
CALCULATING GENUS POLYNOMIALS

VIA STRING OPERATIONS AND MATRICES

JONATHAN L. GROSS, IMRAN F. KHAN, TOUFIK MANSOUR,
AND THOMAS W. TUCKER

Abstract. In calculations of genus polynomials for a recursively
specifiable sequence of graphs, the imbeddings of each of the graphs
are partitioned into imbedding-types. The effects of a recursively
applied graph operation τ on each imbedding-type are represented
by a production matrix. We demonstrate herein how representing
the operation τ by string operations enables us to automate the
calculation of the production matrices, a task requiring time pro-
portional to the square of the number of imbedding-types. It also
allows us to reduce the number of imbedding-types, which lets us
calculate some genus polynomials that were heretofore computa-
tionally infeasible.

1. Introduction

The genus polynomial of a graph G is the generating function
Σgi(G)zi, where gi(G) counts the cellular imbeddings of G in the closed
oriented surface Si of genus i. Since their introduction [GF87] in 1987,
the genus polynomials for a recursively constructed sequence of graphs
has most frequently been calculated, as in [GKP10, Gr11a, Gr11b], by
partitioning the imbeddings according to the cyclic orderings of root-
vertices on the face-boundary walks (abbr. fb-walks) of the imbedding.
In this paper, we describe how to automate such calculations.

1.1. Rotation systems. We assign + and − orientations to the edges,
including self-loops. Then any imbedding defines, for each vertex, a
cyclic order of the signed edge-ends initiating at that vertex, which is
called a rotation. The rotations act collectively as a permutation ρ

Date: September 21, 2015.
2000 Mathematics Subject Classification. 05A15, 05A20, 05C10.
Key words and phrases. graph imbedding, genus polynomial, production matrix,

transfer matrix method.
J.L. Gross is supported by Simons Foundation Grant #315001.
T.W. Tucker is supported by Simons Foundation Grant #317689.

1

2 J. L. GROSS, I. F. KHAN, T. MANSOUR, AND T. W. TUCKER

on the oriented edge set, as a rotation system (e.g., see [GT87]). If
λ is the involution that reverses the orientation of each edge, then the
fb-walks of the imbedding are the orbits of the permutation ρλ. We
use the Euler polyhedral formula

|V | − |E|+ |F | = 2− 2γ(S)

to compute the genus of the imbedding surface S. The problem of
calculating genus polynomials is that the number of possible cyclic
orderings of edge-ends incident at a d-valent vertex is (d − 1)!. For
example, the number of rotation systems for the complete graph K7 is
(5!)7 ≈ 3.6× 1014, and the genus polynomial for K7 has not previously
been published. The following set of coefficients has been obtained by
M. Kotrbcik via a program based on the Heffter-Edmonds algorithm
that ran for several hundred hours:

i gi
0 0
1 240
2 3,396,960
3 3,746,107,320
4 594,836,922,960
5 20,761,712,301,960
6 158,500,382,165,280
7 178,457,399,105,280

We have recently obtained the same genus polynomial via a program
based on string-operations.

1.2. Context. Genus polynomials for recursively specified families of
graphs have been computed mostly within a general paradigm in which
the recursive operation occurs in the vicinity on a small number of
vertices or edges designated as roots. The set of all imbeddings of each
graph in the family are partitioned into what we now call imbedding-
types, according to incidence of the face-boundary walks on the roots.
This basic paradigm is exemplified by [GKP10, Gr11a] for root-vertices,
and by [PKG10] for root-edges.

This paper integrates several embellishments of the basic paradigm:

• the genus polynomial for a graph is partitioned into a pgd-
vector, with one coordinate for each imbedding type, such that
each coordinate is a polynomial that gives the number of ori-
ented imbeddings of that imbedding type in every orientable
surface.

CALCULATING GENUS POLYNOMIALS 3

• the recursively applied topological operation is represented by
a production system, as developed by Gross, Khan, and Poshni
in a series of papers, that transforms the pgd-vector for a given
graph into the pgd-vector for the graph resulting from an ap-
plication of the recursive operation used to specify the graph
family.
• the representation of production systems by matrices, now called
production matrices, which was introduced by Stahl [Stah91];
• the representation of imbedding-types by strings of root-vertices,

as presented by Gross [Gr12] in January 2012; and
• using string operations directly to calculate the production ma-

trices, as suggested by Mohar [Mo12] in June 2012.

We explain in Section 4 how our use of productions to calculate pgd-
vectors is a generalization of the transfer matrix method, along the lines
described by [Stan86].

To this date, the production matrices for recursively defined families
have been computed by hand, taking many pages and many figures
(e.g., see [Gr13]). An achievement of this paper is to automate the
bookkeeping necessary for the computation of a production matrix.
All the imbeddings of interest here are in oriented surfaces.

1.3. Outline of this paper. Section 2 describes the representation
of imbedding-types by strings. Section 3 introduces the representation
of topological operations on imbeddings by string operations. Sec-
tion 4 applies these representations to two previously published ex-
amples. Section 5 explores issues related to machine computation. It
uses the theory developed to calculate genus polynomials for a vertex-
amalgamation path of copies of K4 and for an edge-amalgamated path
of copies of K4. Without string operations, both derivations would be
long and tedious.

In Section 6, we use Burnside’s Lemma to derive a formula for the
maximum number of imbedding types for a graph with two roots of
any possible combination of valences. We generalize the formula to
more that two roots. From the rapid growth rate of the number of
imbedding-types, as valences and the number of roots of the graphs at
issue increases, it becomes clear that automated calculation is a virtual
necessity when seeking to derive genus polynomials for such graphs, as
well as when seeking concrete coefficients in the genus polynomials.

4 J. L. GROSS, I. F. KHAN, T. MANSOUR, AND T. W. TUCKER

2. Representing Imbedding-Types by Strings

In this section, we develop a notation using strings of root-labels
so that representing addition of an edge to a graph becomes simply a
matter of applying a few rules.

2.1. Face-boundary-walks. We assign labels 0, 1, 2, . . . to the roots
of a graph G. Given an imbedding of G, we represent a face as a
string of labels, in the order they are encountered in a traversal of
its fb-walk following the orientation of the surface. Two strings are
equivalent representations of an fb-walk if one is a cyclic shift
of the other. We denote an entire equivalence class of strings by putting
a representative string of labels inside parentheses.

Remark 2.1. Unlabeled vertices do not appear in the string represent-
ing a face, so the appearance of consecutive labels 12 does not imply
that there is an edge between 1 and 2. Also, since any labeled ver-
tex may appear more than once around an fb-walk, the corresponding
cyclic list of root-labels is not a permutation.

2.2. Imbedding types. A list of strings for all the fb-walks of an
oriented imbedding of a rooted graph G is called an imbedding-type
of G (abbr. i-type). Fb-walks containing no labeled vertices would
appear as empty strings, and they are not included. A collection C of
imbedding types for G is full if every imbedding of G is represented
by some i-type t ∈ C.

The imbeddings ι1 : G → S and ι2 : G → S of a rooted graph
(G, j1, j2, . . . , jr) are congruent as rooted-graph imbeddings if
there exists an auto-homeomorphism h : S → S that permutes the
roots (possibly the identity permutation), and a graph automorphism
α : G→ G such that h◦ ι1 = ι2 ◦α, in which case we say the i-types for
imbeddings ι1 and ι2 are congruent i-types. The congruence relation
is illustrated by the following commutative diagram. Intuitively, this
means that the two imbeddings “look alike”.

G

S Sh

G
α

ι1 ι2

Figure 2.1. The congruence relation for imbeddings ι1 and ι2.

CALCULATING GENUS POLYNOMIALS 5

Example 2.1. In Figure 2.2, we see six graph imbeddings, which rep-
resent the five i-types of K4. The 16 imbeddings of K4 are partitioned
as follows:

• 2 of type (0)(1)(01)(01)
• 2 of type (01)(0011)
• 8 of type (01)(0101)
• 2 of type (0)(01011)
• 2 of type (1)(00101)

Thus, the set

{(0)(1)(01)(01), (01)(0011), (01)(0101), (0)(01011), (1)(00101)}
is a full set of imbedding types for K4. In Section 6 of this paper, we
shall see that the maximum number of imbedding types for a pair of
3-valent roots is 38.

0

1

(0)(1)(01)(01) (01)(0011) (01)(0101)

0

1

0

1

(01)(0101)

0

1

(0)(01011)

0

1

(1)(00101)

0

1

A

FED

CB

Figure 2.2. The five i-types of K4, plus a duplicate.

Remark 2.2. We observe that although imbeddings B and C are
unrooted-congruent, they are not rooted-congruent, and their i-types
are different. Similarly, imbeddings D and E are unrooted-congruent,
but not rooted-congruent, and they have different i-types. We notice
also, that although imbeddings E and F are not of the same i-type,

6 J. L. GROSS, I. F. KHAN, T. MANSOUR, AND T. W. TUCKER

they are congruent as rooted-graph imbeddings, with a swap of roots
0 and 1; we return to this circumstance in §3.5. Finally, we notice that
although imbeddings C and D are evidently non-congruent, they have
the same i-type.

Remark 2.3. We observe that in each imbedding type, each root-
vertex appears as many times as its valence.

Remark 2.4. Suppose that G has no multi-edges or self-loops and
that we label every vertex. Then each rotation system for G uniquely
determines an i-type, so the number of i-types is the same as the num-
ber of rotation systems. At the opposite extreme, suppose that G is a
bouquet Bn of n self-loops (a one-vertex graph of valence 2n). Then
the number of possible i-types is the same as the number of partitions
of 2n, which is far less than the number (2n − 1)! of rotation systems
for G.

2.3. String notational conventions. We introduce two notational
conventions for strings

• The concatenation of a string S with a string T is denoted
by ST .
• The reverse string for a string S is denoted by S−1.

We emphasize that SS−1 is not the empty string, but rather the con-
catenation of S with its reverse (which forms a palindrome). This
notation does satisfy the relations

(ST)−1 = T−1S−1 and

(S−1)−1 = S

as if in a group, even though strings are not permutations (roots can
repeat), and even though they do not form a group.

2.4. Pgd-vectors. Given an i-type t, we write its partial genus
polynomial in the form ∑

aiz
i

where ai is the number of type-t imbeddings of G of genus i.

If we order the i-types, we can associate the set of partitioned genus
polynomials for G with a column vector whose rth coordinate is the
partial genus polynomial for the rth i-type. This is called a pgd-vector

CALCULATING GENUS POLYNOMIALS 7

for the graph G. For instance, the partitioned genus distribution for
the complete graph K4 given by Example 2.1 corresponds to the vector[

2 2z 8z 2z 2z
]tr
.

3. Operations on Imbedding-Types

We now describe how a path-adding operation affects i-types. We
also describe the relabeling of root-vertices, and the suppression of some
root-labels, for instance, when there are no more paths to be added at
a root-vertex.

3.1. Adding a path within a face and between faces. Figure 3.1
shows the four possible ways to add the path 0U1 to a fully labeled
4-cycle in the sphere and the resulting imbedding-type for each.

0

3 3

3 33

1

2
(0213)(0312)

z(02130U12031U-1) z(03120U13021U-1)

(021U-1)(0U13)(0312)

(0213)(031U-1)(0U12)

(i)

(iv)(iii)(ii)

0

1

20

1

20

1

2

0

1

2

U

U U

U

Figure 3.1. Adding a path to a 4-cycle in the sphere.

(i) Inserting path 0U1 into the inner face yields the imbedding type
(021U−1)(0U13)(0312). We now have three faces. Root-vertices 0
and 1 now have valence 3, so they now appear three times in this
representation of the i-type. Suppressing labels 2 and 3 and the
vertices of U yields the i-type (01)(01)(01).

(ii) Inserting the path 0U1 instead into the outer face yields i-type
(0213)(031U−1)(0U12). Suppressing labels 2 and 3 and the ver-
tices of U yields i-type (01)(01)(01), as in case (i).

8 J. L. GROSS, I. F. KHAN, T. MANSOUR, AND T. W. TUCKER

(iii) If we join the two faces, from inside the inner face at endpoint 0,
to endpoint 2 inside the outer face, then the resulting string ex-
pression is z(02130U12031U−1). Preceding an imbedding-type by
the indeterminate z corresponds to an increase of one in the genus.
Label suppression yields the string expression z(010101).

(iv) If we add the path 0U1 with edge-end 0 now inside the outer face
and edge-end 1 inside the inner face, we get the string expression
z(03120U13021U−1). Label suppression yields z(010101), as in
case (iii).

Remark 3.1. In hand calculations, we do not need to standardize the
representation of an i-type. Canonical forms (see §5.1) are necessary
for use in machine calculation, but optional for hand calculation.

In general, given occurrences of roots i and j in a single face (iSjT)
(possibly i = j), we define the operation of adding a path P = iUj
within the face (iSjT) by the rule

AddP [(iSjT)] = (SjU−1i)(iUjT) = (jU−1iS)(iUjT)(3.1)

= (SP−1)(PT) = (P−1S)(PT)

Figures 3.1(i) and (ii) above illustrate the add-within operation. Ver-
tices i and j each appear in the i-type (SjU−1i)(iUjT) one more time
than in the antecedent i-type (iSjT), since the valences of i and j both
increase by one under path-adding.

If a graph already has an edge ij, then adding the path P = ij
creates a multiple adjacency. We also allow the path P = ii for adding
a self-loop at vertex i. As a variation on Rule (3.1),we have the rule

(3.2) Addii[(iS)] = (i)(iSi)

Given occurrences of i and j in different faces (iS) and (jT) (possibly
i = j), we also define the operation of adding a path P = iUj
between faces(iS) and (jT) by the rule

AddP [(iS), (jT)] = z(SiUjTjU−1i) = z(iUjTjU−1iS)(3.3)

= z(SPTP−1) = z(P−1SPT)

Figures 3.1(iii) and (iv) above illustrate the add-between operation.

3.2. Adding a path to an imbedding-type. To add a path P = iUj
to an i-type t with many faces, we express the totality of possible
occurrences of i and j within and between the faces of i-type t. All
faces containing neither i nor j are left alone. Thus, the result of
adding a path to an i-type is a linear combination (over the ring Z[z]
of polynomials with integer coefficients) of i-types.

CALCULATING GENUS POLYNOMIALS 9

3.3. Suppressing and relabeling roots. Given a subset {i, j, . . . } of
roots, the root-suppression operator Supi,j,... acts to suppress every
occurrence of the root-labels i, j, . . . within an i-type t. For example,

Sup1,2[(1)(12)(0212)(0231303)] = (0)(03303).

We can also relabel roots, by using the root-relabeling operator.
Suppose that the label i appears in i-type t and label j does not. Then
Labij[t] is the i-type obtained by replacing in t all occurrences of i by j.
Thus,

Lab24[(1)(2)(22)(1323)] = (1)(4)(44)(1343).

We denote by Labii′,jj′,...[t] the result of relabeling i by i′, j by j′ etc.

3.4. Reversing orientation. If the orientation of a graph imbedding
is reversed, the effect on i-types is as follows:

• the cyclic order of each fb-walk is reversed;
• the genus of the imbedding stays the same.

We call this the i-type reversal operator. Given an i-type t, we
denote by t−1 the i-type in which each fb-walk string is reversed. Note
that if (ST) is an fb-walk within i-type t, then the corresponding fb-
walk in t−1 is (T−1S−1), for which a cyclic shift gives (S−1T−1). On the
other hand, the i-type (R−1S−1T−1) is not a cyclic shift of the i-type
(RST)−1 = (T−1S−1R−1).

Proposition 3.1. The i-type reversal operator commutes with the op-
erators Add, Sup, and Lab.

Proof. Clearly, we can reverse lists either before of after suppressing
or relabeling vertices, and the result is the same. Using Rule (3.1) for
adding a path within a face, we have

AddP [(iSjT)]−1 = [(SP−1)(PT)] = (T−1P−1)(S−1P) and(3.4)

AddP [(iSjT)−1] = AddP [iT−1jS−1] = (T−1P−1)(S−1P)(3.5)

Using Rule (3.3) for adding an edge between two faces, we have

AddP [(iS), (jT)]−1 = z(PTP−1S)−1 = z(S−1PT−1P−1)(3.6)

and
AddP [(iS)−1, (jT)−1] = AddP [(iS−1), (jT−1)](3.7)

= z(PT−1P−1S−1) �

10 J. L. GROSS, I. F. KHAN, T. MANSOUR, AND T. W. TUCKER

3.5. Combining i-types into super-types. It is sometimes possible
to reduce the work needed to calculate a genus polynomial formula for
a recursively specified family of graphs by combining i-types. The most
frequently encountered application of this reduction is when each i-type
is combined with the i-type obtainable by reversing all the fb-walks.

4. Two Examples of Linear Families

For our present purposes, a linear family is a sequence of graphs
{Gn : n = 0, 1, . . .} having the same root-labels (but different roots)
and the same full collection of i-types for those roots, where a recur-
sively applied topological operator τ : Gn → Gn+1 is specified as a
sequence of path additions between root-vertices. We require that the
operator τ is the same for all n ≥ 0. This definition includes any “H-
linear family”, in the sense of Stahl [Stah91, Stah97], who described
such a family an as a recursively specified sequence of graphs in which
the recursive topological operation is attaching an additional copy of
some subgraph H.

4.1. Production matrices. Given a linear family {Gn : n = 0, 1, . . .}
of graphs, constructed by recursive application of the topological op-
erator τ : Gn → Gn+1, and with the pgd-vector Vn(z) for Gn, for
n = 0, 1, The associated production matrix Mτ (z) is a matrix
such that we have the recursion

(4.1) Vn(z) = MG(z)Vn−1(z), for n = 1, 2, . . .

and, consequently, the equation

(4.2) Vn(z) = MG(z)nV0(z), for n = 1, 2, . . .

Here, as in some previous papers (e.g., [GKP14, GMTW15b]), our
production matrices record a system of rules that computer scientists
might call productions.

CALCULATING GENUS POLYNOMIALS 11

4.2. X-ladders. This example was first given by [Stah97]. An X-
ladder is envisioned as a ladder with evenly many rungs, such that the
rungs are paired and within a pair, they cross each other in a planar
drawing, as illustrated in Figure 4.1.

0

1

0

1
X1 X3

Figure 4.1. The X-ladders X1 and X3.

To represent the construction of Xn from Xn−1, we use the following
sequence of i-type operations:

(1) Add a path 02431 from vertex 0 to vertex 1 and suppress vertices
0 and 1.

(2) Add a path 253 from vertex 2 to vertex 3 and suppress vertices
2 and 3.

(3) Relabel vertices 4 and 5 as 0 and 1, respectively.

We denote by RecX (for recursion) the composition of these operations.

Since the X-ladder X1 is simply a 4-cycle with labeled vertices 0
and 1, its one and only i-type is (01)(10). To obtain the pgd-vector
for X2 from the pgd-vector for X1, we proceed as follows:

Sup01[Add02431[(01)(10)]] = 2(342)(243) + 2z(243342)

Sup23[Add253[2(342)(243)]] = 4(45)(4)(5) + 4z(4545)

Sup23[Add253[2z(243342)]] = 8z(54)(45)

By then applying Lab40,51, we obtain the production

RecX [(01)(10)] = 4(0)(1)(01) + 8z(01)(01) + 4z(0101).(4.3)

for type (01)(10).

In general, a production for an i-type associates to it a linear com-
bination of all the i-types, taken over the ring of polynomials in the
indeterminate z.

Thus, the X-ladder X2 has three imbedding types. Since this is
more than the number for X1, we need to calculate the i-types of X3,
to be sure that we have all the i-types, before we write the production
matrix.

To compute the effect of RecX on X2, we need to compute its effect
on the three imbedding-types (01)(0)(1), (01)(01), and (0101). We

12 J. L. GROSS, I. F. KHAN, T. MANSOUR, AND T. W. TUCKER

already know the production (4.3) for the imbedding-type (01)(10).
We now proceed as follows:

Sup01[Add02431[(01)(0)(1)]] = (243)(342) + 3z(243342)

Sup23[Add253[(243)(342)] = 2(45)(4)(5) + 2z(4545)

Sup23[Add253[3z(243342)]] = {12z(54)(45)}
By then applying Lab(40),(51), we obtain the production

RecX [(01)(0)(1)] = 2(01)(0)(1) + 12z(01)(01) + 2z(0101)(4.4)

for type (01)(0)(1).

The calculation
Sup01[Add02431[(0101)]] = 4(243)(342)

Sup23[Add253[4(243)(342)]] = 8(45)(4)(5) + 8z(4545)

∴ RecX [(0101)] = 8(01)(0)(1) + 8z(0101)(4.5)

gives the production for type (0101).

We see that no new types arise. Thus, the only possible i-types for any
X-ladder Xn are

(01)(0)(1), (01)(01), and (0101).

Accordingly, we may write the pgd-vectors of X1, X2, and X3 as

VX1 =

0
1
0

 VX2 =

 4
8z
4z

 VX3 =

 8 + 64z
48z + 64z2

8z + 64z2


It follows from (4.3), (4.4), and (4.5) that the production matrix

MX(z) for RecX is:

MX(z) =

 2 4 8
12z 8z 0
2z 4z 8z


We see that MX(z)VX1(z) = VX2(z) and that MX(z)VX2(z) = VX3(z).

Proposition 4.1 enables us to check for possible errors:

Proposition 4.1. Suppose that {Gn : n = 0, 1, . . .} is a linear family
with production matrix M(z). Then substituting z = 1 gives a ma-
trix whose column sums are the same constant s, where the number of
imbeddings of Gn+1, is s times the number of imbeddings of Gn.

Proof. Substituting z = 1 in any column of M(z) counts the number s
of ways that the extra paths can be added between the roots of Gn and
the roots of Gn+1. This number is the same for each imbedding-type
and hence for each column of M(z). Clearly, s also tells us the growth
factor in the number of imbeddings from Gn to Gn+1. �

CALCULATING GENUS POLYNOMIALS 13

As Proposition 4.1 indicates, the substitution z = 1 in MX(z) gives
column sums of s = 16, implying that any imbedding of Xn of a given
type generates 16 imbeddings of Xn+1. This makes sense since Xn+1

has four more 3-valent vertices than Ln, so it should have (2!)4 = 16
times as many imbeddings.

4.3. Iterated claws. This example is adapted from [GKP14] and
[GMTW15b].

The iterated claw Y1 is obtained from the complete bipartite graph
K3,3 as follows:

(1) Choose one vertex of K3,3 to be the root-vertex 0.
(2) Subdivide each of the edges incident with 0.
(3) Assign labels 1, 2, and 3 to the resulting three 2-valent vertices.

Figure 4.2 illustrates the graph Y3. We observe that the graph Y1 is
homeomorphic to K3,3.

3
0

1

2

Figure 4.2. The iterated claw Y3.

To obtain the graph (Yn, 0) from the graph (Yn−1, 0), we join a new
3-valent vertex v to the vertices 1, 2, and 3 by paths v41, v52 and v63.
We then suppress labels 1, 2, 3, and 0 and relabel 4 by 1, 5 by 2, 6 by
3, and v by 0. To obtain the pgd-vector of Yn from the pgd-vector of
Yn−1, we now describe how to construct Yn from Yn−1, using only these
these type-operations.

(1) Add the path 14v52 and suppress vertices 1, 2 and 0.
(2) Add the path 36v and suppress 3.
(3) Relabel vertices 4, 5, 6, v as 1, 2, 3, 0, respectively.

We call the resulting operator RecY .

We note that at the root vertex 0, there must be face corners 102,
203, and 301. We partition the genus distribution into classes of types
according to the number of faces incident with the root-vertex 0:

(a) three faces: the imbedding-type must be (102)(203)(301) or its
reverse;

14 J. L. GROSS, I. F. KHAN, T. MANSOUR, AND T. W. TUCKER

(b) two faces: the imbedding must be of one of the types (102203)(301),
(203301)(102), (301102)(203), or their reverses;

(c) one face: the imbedding must be of types (102203301), (102301203),
or their reverses.

This gives 12 types in all. We first cut the number in half by grouping a
type with its inverse. To further reduce the number of imbedding-types
from six to three, we begin by noticing that the dihedral D3 symmetry
of the claw is visible within the notation for the types. For instance,
from the one (b)-type (102203)(103), we could obtain the other types
by a permutation of 1, 2, 3. Thus, we need to consider only how path-
adding affects the imbedding-type (102203)(13). We denote the three
classes simply by listing the face structure at 0:

(a) three faces: (0)(0)(0);
(b) two faces: (00)(0);
(c) one face: (000).

Using these three imbedding classes, we can replace step (3) above
by the step:

Suppress 4, 5, 6 and relabel v as 0.

We now calculate Rec[t] for one representative t from each class.

For t = (102)(203)(301) from class (0)(0)(0), we have

Sup012[Add14v52[t]] = (4v5)(5v4)(3)(3) + z(4v535v4)(3)

+z(34v55v4)(3) + z(34v535v4)

When we apply Sup3456 ◦ Add36v to the right side, we obtain

4z(vv)(v) + z[2(vv)(v) + 2z(vvv)] + z[2(vv)(v) + 2z(vvv)] + z[4(vv)(v)].

Relabeling v by 0 then yields the production

RecY [(102)(203)(301)] = 0(0)(0)(0) + 12z(00)(0) + 4z2(000)(4.6)

For type t = (102203)(301) from class (00)(0), we have:

Sup012[Add14v52[t]] = 2(4v5)(35v4)(3) + 2z(34v535v4).

Applying Sup3456 ◦ Add36v to the right side, we obtain :

2[1(v)(v)(v) + 2z(vv)(v) + z(vvv)] + 2z[4(vv)(v)].

Then relabeling v by 0 yields the production

RecY [(102203)(301)] = 2(0)(0)(0) + 12z(00)(0) + 2z(000)(4.7)

It is easily verified we get the same result beginning instead with t =
(203301)(102) or t = (301102)(203).

CALCULATING GENUS POLYNOMIALS 15

For type t = (102203301) from class (000), we have:

Sup012[Add14v52[t]] = 4(4v5)(3354v)

Applying Sup3456 ◦ Add36v to the right side, we get:

4[2(v)(v)(v) + 2(vvv)].

Then relabeling v by 0, we get the production

RecY [(102203301] = 8(0)(0)(0) + 0(00)(0) + 8z(000)(4.8)

It is easily verified that we get the same result beginning with type t =
(102301203); in other words, the i-types (102203301) and (102301203)
are equivalent, in the sense defined in §3.5.

We conclude from (4.6), (4.7), and (4.8) that the production matrix
for RecY with input and output basis {(0)(0)(0), (00)(0), (000)} is given
by

MY (z) =

 0 2 8
12z 12z 0
4z2 2z 8z

 .

We note that the column sums with z = 1 are 16 = 24 and that Yn+1 has
four extra vertices of valence 3. We observe that the notational power
of i-types has allowed us to compute the recursion matrix for this family
in only a page, while the original calculation [GKP14] requires many
pages and many figures. As in [GKP14], we obtain the pgd-vectors

VY1 =

 16z
24z
24z2

 VY2 =

 48z + 192z2

480z2

48z2 + 256z3

 VY3 =

1344z2 + 2048z3

576z2 + 8064z3

1536z3 + 2816z4


The covariant functor relating a string operation τ : G → H to the

corresponding production matrix Mτ (z) : VG(z) → VH(z), is repre-
sented by the following commutative diagram:

G

VG(z)
Mτ(z)

H

VH(z)

τ

Figure 4.3. Functor from the category of graphs and string oper-
ations to the category of ring modules and matrices
with integer polynomial coefficients.

16 J. L. GROSS, I. F. KHAN, T. MANSOUR, AND T. W. TUCKER

Of course, since Z[z] is a ring, rather than a field, a “pgd-vector” is
more accurately described as an r-tuple than as a vector, where r is
the number of i-types.

4.4. Generalized transfer matrix method. The transfer matrix
method (see [GS95]), concerns the transformation of a given problem
into a matter of counting walks in a digraph. We observe that if A is
the adjacency matrix of a digraph, then the ij entry of the matrix Ak

counts the numbers of paths from vertex vi to vertex vj.

A generalization of this problem (see [Stan86]) is concerned with a
digraph in which the arc from vertex i to vertex j, for all i and j, is
labeled with the element mi,j of a commutative ring, with M = (mi,j).
Instead of counting the paths of length k, we are calculating the sum
of the products of all length-k paths from vi to vj. Of course, the ij
entry of the matrix Mk gives this sum for vi and vj. In [ChWe99] and
[Mo12], the matrix M is called a “transfer matrix”.

When calculating pgd-vectors for a graph sequence {Gn :n = 0, 1, . . .}
that is specified by recursive application of a topological operation τ ,
we take the imbedding types as vertices of the digraph. We label the
arc from type-i to type-j by the coefficient of type-j in the production
for type-i.

5. Machine Computation of Production Matrices

A major impetus for this paper is to provide the data structures
necessary for machine computation of the production matrices for the
pgd-vectors for various families of graphs. Heretofore, all such cal-
culations have been done by hand, and we have calculated the genus
polynomials only for a relatively few of families. As a consequence,
we actually have very little data to study deep issues, such as the log-
concavity conjecture, that the genus distribution of every graph is a
log-concave polynomial (see [GRT89, GMTW15a]). For this section,
we have used a computer program to calculate recursion matrices for
two families of graphs.

5.1. Lexicographically ordering imbedding-types. One of several
computational benefits of representing topological operations by string-
operations is the possibility of reducing the number of i-types, as we
saw in Subsection 4.3 for iterated claws. We have already observed
that the number of i-types tends to grow rapidly as the number of

CALCULATING GENUS POLYNOMIALS 17

roots increases, or as their valences increase. Another benefit of string
notation for i-types is that they have a natural linear order, thus allow-
ing rapid comparison, search, and storage in any machine computation
of production matrices.

The canonical form of a string-based i-type is obtained from
an arbitrary representative of that type in three steps:

(1) The cycles within each imbedding-type are arranged by size in
non-descending order.

(2) The string within each cycle is sorted into its earliest lexico-
graphic form.

(3) The cycles of each size are arranged in lexicographically non-
descending order.

Example 5.1. Consider the imbedding-type

(5.1) (01120)(11020)(10)(210)(201)(2)

Reorganizing the cyclic strings of (5.1) by length gives the form

(2)(10)(210)(201)(01120)(11020)

Writing each fb-walk in earliest lexicographic form yields

(2)(01)(021)(012)(00112)(01102)

Reordering canonical forms of fb-walks of the same size lexicographi-
cally gives the final canonical form for the i-type (5.1)

(2)(01)(012)(021)(00112)(01102)

The canonical forms of i-types have a lexicographical order.

(1) The primary criterion is the cycle structure, which is determined
as if the cyclic partition were a disjoint cycle representation of
a permutation. For instance, the imbedding-types (0)(1)(01)
and (1)(001) have cycle structures t21t2 and t1t3, respectively.
This implies that smaller cycle sizes precede larger cycle sizes
for each imbedding-type.

(2) The secondary criterion, which is applied within the sublist of
imbedding-types corresponding to each fixed cycle structure, is
lexicographically non-descending.

We now give two examples of linear families whose production matri-
ces have been calculated by machine. It should be clear that calculating
these production matrices by hand would be daunting.

18 J. L. GROSS, I. F. KHAN, T. MANSOUR, AND T. W. TUCKER

5.2. Vertex-amalgamation path of copies of K4. We define the
graph T1 to be the graph K4 with a single root, labeled 0. The graph
Tn is obtained by vertex-amalgamating a copy of K4 with two root-
vertices to Tn−1, with the new root, also called 0, on the newly added
copy. The graphs T2 and T3 are illustrated in Figure 5.1.

0 0

Figure 5.1. The graphs T2 and T3.

Following the paradigm of [GKP10], we would obtain Tn from Tn−1
by vertex-amalgamating a doubly rooted copy of K4 to a singly rooted
copy of Tn−1, However, whereas a pair of 2-valent root-vertices involves
at most 10 i-types, it can be seen in Table 6.1 that for two 3-valent
root-vertices, the number of i-types could be as large as 38. Thus, the
potential number of productions could be as large as 382 = 1444. In
what follows, we see that using the string-operation paradigm enables
us to reduce the number of i-types from 38 to 3.

The topological operation of vertex-amalgamating an additional copy
of K4 to the rooted graph (Tn−1, 0) can be represented by the following
sequence of string operations.

(1) Add the closed path 01230.
(2) Add the path 02.
(3) Add the path 13.
(4) Suppress roots 0, 1, and 3.
(5) Relabel root 2 as root 0.

We see that the i-types for a graph with a single 3-valent root-vertex
named 0 are

(0)(0)(0) (0)(00) (000)

More generally, the number of i-types for a graph with a single k-valent
root-vertex equals the number of partitions of the integer k.

Theorem 5.1. The pdg-vector of the graph Tn is Mn−1V1, where the

initial pgd-vector V1 is
(
2 12z 2z

)tr
and the production matrix is

MT (z) =

 96z + 18 80z + 30 60
48z2 + 156z 220z 360z
144z2 + 18z 120z2 + 30z 60z



CALCULATING GENUS POLYNOMIALS 19

Proof. The initial pgd-vector V1 for (K4, 0) and the production matrix
can be calculated by hand or by a computer program. �

5.3. Edge-amalgamation path of copies of K4. Here we define T 1

to be K4 with a single root-edge 01. The graph T n is obtained from
T n by edge-amalgamating a copy of K4. The new root-edge is the edge
in the new copy that is independent of the edge amalgamated to the
previous root-edge. The graphs T 2 and T 3 are illustrated in Figure 5.2.

0

1

0

1

Figure 5.2. The graphs T 2 and T 3.

The topological operation of extending T n−1 by an additional copy of
K4 can be represented by the following sequence of string operations.

(1) Add the path 0231.
(2) Add the path 03.
(3) Add the path 12.
(4) Suppress roots 0 and 1.
(5) Relabel root 2 as root 0 and root 3 as root 1.

We determine that the i-types for the graphs T n are as follows,
grouped by classes under the automorphism interchanging 0 and 1 and
listed in lexicographic order:

1. (0)(1)(01)(01) 7. (01)(0011)
2. (0)(1)(0011) 8. (01)(0101)
3. (0)(01)(011), (1)(01)(001) 9. (001)(011)
4. (0)(00111), (1)(00011) 10. (000111)
5. (0)(01011), (1)(00101) 11. (001011), (001101)
6. (01)(01)(01) 12. (010101)

The initial graph (T 1, 0) has the pgd-vector

V(z) =
(
2 0 0 0 4z 0 2z 8z 0 0 0 0

)tr

20 J. L. GROSS, I. F. KHAN, T. MANSOUR, AND T. W. TUCKER

Theorem 5.2. The pdg-vector of the graph T n is M
n−1

(z)V(z), where
the production matrix is

4 18 8 36 40 6 20 22 12 72 80 84
8z 0 16z 0 0 24z 32z 32z 32z 0 0 0
64z 96z 96z 96z 96z 96z 128z 128z 128z 0 0 0
48z2 32z2 32z2 0 0 48z2 0 0 0 0 0 0
8z 36z 16z 72z 80z 12z 40z 44z 24z 144z 160z 168z
60z 56z 72z 48z 48z 60z 64z 64z 96z 0 0 0

104z2+4z 48z2+18z 64z2+8z 36z 40z 72z2+6z 20z 22z 12z 72z 80z 84z
16z 72z 32z 144z 128z 24z 80z 72z 48z 288z 256z 240z

104z2 48z2 64z2 0 0 72z2 0 0 0 0 0 0
32z3 0 0 0 0 0 0 0 0 0 0 0
64z2 96z2 96z2 96z2 96z2 96z2 128z2 128z2 128z2 0 0 0
60z2 56z2 72z2 48z2 48z2 60z2 64z2 64z2 96z2 0 0 0



Proof. The initial pgd-vector and the production matrix were calcu-
lated by our computer program. �

If follows that

T2 =



8+376z
16z+320z2

128z+1664z2

96z2

16z+752z2

120z+832z2

584z2+8z
32z+1248z2

208z2

64z3

128z2+1664z3

120z2+832z3


and T3 =



32+5040z+119552z2+207616z3

64z+9216z2+111872z3

512z+56064z2+612864z3

384z2+28416z3+103424z4

64z+10080z2+239104z3+415232z4

480z+43200z2+365568z3

5872z2+32z+176256z3+389376z4

128z+19136z2+414464z3+644096z4

832z2+56704z3+181760z4

256z3+12032z4

512z2+56064z3+612864z4

480z2+43200z3+365568z4



6. Enumerating Possible Types

Various previously published genus polynomial calculations have in-
volved recursive constructions of families of graphs with two 2-valent
root-vertices, for which ten i-types are sufficient. As we progress toward
more general results, most especially in regard to the LCGD conjec-
ture, we are encountering recursive graph constructions for which we
use arbitrarily many vertex roots, of arbitrary degrees.

In this section, we first use Burnside’s Lemma to calculate the num-
ber of i-types that can occur for two 2-valent roots. Then we generalize
to obtain lower and upper bounds on the number of i-types for arbitrar-
ily many root-vertices or arbitrary valences. Interestingly, our method
provides a formula for calculating the number of possible cyclic parti-
tions of a multi-set. Thus, it is a generalization of Stirling numbers of
the first kind.

CALCULATING GENUS POLYNOMIALS 21

6.1. Two 2-valent roots. Early papers on genus polynomial calcu-
lations via pgd-vectors used ten mnemonics for the i-types for graphs
with two 2-valent roots. The following table lists the ten mnemonics
and their corresponding type-names:

dd0 dd′ dd′′ ds0 ds′

(0)(0)(1)(1) (0)(01)(1) (01)(01) (0)(0)(11) (0)(011)

sd0 sd′ ss0 ss1 ss2

(00)(1)(1) (001)(1) (00)(11) (0101) (0011)

An ad hoc examination confirms that the ten type-names contain all the
possible partitions of the multi-set {0, 0, 1, 1} into cyclic cells. We now
undertake a reconfirmation of this calculation of ten possible i-types,
using Burnside’s Lemma.

Our set of objects is the set of disjoint cycle decompositions of the
24 permutations in the symmetric group Σ4, with domain {0, 1, 2, 3}.
Our permutation group on them has the permutations

(6.1) ε (identity) (0 2) (1 3) (0 2)(1 3)

where we regard the numbers 2 and 3 as second copies of the numbers
0 and 1, respectively. Under the action of this permutation group, the
orbit of the permutation (0 1)(2)(3) is

(0)(1)(2 3) (0)(3)(1 2) (1)(2)(0 3) (2)(3)(0 1)

This orbit corresponds to the imbedding-type (0)(1)(01).

The identity permutation ε fixes all 24 disjoint cycle representations
of Σ4. The permutation (0 2) fixes the subgroup of disjoint cycle rep-
resentations in which both 0 and 2 are fixed or transposed, whose
cardinality is 4. The permutation (1 3) fixes the same subgroup of
cardinality 4. The permutation (0 2)(1 3) fixes that same subgroup,
plus the set

(0 1)(2 3) (0 3)(1 2) (0 1 2 3) (0 3 2 1)

for a total of 8 fixed points. Applying Burnside’s Lemma, we divide
the sum of the sizes of the fixed-point sets by the cardinality of the
permutation group (6.1) to obtain

24 + 4 + 4 + 8

4
=

40

4
= 10

as the maximum number of i-types for two 2-valent roots.

22 J. L. GROSS, I. F. KHAN, T. MANSOUR, AND T. W. TUCKER

6.2. Two roots, 2-valent and 3-valent. Suppose that root 0 is
2-valent and root 1 is 3-valent. Then there are 18 imbedding-types,
as follows:

structure types
15 (0)(0)(1)(1)(1)

13 2 (0)(0)(1)(11) (0)(1)(1)(01) (1)(1)(1)(00)
1 22 (0)(01)(11) (1)(00)(11) (1)(01)(01)
12 3 (0)(0)(111) (0)(1)(011) (1)(1)(001)
2 3 (00)(111) (01)(011) (11)(001)
1 4 (0)(0111) (1)(0011) (1)(0101)
5 (00111) (01011)

The action of the permutation group Σ{1,2}×Σ{1,3,4} on the elements
of Σ{0,1,2,3,4} has the cycle index

1

12

[
t51 + 4t31t2 + 3t1t

2
2 + 2t2t3

]
We now consider the number of fixed points for each of the four per-
mutation types.

Type t51. The identity permutation fixes all 120 elements of Σ{0,1,2,3,4}.

Type t31t2. Each permutation of structure t31t2 fixes 12 elements of
Σ{0,1,2,3,4}. For instance, (0 2) fixes each of the six elements with the
1-cycles (0) and (2) and each of the six with the 2-cycle (0 2), for a
total of 12. The sum of the sized of the fixed-point sets of the four
permutations of structure t31t2 is 48.

Type t1t
2
2. Each permutation of structure t1t

2
2 fixes 8 elements of

Σ{0,1,2,3,4}. For instance, (0 2)(1 3) fixes both of the elements with the
1-cycles (0), (2), and (4), both with the 2-cycle (0 2) and the 1-cycle
(4), and also the four elements

(0 1)(2 3), (0 3)(1 2), (0 1 2 3), and (0 3 2 1)

for a total of 8. The sum of the sized of the fixed-point sets of the four
permutations of structure t1t

2
2 is 24.

Type t21t3. Each permutation of structure t21t3 fixes 6 elements of
Σ{0,1,2,3,4}. In particular, (0)(2)(1 3 4) fixes Z{0,2} × Z{1,3,4}, as does
(0)(2)(1 4 3). Together, they make a contribution of 12 to the sum of
the sizes of the fixed point sets.

Type t2t3. These two permutations each fix the same 6 elements of
Σ{0,1,2,3,4} as in the preceding case, for a net contribution of 12.

CALCULATING GENUS POLYNOMIALS 23

Applying Burnside’s Lemma, we infer that the number of orbits is

120 + 48 + 24 + 12 + 12

12
=

216

12
= 18

6.3. Several roots of arbitrary degrees. We now calculate lower
and upper bounds on the number of i-types.

Theorem 6.1. For a class of graphs with roots 0, 1, . . . , k − 1 of
respective degrees d0, d1, . . . , dk−1, the number of i-types is at least

(6.2)
(d0 + d1 + · · ·+ dk−1)!

d0!d1! · · · dk−1!
Proof. In addition to their respective primary names 0, 1, . . . , k − 1,
each root j has dj − 1 aliases chosen from among the numbers

k, k + 1, . . . , d0+d1+· · ·+dk−1
with no two different primary names having any aliases in common.
Accordingly, our set of objects is the set of disjoint cycle representations
of the symmetric group ΣK , where K = d0 + d1 + · · · + dk−1. The
permutation group that acts on them is isomorphic to

Σd0 × Σd1 × · · · × Σdk−1

Since the identity permutation fixes all the cycle forms of ΣK , the sum
of the sizes of the sets of fixed points is at least K!. The cardinality of
the permutation group is d1!d2! · · · dk!. Thus, by Burnside’s Lemma, a
lower bound on the number of i-types is given by (6.2). �

Theorem 6.2. For a class of graphs with roots 0 and 1, of respective
degrees a and b, the number of i-types is at most∑
c

n∏
k=1

kckck!
∑

∀i,pi+qi=ci

∑
(1p12p2 ···apa)∈Pa

∑
(1q12q2 ···bqb)∈Pb

1∏a
i=1 i

pipi!
∏b

j=1 j
qjqj!

,

where the sum
∑

c is over all partitions 1c12c2 · · ·ncn ∈ Pn and Pn is
the set of all partitions of the number n.

Proof. The action of the permutation group

Σ{1,3,4,...,a+1} × Σ{2,a+2,a+3,...,a+b}

on the elements of Σ{1,2,...,n}, where n = a+ b, has the cycle index

Ca,b =
∑

(1p12p2 ···apa)∈Pa

∑
(1q12q2 ···bqb)∈Pb

∏a
i=1 t

pi
i

∏b
j=1 t

qj
j∏a

i=1 i
pipi!

∏b
j=1 j

qjqj!
,

24 J. L. GROSS, I. F. KHAN, T. MANSOUR, AND T. W. TUCKER

where Pm is the set of all partitions of m. The number of fixed points
for a permutation of cycle type 1c12c2 · · ·ncn is given by

a!b!Ca,b(1
c12c2 · · ·ncn)

n∏
k=1

kckck!,

where Ca,b(1
c12c2 · · ·ncn) is the coefficient of tc11 t

c2
2 · · · tcnn in the polyno-

mial Ca,b. Thus, each permutation of structure tc11 t
c2
2 · · · tcnn fixes

n∏
k=1

kckck!
∑

∀i,pi+qi=ci

∑
(1p12p2 ···apa)∈Pa

∑
(1q12q2 ···bqb)∈Pb

a!b!∏a
i=1 i

pipi!
∏b

j=1 j
qjqj!

.

elements of Σ{1,2,...,n}.

Applying Burnside’s Lemma, we conclude that the number of orbits
is given by∑
c

1

a!b!

n∏
k=1

kckck!
∑

∀i,pi+qi=ci

∑
(1p12p2 ···apa)∈Pa

∑
(1q12q2 ···bqb)∈Pb

a!b!∏a
i=1 i

pipi!
∏b

j=1 j
qjqj!

which equals∑
c

n∏
k=1

kckck!
∑

∀i,pi+qi=ci

∑
(1p12p2 ···apa)∈Pa

∑
(1q12q2 ···bqb)∈Pb

1∏a
i=1 i

pipi!
∏b

j=1 j
qjqj!

,

where the sum
∑

c is over all partitions 1c12c2 · · ·ncn ∈ Pn. �

Applying our formula for a, b ≤ 10, we obtain the following table:

Table 6.1. The maximum number of i-types for two root-vertices,
of valences a and b.

a\b 1 2 3 4 5 6 7 8 9 10

1 2 4 7 12 19 30 45 67 97 139
2 4 10 18 34 56 94 146 228 340 506
3 7 18 38 74 133 233 385 623 977 1501
4 12 34 74 158 297 550 951 1614 2627 4202
5 19 56 133 297 602 1166 2133 3775 6437 10692
6 30 94 233 550 1166 2382 4551 8424 14953 25835
7 45 146 385 951 2133 4551 9142 17639 32680 58659
8 67 228 623 1614 3775 8424 17639 35492 68356 127443
9 97 340 977 2627 6437 14953 32680 68356 136936 264747
10 139 506 1501 4202 10692 25835 58659 127443 264747 530404

CALCULATING GENUS POLYNOMIALS 25

Theorem 6.3. The formula corresponding to that of Theorem 6.2 for
m roots of degrees (a1, a2, . . . , am) is given by∑
c

n∏
k=1

kckck!
∑

∀i,p1i+p2i+···+pdi=ci

∑
∀d=1,2,...,m, (1pd12pd2 ···a

pdad
d)∈Pad

1∏m
d=1

∏ad
i=1 i

pdipdi!
,

where the sum
∑

c is over all partitions 1c12c2 · · ·ncn ∈ Pn.
Proof. This proof uses the same arguments as for Theorem 6.2. �

Using the formula from Theorem 6.3 for the calculations, we present
in Table 6.2 the maximum number of imbedding-types for triply rooted
graphs with root-vertices of valences 1 ≤ i, j, k ≤ 5.

Table 6.2. The maximum number of imbedding-types for three
roots, of valences i, j, k for i = 1, 2, 3, 4, 5.

i=1

j\k 1 2 3 4 5

1 6 14 28 52 90
2 14 38 84 170 316
3 28 84 206 450 899
4 52 170 450 1058 2254
5 90 316 899 2254 5110

i=2

j\k 1 2 3 4 5

1 14 38 84 170 316
2 38 120 290 644 1284
3 84 290 788 1886 4074
4 170 644 1886 4868 11214
5 316 1284 4074 11214 27556

i=3

j\k 1 2 3 4 5

1 28 84 206 450 899
2 84 290 788 1886 4074
3 206 788 2370 6146 14302
4 450 1886 6146 17170 42696
5 899 4074 14302 42696 112966

i=4

j\k 1 2 3 4 5

1 52 170 450 1058 2254
2 170 644 1886 4868 11214
3 450 1886 6146 17170 42696
4 1058 4868 17170 51630 137070
5 2254 11214 42696 137070 387146

26 J. L. GROSS, I. F. KHAN, T. MANSOUR, AND T. W. TUCKER

i=5

j\k 1 2 3 4 5

1 90 316 899 2254 5110
2 316 1284 4074 11214 27556
3 899 4074 14302 42696 112966
4 2254 11214 42696 137070 387146
5 5110 27556 112966 387146 1161498

7. Conclusions

We have focused here primarily on the computational aspects in-
volved in applying string operations toward the determination of genus
polynomials of graphs. We recognize the following two immediate ben-
efits of the string-operations paradigm:

(1) It enables us to reduce the number of partial genus polynomials
(one for each imbedding-type) into which a genus polynomial
must be partitioned.

(2) The imbedding-types, the production matrix, and the partial
genus polynomials (which are the coordinates of a pgd-vector)
can be calculated by a computer program, which enables us to
generate a much larger set of experimental data.

Beyond using string operations in new calculations of enumerative
results on graph imbeddings, some new theoretical insights may arise
from them. One may reasonably consider how the paradigm of string
operations relates to the log-concavity conjecture, that every genus
polynomial is log-concave (see [GRT89, GMTW15a]). We observe that
using Theorem 4.7.2 of [Stan86] could give generating functions for the
individual entries of a power of a production matrix.

There are models in the physical sciences to which the transfer ma-
trix method has been applied. Some in chemistry were explored in
[KaCh77, KaCh78], where the computational process uses polynomial
matrix entries and is called the polynomial matrix method. This method
was adapted by [BGMP86] for application to matching polynomials of
polygraphs.

In a sequel [GMT15], we regard a linear family of graphs as a Markov
process is which the states are i-types and a slightly modified form
of the production matrix is the transition matrix. We explore the
properties of such Markov processes.

The methods described here seem amenable to extension. Suppose
that instead of a fixed production matrix M(z) for a graph sequence

CALCULATING GENUS POLYNOMIALS 27

{Gn : n = 0, 1, . . .}, with pgd-vectors Vn(z) we had a sequence of
production matrices Mn(z), such that Recursion (4.1) was generalized
to

Mn(z)vn(z) = Vn+1(z),

and Equation (4.2) to

Vn(z) = Mn−1(z)Mn−2(z)M0(z)V0(z).

A tractable recursion or a closed formula for Mn(z) would enable us to
calculate the pgd-vector Vn(z) reasonably rapidly. Of course, such a se-
quence of production matrices corresponds to a non-stationary Markov
process.

References

[BGMP86] D. Babic, A. Graovac, B. Mohar, and T. Pisanski, The matching poly-
nomial of a polygraph, Discrete Appl. Math. 15 (1986), 11–24.

[ChWe99] T.Y. Chow and J. West, Forbidden subsequences and Chebyshev poly-
nomials, Discrete Math. 204 (1999), 119–128.

[GS95] I.M. Gessel and R.P. Stanley, Algebraic enumeration, Chap. 21 of Handbook
of Combinatorics, Vol. 1, Elsevier and the MIT Press, 1995.

[Gr11a] J.L. Gross, Genus distribution of graph amalgamations: Self-pasting at
root-vertices, Australasian J. Combin. 49 (2011), 19–38.

[Gr11b] J.L. Gross, Genus distributions of cubic outerplanar graphs, J. Graph Al-
gorithms and Applications 15 (2011), 295–316.

[Gr12] J.L. Gross, Embeddings of graphs of fixed treewidth and bounded degree,
Ars Math. Contemporanea 7 (2014), 423–440. Presented at AMS Annual Meet-
ing at Boston, January 2012.

[Gr13] J.L. Gross, Embeddings of cubic Halin graphs: genus distributions, Ars
Math. Contemporanea 6 (2013), 37–56.

[GF87] J.L. Gross and M.L. Furst, Hierarchy for imbedding-distribution invariants
of a graph, J. Graph Theory 11 (1987), 205–220.

[GKP10] J.L. Gross, I.F. Khan, and M.I. Poshni, Genus distribution of graph amal-
gamations: Pasting at root-vertices, Ars Combin. 94 (2010), 33–53.

[GKP14] J.L. Gross, I.F. Khan, and M.I. Poshni, Genus distributions for iterated
claws, Electronic J. Combin. 21 (2014), #P1.12.

[GMT15] J.L. Gross, T. Mansour, and T.W. Tucker, Markovian analysis of pro-
duction matrices for genus polynomials, in preparation.

[GMTW15a] J.L. Gross, T. Mansour, T.W. Tucker, and D.G.L. Wang, Log-
concavity of combinations of sequences and applications to genus distributions,
SIAM J. Discrete Math. 29 (2015), 1002–1029.

[GMTW15b] J.L. Gross, T. Mansour, T.W. Tucker, and D.G.L. Wang, Iterated
claws have real-rooted genus polynomials, Ars Math. Contemporanea, to ap-
pear. Presented at the GEMS Conference, July 2013.

[GRT89] J.L. Gross, D.P. Robbins and T.W. Tucker, Genus distributions for bou-
quets of circles, J. Combin. Theory (B) 47 (1989), 292–306.

28 J. L. GROSS, I. F. KHAN, T. MANSOUR, AND T. W. TUCKER

[GT87] J.L. Gross and T.W. Tucker, Topological Graph Theory, Dover, 2001 (orig-
inal ed. Wiley, 1987).

[KaCh77] M.V. Kaulgud and V.H. Chitgopkar, Polynomial matrix method for the
calculation of π-electron energies for linear conjugated polymers, J. Chem. Soc.
Faraday Trans. II 73 (1977), 1385–1395.

[KaCh78] M.V. Kaulgud and V.H. Chitgopkar, Polynomial matrix method for the
calculation of charge densities and bond orders in linear conjugated π-electron
systems, J. Chem. Soc. Faraday Trans. II 74 (1978), 951–957.

[Mo12] B. Mohar, Genus distribution of path-like and ring-like graphs. Oral pre-
sentation at SIAM DM’12 at Halifax, NS, June 2012.

[PKG10] M.I. Poshni, I.F. Khan, and J.L. Gross, Genus distribution of edge-
amalgamations, Ars Math. Contemporanea 3 (2010), 69–86.

[Stah91] S. Stahl, Permutation-partition pairs III: Embedding distributions of lin-
ear families of graphs, J. Combin. Theory Ser. B 52 (1991), 191–218.

[Stah97] S. Stahl, On the zeros of some genus polynomials, Canad. J. Math. 49
(1997), 617–640.

[Stan86] R.P. Stanley, Enumerative Combinatorics, Vol. 1, Wadsworth &
Brooks/Cole, 1986.

Dept. of Computer Science, Columbia University, New York, NY
10027, USA;
email: gross@cs.columbia.edu

PUCIT, University of the Punjab, Lahore 54000, Pakistan
email: imran.farid@pucit.edu.pk

Department of Mathematics, University of Haifa, 3498838 Haifa,
Israel; email: tmansour@univ.haifa.ac.il

Dept. of Mathematics, Colgate University, Hamilton, NY 13346,
USA;
email: ttucker@colgate.edu

