second column, to see that this subcase still contributes a term zﬂ%ffl (2).

e subcase 2: ¢ = 1. When zy = 1, this subcase contributes a term 23%24_11 (z); when
xy = 0, we first add the first row to the second row and then add the first column

to the second column, to see that this case still contributes a term zﬂzgjrll(z).

(2) Case 2: x, = 0. In this case, the overlap matrix has the following form.

0 ay+c 0 0O 0 0 0
Ty +c Ty 21 22 Zn—2 Zn—1 Zn
0 21 T N
O z9 yl i) 0
0 Zn—2 Tp—2 Yn—2
0 Zn—1 O Yn—2 Tp—1 Yn—1
0 Zn Yn—1 T

e subcase 1: ¢ = 0. When =y = 0, the contributed term is R

ffl (2). Otherwise

xy = 1; since there are 2"~! choices of values of z1, 22,
the contributed term is 2"~ 122L,,(z).

e subcase 2: ¢ = 1. When z;y = 0, since there are 2"~! choices of values of
21,22, ,Z, with an odd sum, the contributed term is 2" '22L,,(z); otherwise
xy = 1,, and the contributed term is ngfl (2).

, Zn, with an even sum,

O
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Lemma 3.6. The polynomial AL (2) satisfies this equation, for n > 4:

(5) AL S (2) = 2Rnt1(z) + 82°Ry(2).

where R, (z) is the rank-distribution polynomial of the Ringel ladder R, _».
Proof. We examine the following two cases.

(1) Case 1: x, = 1. In this case, the overlap matrix has the following form.

1 zp+c 1 o - 0 0 0
Ty +cC Ty 21 22 ot Zp—2  Zn—1 Zn

1 Z1 X yl

0 29 (TR IR 0

0 Zn—2 Tn—2 Yn—2

0 Zn—1 0 Yn—2 Tn—-1 Yn—-1

O Zn Yn—1 T

When we add the first row to the third row and add the first column to the third column,
the resulting matrix has the following form.

1 Tr+c 0 o --- 0 0 0
rf+c Ty zit+xr+c zo 0 Zp—2 Zp—1 Zn

0 z1+xp+c T Y1

0 29 Y1 Ty . 0

0 Zn—2 Tn—2 Yn—2

0 Zn—1 0 Yn—2 Tn—1 Yn—1

0 Zn Yn—1 Tn

e subcase 1: ¢ =0. If zy = 0, the contributed term is zﬂ%fjrol (2). Otherwise =y =1,
and we first add the first row to the second row, then add the first column to the
second column, to establish that the contributed term is zﬂ%gfl(z).

e subcase 2: ¢ = 1. If zy = 0, we first add the first row to the second row, and then
add the first column to the second column. The contributed term is zﬂ%f_’kll(z).
Otherwise ¢ = 1, and the contributed term is szgjrll (2).

(2) Case 2: x, = 0. In this case, the matrix has the following form.

0 rg+c 1 0 - 0 0 0
Ty +cC Ty 21 22 ot Zp—2  Zn—1 Zn

1 Z1 X yl

0 29 (TR IR 0

0 Zn—2 Tn—2 Yn-2

0 Zn—1 0 Yn—2 Tn—1 Yn—1
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e subcase 1: ¢ = 0. First suppose that xy = 0. There are four different choices of
values for the variables x1 and y;. According to the values z; = 0 or z; = 1, this
case contributes a term 422RE0(z) or 422R90(z). For x; = 1, we first add the
third row to the second row and then add the third column to the second column.
The resulting matrix has the following form.

0 0 1 0 0 0 0
0 14+z1 z1+x1 22+y1 *° Zn-2 Zn-1 Zn
1 Z1 + X X1 yl

0 z+uy1 Y1 T2 0

0 Zn—2 Tn—2 Yn—2

0 Zn—1 0 Yn—2 Tn—-1 Yn—-1
0 Zn Yn—1 Tn

No matter what the values of the variables of x1,y; and z;, we can transform that
matrix into the following form.

o = o O

0
0
0

0
1+
0

zZ2+ 11
Zn—2

Zn—1
Zn

o S O

0
z2+ Y1
0

€2

0

Zn—2

Tn—2
Yn—2

0

Zn—1

Yn—2
Tn—1
Yn—1

Zn

Yn—1
Tn

Since there are two choices of values for 21, this case contributes a term 222R,,(2).

e subcase 2: ¢ =1. If xy = 0, we first add the third row to the second row and then
add the third column to the second column. Since the resulting matrix has the
following form, the contributed term is 222R,,(z).

0
0
1

0
0
0
0

0
T
0

z2+
Zn—2

Zn—1
Zn

o O O

0

z2 + Y1
0

T2

Tn—2
Yn—2

0

Zn—1

Yn—2
Tn—1
Yn—1

Zn

Yn—1
In

Otherwise x4 = 1. According to the values z; = 0 or z; = 1, this case contributes
a term 422RE-1(2) or 422R9:1(2).
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0 1 0 0 0 0
0 1 21 22+t Zp—2 Zn—1  Zn
1 s = o
0 z9 Y1 X9 0
0 zp—2 Tp—2 Yn—2
O Zn—1 0 Yn—2 Tn—1 Yn—1
O Zn Yn—1 Tn
g
By symmetry, we infer this lemma also.
Lemma 3.7. The polynomial AL (2) (n > 4) equals
At o (2) = 2Rpi1(2) + 827 R, (2).
where R, (2) is rank-distribution polynomial of Ringel ladders R,,—».
We now define the form
Zo Z1 z9 z3 N Zn—1 Zn
Z1 X1 Y1 O e O 1
22 Yy T2 Y2
Mf_;_)lf’z’l = z3 0 y2 =3 0
Yn—2
Zn—1 0 Yn—2 Tp—1 Yn—1
Zn 1 Yn—1 T
and we define
(1) H, 41 as the set of all matrices over Zsg of the form ijr)f’z’l;
nte1(z) =) . nljz‘as e rank-distribution polynomial of the set Q, 1, where
2) Hys ) Hop1(j)27 as the rank-distribut ! L of the set Q,, 1, wh
H,,+1(j) is the number of matrices in M,‘ii’_’l/’z’l has rank j;
7T as the number of matrices of the form 77 In whic e sum of vector
(3) MY 7evem ! as th ber of matrices of the form M, }'?" in which th f
7 is even;
770" as the number of matrices of the form 177 1 whic e sum of vector
(4) MY 700! as th ber of matrices of the form M, }?" in which th f
Z is odd;
1 1(2) as the rank-distribution polynomial over the se 1 " suc at xg = U;
5) HY the rank-distributi 1 ial over the set M7 ! such that 0
and

(6) 9'(7?4_11 (2) as the rank-distribution polynomial over the set M., 4’1/’2"“’1 such that z¢ = 1.

Lemma 3.8. Forn > 4, the polynomial HE(2) + HO:1(2) satisfies the recurrence
}ijrol(z) + 5‘(&31 (2) =22 (3H0() + :Hr?’l(z)) +822 (:Hglll +30° )
+ 2R (2) + 122°R,, 1 (2).

where R, (z) is the rank-distribution polynomial of the Ringel ladder R, _o. Moreover, we have
the initial conditions 3{2E’O(z)+f]{2o’l(z) = (1+2)? and U{f’o(z)—kﬂ'(go’l(z) = 1+52+14224+1225.



TOTAL EMBEDDING DISTRIBUTIONS OF CIRCULAR LADDERS 15

Proof. We first prove the following property:

Claim 1: The polynomial HEZ:?(z) (n > 4) satisfies the recurrence
H0(2) = 2 (H0(2) + HO') + 2R (2) + 227 (Rgiol (2) + Rfill) +22° (g{f-;ol (2) + 9{7?';11)
+ 422 (335;01 (z) + 9{5;01) +222R,, 1 (2) + 422R2_(2)

where R,,(z) is the rank-distribution polynomial of the Ringel ladder R,,_».

Here the overlap matrix has the following form. The discussion has two cases.

0 21 29 23 e Zpn-1 Zn
z1 1 Y 0 e 0 1
z2 Yy T2 Y2
z3 0 Yo I3 R 0
: Yn—2
Zn—1 0 Yn—2 Tn—-1 Yn—-1
Zn 1 Yn—1 LT

(1) Case 1: x, = 0.
e subcase 1: y,—1 = 0,2, = 0. No matter what values z,z;, and y; take, we
can transform the matrix above into the following form. Note that there are four
different combinations of values for the variables y; and ;.

0 0 Z9 z3 ce Zn—1 0
0 0 0 O e 0 1
z2 0 @y
zZ3 0 Y2 T3 . 0
Yn—2
Zn—1 0 Yn—2 Tp-1 0
0 1 0 0

When z; = 0, it contributes a term 422Rf’_01 (2). When z; = 1, it contributes a
term 422R%Y (2).

e subcase 2: y,—1 = 0,2z, = 1. We add the second row to the first row, and then
add the second column to the first column. The resulting matrix has the following
form. Note that there are two different possible values for the variable 2.

X1 21+ x1 2o+ Y1 z3 BN Zn—1 0
Z1+ 21 1 Y1 0 . 0 1
Z2 + 1 Y1 Z2 Y2

z3 0 Y2 X3 . 0

: Yn—2
Zn—1 0 Yn—2 Tn-1 0
0 1 0 0

When x; = 0, it contributes a term 222RY | (z). When z; = 1, it contributes a
term 222RL | (2).
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e subcase 3: y,—1 = 1,2z, = 0. We add row n to the second row, and then add
column n to the second column. The resulting matrix has the following form.

0 21+ 2Zn—1 z9 z3 SN Zn—2 Zn—1 0
21+ Zp—1 1 v 0 ... Yp—o wp—1 O
22 Y1 T2 Y2
zZ3 0 Y2 T3 - . 0
: Yn—3
Zn—2 Yn—2 Yn—3 Tp—2 Yn-2
Zn—1 Tn—1 0 Yn—2 Tp-—1 1
0 0 1 0

No matter what assignments of the variables of z,_1,z,-1, and y,_2, we can
transform the matrix immediately above to the following form. Note that there are
four different choices of the variables z,,_1 and x,,_1.

0 21+ 2n-1 22 23 e Zn—o 0 0
21+ Zn—1 X Y1 0 e Yn—2 0 0

<2 Y1 T2 Y2

zZ3 0 Yo T3 0

' Yn—3

Zn—2 Yn—2 Yn—-3 Tn-2 0
0 0 0 0 0 1
0 0 1 0

When y,_2 = 0, it contributes a term 4221Rf;01 (z). When y,,_o = 1, it contributes
a term 422HY (2).

e subcase 4: y,—1 = 1,2, = 1. We add row n to the first and second rows, and
then add column n to the first and second columns. The resulting matrix has the
following form.

Tp—1 21+ 2p—1+Tn_1 22 23 ... Zn2+Yn—2 Zn-1+Tp_1 O
21+ Zp—1 + Tp_1 1 v 0 ... Yn—2 Tp—1 0
29 Y1 T2 Y2
zZ3 0 Y2 I3 . 0
. Yn—3
Zn—2 + Yn—2 Yn—2 Yn—3 Tp—2 Yn—2
Zn—1 + Tn—1 Tp—1 0 Yn—2 Tp—1 1

0 0 1 0
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For any combination of values of z,,_1,2,—1, and y, 2, we can transform the above
matrix to the following form. Note that there are two possible values for z,_1.

Tn—1 21+ 2n-1+Tn1 22 23 ... Zp2+Ys—2 0 0
21+ Zp—1 + Tp—1 1 vy 0 ... Yn—2 0 0
29 Y1 T2 Y2
z3 0 Y2 I3 . 0
: : Yn—3
Zn—2 + Yn—2 Yn—2 Yn—3 Tn—2 O
0 0 0 0 0 1
0 0 1 0

When y,,_2 = 0, depending whether z,,_1 = 0 or x,,_1 = 1, it contributes 2221R,?’_01 (2)
or 222R21 (2). When y,,_o = 1, it contributes 222HS% (2) or 222K, (2).

(2) Case 2: x,, = 1. There are four subcases.
e subcase 1: y,—1 = 0,2, = 0. We add the last row to the second row, and then
add the last column to the second column. The resulting matrix has the following
form. This subcase contributes zRZ:0(z).

0 Z1 Z9 z3 . Zn—1 0

Z1 T Y1 0 e 0 0

<2 Yyr T2 Y2

Z3 0 y2 a3 0

: : Yn—2
Zn—1 0 Yn—2 Tpn-1 0

0 0 0 1

e subcase 2: y,—1 =0, 2, = 1. We add the last row to the first and second rows, and
then add the last column to the first and second columns. The resulting matrix
has the following form. This subcase also contributes a term zRZ:1(z2).

1 z21+1 29 z3 e Zn—1 0
21+ 1 T U1 0 - 0 0

z2 U1 T2 Y2

z3 0 Y2 T3 0

: Yn—2
Zn—1 0 Yn—2 Tp-—1 0

0 0 0 1

e subcase 3: y,—1 = 1,2, = 0. We add the last row to rows 2 and n, and then add
the last column to columns 2 and n. The resulting matrix has the following form.
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This subcase contributes zHZ:0(z).

0 zZ1 Z9 z3 . Zn—1 0
Z1 1 N 0 ce 1 0
22 Yy T2 Y2
zZ3 0 Y2 T3 Ry 0
: Yn—2
Zn—1 1 0 Yn—2 Tnp-—1 0
0 0 0 1

e subcase 4: y,—1 = 1,2z, = 1. We add the last row to rows 1, 2, and n, and then add
the last column to the columns 1, 2, and n. The resulting matrix has the following
form. This subcase contributes 2391 (z).

1 Zl—|—1 z9 z3 Zn,1—|—1 O
z1+1 €1 Y1 0 R 1 0
22 Y1 T2 Y2
23 0  y xz3 0
: . Yn—2
Zn—1+1 1 0 Yn—2 Tn—1 0
0 0 0 1

In a similar way, we can establish this second claim:

Claim 2: The polynomial H?:(2) (n > 4) satisfies the recurrence

H () =2 (HEO0(2) + T) + 2R (=) + 222 (RV(2) + RIY ) + 222 (320,(2) + 92 )

+ 422 (fR,?’_ll (z2) + .’H,?’_ll) +222R, 1 (2) + 42°RL_(2)
where R,,(2) is the rank-distribution polynomial of the Ringel ladder R,,_».
The above two claims imply the theorem. O
Proposition 3.9. The generating function 3 (t;2) = 37, - 5(H70(2) + HOL(2))t" is given by

t2f(t: 2)
(1 =2t — 4tz —162242)(1 — t — 4tz — 1622t2)(1 + 22t)(1 — 42t)’

where
ft2) = (1+2)% — (24922 + 112 — 223)t — (1 + 2527 4+ 202* + 662°)¢?
+ (2 = 962° + 4622 + 7221 + 162 4 1362°)t3 + 162%(292% — 42 + 3 + 262° 4 142)t*
+2562%(1 + 2)2t5.

Proof. We multiply the recurrence relation of Lemma 3.8 for the polynomial HZ-?(z) +H2:1(z)
by " and we sum over all n > 3 to deduce that the generating function H'(¢; z) is given by

t2f(t: 2)
(1 =2t — 4tz —162242)(1 — t — 4tz — 1622t2)(1 + 22t)(1 — 42t)’

where we used the closed formula of Theorem 3.1 for the generating function R(¢; z). O
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Lemma 3.10. The polynomial ALl(z) (n > 4) satisfies the equation

(6)  Aiha(z) =22 (3675

19

(2) + 324 ) + 822 (IEO(2) + 32 (2)) + 422 R ()

where Ry, +1(2) is the rank-distribution polynomial of the Ringel ladder R, —1 and L,,_1(z) is the
rank-distribution polynomial of the closed-end ladder L, _s.

Proof. There are two cases.

(1) . = 1. We add the first row to rows 3 and n + 2, and then add the first column to

columns 3 and n + 2. The resulting matrix has the following form.

1 c+xy 0 o --- 0 0 0
c+xy Ty Zitc+xy 22 o Zpn—2 Zp-1 2ZptCt Xy

0 z1+c+axy T Y1 1

0 22 Y1 Ty e 0

0 Zn—29 Tn—2 Yn—2

0 Zn—1 0 Yn—2 Tp—1 Yn—1

0 Zn +c+axy 1 Yn—1 Tp

In the subcase ¢ + 2y = 0, we have either ¢ = 2y = 0 or ¢ = x5 = 1. This subcase

contributes the terms 23'654’_01 (2) and 23'67?4’_11 (2). In the subcase ¢ + 2y = 1, we have
either c = 0,2y =1 or ¢ = 1,25 = 0. Here we add the first row to the second row and
then add the first column to the second column. The resulting matrix has the following

form, and this subcase contributes the terms zHZ% (z) and 2H} (2).

n+1 n+1
1 0 0 o --- 0 0 0
0 zp+1 21+1 220 -+ 2Zp—2 2p—1 2p+1
0 z+1 1 Y1 1
0 29 Y1 Ty - 0
0 Zn—2 Tn—2 Yn-2
0 Zn—1 0 Yn—2 Tn—-1 Yn—1

0 z,+1 1 Yn—1 Tn

(2) x. = 0. We add the last row to the third row, and then add the last column to the third

column. The resulting matrix has the following form.

0 ctay 0 0o - 0 0 1
c+xy Ty 21+ 2n 22 o Zp—92  Zn—1 Zn

0 21+ 2n T Y1 Yn—1  Tn

0 29 Y1 Ty - 0

0 Zn—2 Tp—2 Yn—2

0 Zn—1 Yn—1 0 Yn—2 Tn—-1 Yn—-1

1 Zn Tn Yn—1 T
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e subcase 1: ¢+ zy = 0. No matter what the values of z,,x, and y,_1, the matrix
immediately above can be transformed into the following form.

0 0 0 0o --- 0 0 1
0 Ty 21+ 2y z2 o+ Zp—2  Zp—1 O
0 z1+2, X Y1 Yn—1 0
0 z92 Y1 T2 . 0

0 Zn—2 Tpn—2 Yn—2

0 Zn—1 Yn—1 0 Yn—2 Tp-—1 0
1 0 0 0 0

When y,—1 = 0, according to whether ¢ = xy = 0 or ¢ = xy = 1, this subcase
contributes 422RE0(2) or 422R91(2). When y,,_1 = 1, it contributes 422HE-0(z)
or 422HO1(2).

e subcase 2: ¢+ x5 = 1. We add the last row to the first and second rows, and we
then add the last column to the first and second columns. The resulting matrix
has the following form.

0 0 0 o --- 0 0 1

0 Ty 21+ zZn+ Ty 22t Zpe2 Zn-1tYn-1 Znt+Tp
0 z1+2zp+a, 1 Y1 Yn—1 Tp

0 22 Y1 Ty 0

O Zn—2 Tp—2 Yn—2

0 Zn—1 + Yn—1 Yn—1 0 Yn—2 Tn—1 Yn—1
1 Zn + Ty, Ty Yn—1 Tp

For any values of z,,z, and y,_1, the above matrix can be transformed into the
following form. When y,_1 = 0, it contributes 222R,(z). When y,_1 = 1, it
contributes 2223, (z).

0 0 0 o --- 0 0 1
0 Tf ZitzZnt+xn 22 0 Zn—2 Zn—1tYn-1 0
0 21+2n+Tn T Y1 Yn—1 0
0 29 Y1 Ty . 0

0 Zn—2 Tn—2 Yn—2

0 Zn—1 + Yn—1 Yn—1 0 Yn—2 Tp—1 0
1 0 0 0 0
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4. THE TOTAL EMBEDDING POLYNOMIAL OF CIRCULAR LADDERS

We recall that the Chebyshev polynomials of the second kind are defined by the Chebyshev
recurrence system:

Uslt) = 1
Ur(t) = 2
(7) Un(t) = 2tUp_1(t) — Un_s(t)

Theorem 4.1. We have Y., -, gcr, (z)t"™ = 2B(t;\/x). Moreover, for all n > 4, the number
of distinct cellular imbeddings of CL, in a surface of genus j is

7n_frj23j—3(n*j*1)+n*§j+223j—3(n*j+1)+L2n+j—1(n*j)

J j—1 j—1 j—1 j—2 )
+2"715, 0510 + 20, 0541 — 327715, 95 j>2,
2" +8n — 2+ 86,4 Jj=1
2 j=o.

where § is the Kronecker delta function.

Proof. A derivation of the formula given here is driven by [27]. It is not hard to check that our
formula is equivalent to the original formula of [18, Theorem 3.10]. O

Corollary 4.2. [27] For all n > 4,

1—3z -2z 1—3z+2yx
4z 4x

el o () ()|
+ (1 — 2)(2iV2z)" [Un (ﬁ) —Up_s (ﬁ)} ,

where Uy is the s™ Chebyshev polynomial of the second kind and i> = —1

gor,(x) =1—-x+ (—2va)" + (2vz)"

Now we can prove our main result.
Theorem 4.3. The generating function A(t;z) =3, < An(2)t" is given by

t2f(t: 2)
(1 =2t — 4tz —1622t2)(1 — £ — 4tz — 162242) (1 — t — 2t2)(1 + 2t2)(1 — 4tz)’

where
flt;2) = (1+2)%+2(2 = 1)(62% + 62 + 1)t — (672 + 92 + 1622 + 2 + 682*)1?
+ (14127 + 2822° + 5 + 82 + 442 — 3842°)1°
+ (14242 + 227 — 2 4 7042° + 4242° 4 21282° — 242)t*
+3222(62 + 1)(162* + 723 — 522 — 62 — 2)t° — 1282%(5 + 582° + 322 + 6922)t°
—204825(1 4 22)(1 + 2)*t".
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Proof. By Property 2.8, Lemmas 3.5, 3.6, 3.7, and 3.10 together with Lemmas 3.3 and 3.8 we
obtain

An(2) = RPO(2) + R (2) + H0 (=) + I (2).
By multiplying by ¢" and summing over all n > 2, we have
Alt; z) = 3 (t; 2) + R' (8 2),

where the generating functions H'(t; z) and R'(¢; z) are given by Propositions 3.4 and 3.9, re-
spectively. 0

Theorem 4.4. For all n > 4, the total genus polynomial of circular ladders C'L,, is as follows:

Ier, (z,y) = 2Bni (V) + 24A011(y) — 2Bn ().

The generating function ICL(t;x,y) = 3, ~3lor, (z,y)t" is given by
ICL(t;x,y) = % (B(t; V) + At y) — (1 4+ 9)%2 — (2 4 2492 + 10y + 28y°)t?
— (14 11y + 80y? + 212y> + 208y™)t* — B(t; y)>.
Moreover, for all n > 4,

1—3x—2ﬁ(_2ﬁ)n+1—390;—2\/5(2\/5)”

Iow, (z,y) =y* —x +

4x 4
+ x(2iV2x)" By, (ﬁ) + (1= 2)(2ivV22)" B, (ﬁ)
- 1)(6y3; D(y)" "t (4y— 1By — 1)?5y (2" (1— )1+ 20)

By D)y — D@2+ 202 — D)2V <

@) — 22(2V2iy) " a, <ﬁ)

1+ 2y
4y

(1= )1+ 2 an () 44y i

where Uy is the s-th Chebyshev polynomial of the second kind, i> = —1,

an(t) = Un(t) — tUp_1(t) and Bu(t) = Up(t) — Un_a(t).

Proof. By Property 2.7, we have loyp, (x,y) = 2B,+1(v/2) + 24141 (y) — 2B,+1(y). Multiplying
by t" and summing over all n > 4 with using Theorems 4.1 and 4.3, we obtain

ICL(t;x,y) = % (B(t; V) + At y) — (1 +y)%2 — (2 + 249> + 10y + 28y°)t3

— (14 11y + 80y + 212y3 + 208y )t* — B(t; y>>-
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Clearly, the coefficient of ¢", n > 4, in %B(t; \/x) is given by Corollary 4.2. Now we consider
the coefficient of ¢" in

2
f= - (A(t; y) — (1 +y)%t? — (2 + 24> + 10y + 28y*)t3

— (14 11y + 80y? + 212y + 208y™*)t* — B(t; y)) .

Rewriting f by partial fraction decomposition, we obtain
f=—2(196y% 4 212y + 61y + 11)yt> — 4(12y% + 11y + 5)yt> — 4(y + 2)yt — o>
=23 4+2y—1 2 -1 1+6y—6y°>—y? 3y>—2y—1 123 +5y2 —6y+1

492 1—t 1292(1 — 4ty) 4y?(1 — 2ty) 12y2(1 + 2ty)
. 1—y 2y — 2 — Y%t +t 29%(1 —t) 2+ 2y — 4y? + 8y3t — t — 2y*t — Bty
1—t—2ty 1—t— 8y2t? 1 — 2t — 8y2t2 1—t — 4ty — 16922
4y*(1—t —2t
L y)

1 — 2t — 4ty — 16922
Let n > 4, then the coefficient of ¢" in f is given by
[t"]f_[t”]{y2_1 L+6y—6y° —y* 3y*—2y—1 12y° +5y° —6y+1
1—t 12y2(1 — 4ty) 4y2(1 — 2ty) 12y2(1 + 2ty)

1—y 292 —2 — Yt +t 29%(1 —t)
1—t—2ty 1—t—8y22  1—2t— 8y2t2

2+ 2y — 4y? + 8y3t — t — 2yt — Bty 4y2(1 —t — 2ty)
+ 1 —t— 4ty — 16y3t2 1— 2t — 4ty — 16y2t2'}’

+

which is equivalent to

(> =6y + (A" " (4y—1)By—D(y+1)(=2y)" "

P F =2 1 — _ 1—y)(1+2y)"
t"]f =y 3 3 + (1 —y)(1+2y)
1
+ By + Dy —1)(2y)" 2 +2(y% — 1)(2V2i "an(—>
By +1)(y —1)(2y) (y* — 1)(2v2iy) Vi
. 1 . 1+4y , 1+2y
— 2y%(2v/2i "an<—>+21— 1+ 2y)(4i ”an< : >+424z "an< : >
Y= (2V2iy) e (1—y)( y)(4iy) 8 Yy~ (4iy) 17y
which completes the proof. 0

For instance our theorem for n = 4,5,6,7 gives
Tor, (z,y) = 2+ 5dx + 24y + 20022 + 1288y> + 3264y* + 192y + 3168y°
Ior,(z,y) = 2+ 702 + 30y + 3202° + 63222 + 2560y> + 11240y* + 2323215 + 282y + 27168y°
Iors(z,y) = 24+ 1102 4 36y + 26562° + 132822 + 4740y + 27360y" + 169856y" + 211840y°
+ 424y* + 105936y°
Ion, (z,y) = 24 182z + 42y + 35842 + 99843 + 263222 + 8652y + 60368y* + 1663488y”
+ 933408y5 4 618y2 + 1208832y° 4 302512y/°
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