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Abstract. We derive a quadratic-time algorithm for the genus
distribution of any 3-regular, biconnected series-parallel graph,
which we extend to any biconnected series-parallel graph of maxi-
mum degree at most 3. Since the biconnected components of every
graph of treewidth 2 are series-parallel graphs, this yields, by use
of bar-amalgamation, a quadratic-time algorithm for every graph
of treewidth at most 2 and maximum degree at most 3.
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1. Introduction

For i = 0, 1, 2, . . ., let gi(G) be the number of topologically dis-
tinct cellular embeddings of the graph G in the orientable surface Si of
genus i. The genus distribution of the graph G is the sequence of
numbers

(1.1) gi(G) : i = 0, 1, . . .

By the interpolation principle (see Theorem 3.4.1 of [GrTu87] or The-
orem 4.5.3 of [MoTh01]), the set {i : gi(G) > 0} is a set of consecutive
integers. The smallest number in this set is the minimum genus of
the graph G, and the largest is the maximum genus of G.

The main focus of this paper is the derivation of a quadratic-time al-
gorithm for the genus distribution of any 3-regular, biconnected series-
parallel graph. This algorithm is readily extended to a quadratic-time
algorithm for the genus distribution of any graph of treewidth at most 2
and maximum degree at most 3. The simplicity with which this spe-
cialized algorithm can be implemented, or applied by hand with the aid
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of a spreadsheet, distinguishes it from the recently derived quadratic-
time algorithm [Gr14] for the genus distribution of any class of graphs
of fixed treewidth and bounded degree.

Basic results on genus distribution

Five fundamental papers [GKP10, Gr11a, PKG10, KPG10, PKG12]
of the first author and his co-authors Khan and Poshni have estab-
lished methods for calculating the genus distribution of a graph that
is constructed by various kinds of amalgamation of graphs of known
genus distribution. These methods involve partitioned genus distribu-
tions and productions. In order to develop an algorithm for a specific
class of graphs, the starting point is to formulate a recursive speci-
fication of the graphs in that class, in which the operations used to
create larger graphs from smaller graphs are varieties of amalgamation
or self-amalgamation. Then methods similar to those of the five funda-
mental papers are used to calculate the genus distribution recursively.
This paradigm was used successfully in calculating the genus distribu-
tions of 3-regular outerplanar graphs [Gr11b], of 4-regular outerplanar
graphs [PKG11], of Halin graphs [Gr13], and of the 3× n-mesh graphs
[KPG12]. We adopt the same paradigm in this paper.

Connections of treewidth to embedding problems

Since the introduction of the concept of treewidth by Robertson
and Seymour, bounding the treewidth has been widely used to ob-
tain polynomial-time algorithms for problems that are otherwise NP-
hard. In particular, deciding whether an arbitrarily selected graph can
be embedded in a given surface is NP-complete [Th89]; however, for
any class of graphs of bounded treewidth, Kawarabayashi, Mohar, and
Reed [KMR09] have derived a linear-time algorithm for calculating the
minimum genus.

Although outerplanar graphs have treewidth 2, and although Halin
graphs and P3×Pn meshes have treewidth 3 (see [Bo98]), decomposition
trees have not occurred in the calculation of specific genus distributions
in any papers as yet. Nonetheless, low treewidth plays an implicit role
in the recursive specification of the family of graphs in each of those
papers. Similarly, in the present paper, low treewidth plays an implicit
role, since it allows for a simple recursive construction of the graphs
under consideration.
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Terminology

In what follows, a graph is taken to be connected and devoid of
self-loops, unless something else can be inferred from the immediate
context. Multi-edges are to be expected. We use VG and EG to de-
note the vertex set and edge set of a graph G. A connected graph is
biconnected if it has no cutpoints.

The embeddings in this paper are cellular embeddings in oriented
surfaces. The terminology used here is predominantly consistent with
[GrTu87] and [BWGT09]. See also [MoTh01], for a slightly different
approach. We abbreviate “face-boundary walk” as fb-walk.

A two-terminal series-parallel graph is a doubly vertex-rooted
graph (G, p, q), as per the following recursive definition.

B: The graph (K2, p, q) is a two-terminal series-parallel graph,
where p and q are the vertices of K2, called the source root
and the target root, respectively.

R1: series operation (G, p, q) �s (G′, p′, q′) Target root q of G
is merged with source root p′ of G′. The amalgamated graph
G�sG

′ with roots p and q′, as in Figure 1.1(a), is a two-terminal
series-parallel graph.

R2: parallel operation (G, p, q)�p(G′, p′, q′) The result of merg-
ing source root p with source root p′ , and also merging target
root q with target root q′, as in Figure 1.1(b), is a two-terminal
series-parallel graph.

p'

q'

q

p

s

q'

p

p' q'

q

qt

p
p p

(a) (b)

Figure 1.1. Operations on series-parallel graphs.

A graph G is a series-parallel graph if there is a choice of terminals
p and q such that (G, p, q) is a two-terminal series-parallel graph. Our
definition here is consistent with that of [Bo98] and [Ep92]. A third
operation, called a jackknife operation is allowed by [BPT09], and the
resulting class of graphs that they call “series-parallel” is equivalent
to that of [Du65] — see Remark 8.1 of [BPT09]. The “series-parallel
graphs” in [Du65] are identified there as the graphs with no embedded
“Wheatstone bridge” (which is Duffin’s terminology for a K4 topologi-
cal minor). These are precisely the graphs that have no K4-minor (e.g.,
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see Proposition 1.7.2 of [Die06]). According to Theorem 17 of [Bo98],
the graphs without a K4-minor are exactly the graphs of treewidth at
most 2. It follows that our extended genus-distribution algorithm can
be applied to any of them in quadratic time, and that we do not need
to further explore the distinctions between the varying definitions of
“series-parallel graphs”.

Outline of this paper

Section 2 derives a characterization of 3-regular, biconnected series-
parallel graphs that facilitates the genus distribution algorithm for that
family of graphs. Section 3 introduces the concepts of partitioned genus
distributions and productions. The top-level description of an algorithm
for the genus distribution of any 3-regular, biconnected series-parallel
graph is given in Section 4. Sections 5 and 6 derive the productions
needed to complete the calculation, as well as their application to cal-
culating the genus distribution of an illustrative example. Section 6 also
gives proof that the algorithm runs in quadratic time. Section 7 ex-
tends the algorithm to all graphs of treewidth 2 and maximum degree 3.

This paper is almost entirely self-contained, except for some details
of the well-established concept of partitioned genus distributions and of
the methods (as in [GKP10] and [PKG10]) for constructing productions
(which are quite necessary for the algorithm). Prior experience with
calculating genus distributions of graph amalgamations, especially as
in [Gr11b] and [Gr13], is likely to be quite helpful.

2. Cubic Biconnected Series-Parallel Graphs

The dipole Dn is the graph with two vertices and an n-fold multi-
edge joining them. In this section, we prove that every 3-regular, bi-
connected series-parallel graph can be obtained by iterated application
of the following operation to the dipole D3.

τ : Trisect an arbitrary edge e of a graph G and install a new edge
in parallel to the “middle third” of edge e.

This operation, which is applicable to an non-empty graph, is called a
dmt-step (“dmt” is an abbreviation of “double the middle third”), is
illustrated by Figure 2.1.

e

Figure 2.1. A dmt-step: double the middle third.
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We define a second operation, which is applicable to 3-regular multi-
graphs, other than the dipole D3.

τ−1: In a 3-regular graph G, let d and e be edges that share the
same two endpoints, u and v, and in which no other edge shares
these two endpoints. Delete edge d, and then smooth away
vertices u and v.

We observe that the operation τ−1 can be used as an inverse to the
operation τ .

The proof of our characterization of 3-regular, biconnected series-
parallel graphs uses the following four propositions.

Proposition 2.1. A graph G has treewidth at most 2 if and only if
every biconnected component of G is a series-parallel graph.

Proof. This is Theorem 42 of [Bo98]. �

Proposition 2.2. A graph G has treewidth at most 2 if and only if
contains no K4-minor.

Proof. This follows immediately from Theorem 17 of [Bo98]. �

Proposition 2.3. Let G be a 3-regular, biconnected series-parallel
graph, and let G′ be a graph with at least two vertices, obtained by
applying operation τ−1 to edges d and e of G , with shared endpoints u
and v. Then G′ is 3-regular, biconnected, and series-parallel.

Proof. Since G is 3-regular, all of its vertices are 3-valent. The opera-
tion τ−1 eliminates two vertices of G without changing the valences of
the remaining vertices. Thus, the graph G′ is 3-regular.

Let x and y be any two vertices of G′. Since G is biconnected, there
is a pair of internally disjoint paths in G joining x and y, by Menger’s
theorem. If one of these paths contains either of the vertices u or v,
then it also contains one of the edges d or e, since G is 3-regular, and
the other path contains neither vertex u nor vertex v. Thus the images
of the two internally disjoint path in G are two internally disjoint paths
in G′. Hence, the graph G′ is biconnected.

Since the graph G is series-parallel, its treewidth is at most 2, by
Proposition 2.1. It follows from Proposition 2.2 that G has no K4-
minor. Accordingly, the graph G′ has no K4 minor. Therefore, by
Proposition 2.2, the graph G′ has treewidth at most 2. We conclude
from Proposition 2.1 that the graph G′ is series-parallel. �
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Proposition 2.4 (Dirac’s theorem). Let G be a biconnected simple
graph of minimum degree 3. Then G contains a subgraph that is home-
omorphic to the complete graph K4.

Proof. This is a theorem of [Dir52]. �

Theorem 2.5. Let G be a biconnected 3-regular series-parallel graph.
Then there exist vertices p, q ∈ VG such that the two-terminal series-
parallel graph (G, p, q) is derivable from (D3, p, q) by a sequence of ap-
plications of the operation τ .

Proof. Let H be a smallest graph obtainable by iterative application
of operation τ−1 to the graph G, that is, a graph such that no pair of
vertices is joined by exactly two edges. By Proposition 2.3, the graph H
is 3-regular, biconnected, and series-parallel. We observe thatH cannot
be simple, lest it contain, by Dirac’s theorem, a homeomorphic copy
of K4, a contradiction, in view of Propositions 2.2 and 2.1. Accordingly,
there is a pair of vertices p, q ∈ VH with at least two edges joining
them. Since there cannot be exactly two edges joining p and q, by
the minimality of the graph H, and since H is 3-regular, it follows
that H ∼= D3. Reversing the sequence of τ−1-operations, we obtain
a derivation of (G, p, q) from (D3, p, q) by iterative application of the
operation τ . �

We define a dmt-string to be a graph obtained by iterative appli-
cation of dmt-steps to the graph K2. We observe that each dmt-string
has two univalent vertices and that all other vertices are trivalent.

Corollary 2.6. Let (G, p, q) be a 3-regular, biconnected two-terminal
series-parallel graph. Then (G, p, q) can be represented by a set of three
dmt-strings, each with a univalent p-vertex and a univalent q-vertex,
from which (G, p, q) is formed by two parallel operations.

3. Partials and Productions

When calculating the genus distribution of a family of graphs, we
commonly use a finer partition of the embeddings during the interme-
diate steps. For computational purposes, we need to isolate subsets of
embeddings upon which the surgical operations used in the recursive
construction of that family have the same effect. Whereas the genus
distribution of a graph is an inventory according only (as per (1.1)) to
the genus of the embedding surface, a partitioned genus distribu-
tion refines the genus distribution of a rooted graph, according to the
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incidence of fb-walks on the roots, which is the critical factor in the
behavior of a surgical operation on an embedding. In other words, a
partitioned genus distribution is a partition of all embeddings of the
graph with a given genus into into several types, which allows us to
keep under control the structure of the faces incident with the roots
before, respectively after the amalgamation. The cells of the finer par-
tition are called partials. In this context, we sometimes abbreviate
genus distribution as gd and partitioned genus distribution as pgd.

Calculating the genus distributions of 3-regular series-parallel graphs
involves amalgamating subgraphs at pairs of terminals, such that the
sum of the degrees of an amalgamated pair of vertices is at most 3.
Thus, the possible degrees of the terminals prior to the final operation
are 1 and 2. When both terminals are univalent, the genus distribution
of (G, p, q) is partitioned into the following partials:

uu•i (G, p, q) = the number of embeddings G→ Si such that
terminals p and q do not occur on the same fb-walk;

uu′i(G, p, q) = the number of embeddings G→ Si such that
terminals p and q occur on the same fb-walk.

The letter u in the name of the partial is a mnemonic for univalent. For
every i = 0, 1, 2, . . ., the set of all embeddings of (G, p, q) with genus i
gives a partitioned genus distribution given by the formula

gi(G, p, q) = uu•i (G, p, q) + uu′i(G, p, q)

When terminal p is univalent and terminal q is bivalent, the letters d
or s in the name of the partial mean, respectively, that q occurs on two
different fb-walks or that q occurs twice on the same fb-walk. There
are four partials:

ud•i (G, p, q) = the number of embeddings G→ Si such that
terminal p occurs on neither fb-walk incident at q;

ud′i(G, p, q) = the number of embeddings G→ Si such that
terminal p occurs on one fb-walk incident at q;

us•i (G, p, q) = the number of embeddings G→ Si such that
terminal p does not occur on the fb-walk incident at q;

us′i(G, p, q) = the number of embeddings G→ Si such that
terminal p occurs on the fb-walk incident at q.

As before, for every i = 0, 1, 2, . . ., the set of all embeddings of
(G, p, q) with genus i has a partitioned genus distribution according to
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the formula

gi(G, p, q) = ud•i (G, p, q) + ud′i(G, p, q) + us•i (G, p, q) + us′i(G, p, q)

Similarly, when p is bivalent and q is univalent, there are four partials:

du•i (G, p, q) = the number of embeddings G→ Si such that
terminal q occurs on neither fb-walk incident at p;

du′i(G, p, q) = the number of embeddings G→ Si such that
terminal q occurs on one fb-walk incident at p;

su•i (G, p, q) = the number of embeddings G→ Si such that
terminal q does not occur on the fb-walk incident at p;

su′i(G, p, q) = the number of embeddings G→ Si such that
terminal q occurs on the fb-walk incident at p.

Suppose that p1, p2, . . . , ps is a set of partials for a genus distribution.
A production for a given surgical operation that transforms a graph
embedding X → Si (or a tuple of graph embeddings) into a set of
graph embeddings of the graph Y is an algebraic rule of this form:

(3.1) pji (X) −→ c1p
1
fj
1 (i)

(Y ) + · · ·+ ctp
s
fj
s (i)

(Y )

The left side is called the antecedent, and the right side is called the
consequent. The meaning is that the operation transforms a single
embedding of graph X of type pj on the orientable surface Si of genus i
into a set of embeddings of the graph Y , of which ck are of type pk on
the surface Sfj

k(i)
, for each i, j, and k. A drawing is usually used as

an aid in deriving the production and in proving its correctness. The
names of the graphs and their roots can be suppressed when there is
in context no ambiguity. Thus, we may write

(3.2) pji −→ c1p
1
fj
1 (i)

+ · · ·+ ctp
s
fj
s (i)

In general, when there are n partials, a surgical operation on two
graphs is represented by n2 productions for the partials. It is clear
to someone familiar with the use of partials and productions that it
is possible to represent the parallel operation and the series opera-
tion by respective lists of productions, one for each ordered pair of
partials. This would also lead to an algorithm that requires quadratic-
time. Since our present objective is an algorithm that can be described
concisely and calculated by hand for small graphs, we intend here to
construct shorter lists of productions.
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4. An Algorithm

Our Algorithm 4.1 for calculating the genus distribution of any cubic,
biconnected, two-terminal series-parallel graph G has five steps.

Algorithm 4.1. Genus distribution algorithm for a cubic,
biconnected, series-parallel graph G.

Input: A 3-regular biconnected series-parallel graph G.
Output: The genus distribution of the graph G.

(1) Choose the endpoints p and q of an edge as the terminals.
(2) Determine the three dmt-strings N1, N2, N3 corresponding to

the graph (G, p, q).
(3) Calculate the pgd of each of the three dmt-strings N1, N2, N3.
(4) Calculate the pgd of the graph N1 �p N

2.
(5) Calculate the gd of the graph G = (N1 �p N

2)�p N
3.

Step (1). Lemma 9 of [Ep92] shows that a biconnected series-parallel
graph is two-terminal series-parallel, for any pair of terminals p and q
that are joined by an edge. Therefore, we can select as terminals p and
q the endpoints of any edge of G.

Step (2). Determine the three dmt-strings (N1, p, q), (N2, p, q), (N3, p, q)
for the graph G, by splitting both of the vertices p and q of the dipole
D3 into three vertices, each an endpoint of one of the edges incident
on the split vertex.

Step (3). It simplifies this calculation if we define a small modification
of the parallel operation �p. When we combine two dmt-strings with
a parallel operation, we obtain two 2-valent vertices. Our modified
operation �p attaches a spike at each of these 2-valent vertices, as
illustrated in Figure 4.1, so that we once again have a dmt-string.

p

Figure 4.1. The modified parallel operation �p.

Similarly, our modified operation �s merges the second terminal of
the first graph with the first terminal of the second graph, and then
smooths away the merged vertex, as illustrated in Figure 4.2.
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s

Figure 4.2. The modified parallel operation �s.

The method for calculating the pgd of a dmt-string is given in Section 5.

Step (4). This step concerns the composition of an amalgamation of
two double-rooted graphs with univalent roots at one pair of univalent
roots, followed by a self-amalgamation at the other two roots. See
Section 6 for a description of this computation.

Step (5). This step is the composition of an amalgamation of two
double-rooted graphs with univalent roots at one pair of univalent
roots, followed by a self-amalgamation at the other two roots. See
Section 6 for a description of this computation.

5. PGD of DMT-Strings

Four parallel productions and four series productions will be suffi-
cient to calculate the values of the partials of any dmt-string. The
following two sets of four productions each are sufficient to calculate
all the partials of a dmt-string. The parallel productions are derived
with the aid of Figures 5.1, 5.2, and 5.3. The series productions are
self-evident. The genus of each resultant embedding is calculated from
its Euler characteristic.

uu•i �p uu
•
j −→ 4uu•i+j+1 (Figure 5.1)(5.1)

uu•i �p uu
′
j −→ 4uu′i+j+1 (Figure 5.2)(5.2)

uu′i�p uu
•
j −→ 4uu′i+j+1 (mirror of Figure 5.2)(5.3)

uu′i�p uu
′
j −→ 2uu•i+j + 2uu′i+j (Figure 5.3)(5.4)

pX Y X XY Y X XY Y

Figure 5.1. Production: uu•i �p uu
•
j −→ 4uu•i+j+1.
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pX Y X XY Y X XY Y

Figure 5.2. Production: uu•i �p uu
′
j −→ 4uu′i+j+1.

pX Y X X X XY Y Y Y

Figure 5.3. Production: uu′i�p uu
′
j −→ 2uu′i+j + 2uu•i+j.

uu•i �s uu
•
j −→ uu•i+j(5.5)

uu•i �s uu
′
j −→ uu•i+j(5.6)

uu′i�s uu
•
j −→ uu•i+j(5.7)

uu′i�s uu
′
j −→ uu′i+j(5.8)

Examples

Our first example is the dmt-string D̂2 of Figure 5.4, which is of
fundamental use in our further calculations. Here we use pgd (which
stands for partitioned genus distribution) as a function.

Figure 5.4. The dmt-string D̂2.

We observe that D̂2 is representable as K2�pK2. Therefore,

pgd(D̂2) = pgd(K2�pK2)

= uu′0�p uu
′
0

pgd(D̂2) = 2uu•0 + 2uu′0 by Prod. (5.4)(5.9)
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We now apply Eq. (5.4) and the productions above to calculate the
partials of the three dmt-strings of the graph of Figure 5.5.

s t

Figure 5.5. A cubic series-parallel graph.

The top dmt-string N1 is representable as D̂2�s D̂2. Therefore,

pgd(N1) = pgd(D̂2�s D̂2)

= (2uu•0 + 2uu′0)�s (2uu•0 + 2uu′0)

= 2uu•0�s 2uu•0 + 2uu•0�s 2uu′0
+ 2uu′0�s 2uu•0 + 2uu′0�s 2uu′0

= 4uu•0 + 4uu•0 + 4uu•0 + 4uu′0
by Prods. (5.5), (5.6), (5.7), (5.8)

pgd(N1) = 12uu•0 + 4uu′0(5.10)

The dmt-string N2 is representable as D̂2�s (D̂2�pK2). Therefore,

pgd(N2) = pgd(D̂2�s (D̂2�pK2))

= (2uu•0 + 2uu′0)�s ((2uu•0 + 2uu′0)�p uu
′
0)

= (2uu•0 + 2uu′0)�s (8uu′1 + 4uu•0 + 4uu′0)

by Prods. (5.2), (5.4)

= 16uu•1 + 8uu•0 + 8uu•0 + 16uu′1 + 8uu•0 + 8uu′0
by Prods. (5.1), (5.2), (5.3), (5.4)

pgd(N2) = 24uu•0 + 8uu′0 + 16uu•1 + 16uu′1(5.11)
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The dmt-string N3 is representable as D̂2�p D̂2. Therefore,

pgd(N3) = pgd(D̂2�p D̂2)

= (2uu•0 + 2uu′0)�p (2uu•0 + 2uu′0)

= 16uu•1 + 16uu′1 + 16uu′1 + 8uu•0 + 8uu′0
by Prods. (5.1), (5.2), (5.3), (5.4)

pgd(N3) = 8uu•0 + 8uu′0 + 16uu•1 + 32uu′1(5.12)

6. Amalgamating DMT-Strings

A parallel operation on two dmt-strings yields a series-parallel graph
whose source and target roots are both 2-valent. Figure 6.1 illustrates
the productions used to transform the partials of the two antecedent
dmt-strings into the partials of the consequent series-parallel graph.
We define two partials for the case where p and q are both bivalent and
a single walk is twice incident at each:

ss•i (G, p, q) = the number of embeddings G→ Si such that
the fb-walks twice incident at p and q are different;

ss′i(G, p, q) = the number of embeddings G→ Si such that
the same fb-walk is twice incident at p and q.

We also define

dd′′i (G, p, q) = the number of embeddings G→ Si such that
the same two fb-walks are twice incident at p and q.

X

X

Y

Y

X

X

Y

Y

X

X

Y

Y

(a) (b) (c)

Figure 6.1. Parallel operations on two dmt-strings.

uu•i �p uu
•
j −→ ss•i+j+1 (Figure 6.1(a))(6.1)

uu•i �p uu
′
j −→ ss′i+j+1 (Figure 6.1(b))(6.2)

uu′i �p uu
•
j −→ ss′i+j+1 (use Figure 6.1(b))(6.3)

uu′i �p uu
′
j −→ dd′′i+j (Figure 6.1(c))(6.4)
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Once again, the genus of each resultant embedding is calculated from
its Euler characteristic. Continuing with our example of the graph
from Figure 5.5, these productions enable us, in turn, to calculate
pgd(N1 �p N

2).

pgd(N1 �p N
2) = (12uu•0 + 4uu′0)

�p(24uu•0 + 8uu′0 + 16uu•1 + 16uu′1)

= 12uu•0 �p (24uu•0 + 8uu′0 + 16uu•1 + 16uu′1)

+ 4uu′0 �p (24uu•0 + 8uu′0 + 16uu•1 + 16uu′1)

= 288ss•1 + 96ss′1 + 192ss•2 + 192ss′2
+96ss′1 + 32dd′′0 + 64ss′2 + 64dd′′1

pgd(N1 �p N
2) = 32dd′′0 + 64dd′′1 + 288ss•1 + 192ss•2(6.5)

+192ss′1 + 256ss′2

The following six productions will enable us to complete our calcula-
tion of the genus distribution of the graph of Figure 5.5, starting from
the pgd (6.5) for N1�pN

2 and the pgd (5.12) for N3. We observe that
the result of applying these productions is a genus distribution, rather
than a partitioned genus distribution. Accordingly, the consequents
are of the form gi rather than subscripted partials, thereby indicating
only that the resulting embedding surface is Si.

dd′′i �p uu
•
j −→ 4gi+j+1 (Figure 6.2)(6.6)

dd′′i �p uu
′
j −→ 2gi+j + 2gi+j+1 (Figure 6.3)(6.7)

ss•i �p uu
•
j −→ 4gi+j+1 (Figure 6.4)(6.8)

ss•i �p uu
′
j −→ 4gi+j+1 (Figure 6.5)(6.9)

ss′i�p uu
•
j −→ 4gi+j+1 (Figure 6.6)(6.10)

ss′i�p uu
′
j −→ 4gi+j (Figure 6.7)(6.11)

Figures 6.2, 6.3, 6.4, 6.5, 6.6, and 6.7 illustrate the six productions
(6.6), (6.7), (6.8), (6.9), (6.10), and (6.11), respectively, that collec-
tively provide an algebraic representation of the parallel operation.
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X Y X X X Y ZY ZX Y ZYZ Zp

Figure 6.2. dd′′i �p uu
•
j −→ 4gi+j+1.

X Y X X X Y ZY ZX Y ZYZ Zp

Figure 6.3. dd′′i �p uu
′
j −→ 2gi+j + 2gi+j+1.

X Y X X X Y ZY ZX Y ZYZ Zp

Figure 6.4. ss•i �p uu
•
j −→ 4gi+j+1.

X Y X X X Y ZY ZX Y ZYZ Zp

Figure 6.5. ss•i �p uu
′
j −→ 4gi+j+1.

X Y X X X Y ZY ZX Y ZYZ Zp

Figure 6.6. ss′i �p uuj −→ 4gi+j+1.
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X Y X X X Y ZY ZX Y ZYZ Zp

Figure 6.7. ss′i �p uu
′
j −→ 4gi+j.

pgd(N1 �p N
2) = 32dd′′0 + 64dd′′1 + 288ss•1 + 192ss•2 + 192ss′1 + 256ss′2

pgd(N3) = 8uu•0 + 8uu′0 + 16uu•1 + 32uu′1

32dd′′0 �p 8uu•0 = 1024g1

32dd′′0 �p 8uu′0 = 512g0 + 512g1

32dd′′0 �p 16uu•1 = 2048g2

32dd′′0 �p 32uu′1 = 2048g1 + 2048g2

64dd′′1 �p 8uu•0 = 2048g2

64dd′′1 �p 8uu′0 = 1024g1 + 1024g2

64dd′′1 �p 16uu•1 = 4096g3

64dd′′1 �p 32uu′1 = 4096g2 + 4096g3

288ss•1 �p 8uu•0 = 9216g2

288ss•1 �p 8uu′0 = 9216g2

288ss•1 �p 16uu•1 = 18432g3

288ss•1 �p 32uu′1 = 36864g3

192ss•2 �p 8uu•0 = 6144g3

192ss•2 �p 8uu′0 = 6144g3

192ss•2 �p 16uu•1 = 12288g4

192ss•2 �p 32uu′1 = 24576g4

192ss′1 �p 8uu•0 = 6144g2

192ss′1 �p 8uu′0 = 6144g1

192ss′1 �p 16uu•1 = 12288g3

192ss′1 �p 32uu′1 = 24576g2

256ss′2 �p 8uu•0 = 8192g3

256ss′2 �p 8uu′0 = 8192g2

256ss′2 �p 16uu•1 = 16384g4

256ss′2 �p 32uu′1 = 32768g3
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By summation of the right-hand sides of the equations above, we
obtain the genus distribution

genus 0 1 2 3 4
#embeddings 512 10752 68608 129024 53248

This calculation has been confirmed by a computer program based
on the Heffter-Edmonds algorithm.

Theorem 6.1. The time required by Algorithm 4.1 is at most quadratic
in the number of vertices of the graph G supplied as input.

Proof. Choosing an edge and its endpoints s and t, as required by
Step (1), takes constant time. The time needed for Step (2), which
is achieved by partitioning the edge-set of the given graph G into the
edge-sets of the three dmt-strings, is linear in the number of vertices
of G, using depth-first search.

When two subgraphs are amalgamated during Step (3), the contri-
bution to the partials of the merged graph corresponding to a pair of
nonzero-valued subscripted partials, one in the pgd of the first amalga-
mand and the other in the pgd of the second amalgamand, is calculated
by the application of one of the Productions (5.1), . . . , (5.8). Since the
number of nonzero-valued subscripted partials for any graph is linear
in the number of vertices, the time to calculate the pgd of the merged
graph is proportional to the product of the numbers of vertices in the
two amalgamands. Suppose that the numbers of vertices of the frag-
ments of an dmt-string are x1, x2, . . . , xp. Since the vertices in two
different fragments will be merged into a combined fragment only once
during the reassembly of the dmt-string, the number of applications of
productions during the entire reassembly is at most∑

i 6=j

xixj

However, ∑
i 6=j

xixj < (x1 + x2 + · · ·+ xp)
2

from which we infer that the total time is at most quadratic in the
number of vertices of the dmt-string.

To see that Step (4) can be done in quadratic time, first observe that
the number of nonzero partials in pgd(N1) and pgd(N2) is linear in the
maximum genus of N1 and N2, since partials can be nonzero only for
genera with genus less than or equal to maximum genus and for every
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genus in this range there is only a constant number of different types
of partials. Furthermore, it is well known that the maximum genus
of any graph G is bounded from above by β(G) (see [GrTu87]), the
cycle rank of G, which in turn is linear in the number of vertices for
any graph with maximum degree 3. Accordingly, there is only a linear
number of nonzero partials for both N1 and N2, yielding at most a
quadratic number of combinations needed to calculate pdg(N1�pN

2).
Finally, each combination of two partials can be computed in constant
time using appropriate choices from Productions (5.1), . . . , (5.4), which
implies that Step (4) can indeed be done in quadratic time in the
number of vertices.

The argument that Step (5) uses only quadratic time is similar to
that for Step (4) — the number of nonzero partials is again linear in
the number of vertices; and each computation, this time involving one
of the Productions (6.6), . . . , (6.11), can be done in constant time. �

7. Extending to All Graphs of Treewidth ≤ 2
and Maximum Degree ≤ 3

The bar-amalgamation of two disjoint rooted graphs (G, u) and
(H, v) is the result of running a new edge (the “bar”) between u and v.

Proposition 7.1. The genus distribution of the bar-amalgamation of
graphs (G, u) and (H, v) is the constant multiple of the convolution of
the genus distributions of G and H. The constant factor is the product
of the degree of u in G and the degree of v in H.

Proof. This is Theorem 5 of [GrFu87]. �

To extend Algorithm 4.1 to any graph G of treewidth at most 2 and
maximum degree 3, we infer from Proposition 2.1 that each biconnected
component of G either is isomorphic to K2 or is a homeomorphic copy
of a 3-regular biconnected graph. Moreover, each of the latter kind of
biconnected components meets only the K2-type components. Thus,
the graph G is an iterated bar-amalgamation of biconnected series-
parallel graphs. Accordingly, to calculate its genus distribution, we
calculate the genus distributions of its biconnected components, take
corresponding convolutions, and multiply by scalars corresponding to
degrees of vertices at the ends of the bars.
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8. Conclusions

Starting with a quadratic-time algorithm for calculating the genus
distribution of all cubic biconnected series-parallel graphs, we have
constructed a quadratic-time algorithm for the genus distribution of
any graph of treewidth at most 2 and maximum degree at most 3.
The advantage of this case-specific algorithm over the more general
algorithm of [Gr14] is the ease with the case-specific algorithm can be
used to obtain numerical results for specific graphs.
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