
ROOT GEOMETRY OF POLYNOMIAL SEQUENCES I: TYPE (0, 1)

JONATHAN L. GROSS, TOUFIK MANSOUR, THOMAS W. TUCKER, AND DAVID G.L. WANG†‡

Abstract. This paper is concerned with the distribution in the complex plane of the roots of a

polynomial sequence {Wn(x)}n≥0 given by a recursion Wn(x) = aWn−1(x) + (bx + c)Wn−2(x),

with W0(x) = 1 and W1(x) = t(x − r), where a > 0, b > 0, and c, t, r ∈ R. Our results include
proof of the distinct-real-rootedness of every such polynomial Wn(x), derivation of the best bound

for the zero-set {x | Wn(x) = 0 for some n ≥ 1}, and determination of three precise limit points of

this zero-set. Also, we give several applications from combinatorics and topological graph theory.

Contents

1. Introduction 2

2. Main Results and Examples 3

2.1. Main result 4

2.2. Some examples 7

3. Distinct Real-Rootedness 8

4. Bound on the Zero-Set Rn 17

5. Limit Points of the Zero-Set Rn 20

5.1. The number xg can be a limit point 21

5.2. The number x∆ is a limit point 21

5.3. The negative infinity is a limit point 23

References 23

Appendix A. Proof of Lemma 2.4 24

Appendix B. Proof of Lemma 3.5 26

Appendix C. Proof of Lemma 5.1 27

Appendix D. Proof of Lemma 5.3 27

Key words and phrases. genus distribution; real-rooted polynomial; recurrence; root geometry.
J.L. Gross is supported by Simons Foundation Grant #315001.

T.W. Tucker is supported by Simons Foundation Grant #317689.

D.G.L. Wang is supported by the Beijing Institute of Technology Research Fund Program for Young Scholars.

1



2 J.L. GROSS, T. MANSOUR, T.W. TUCKER, AND D.G.L. WANG

1. Introduction

Gian-Carlo Rota [26] has said of the ubiquity of roots of polynomials in combinatorics

“Disparate problems in combinatorics ... do have at least one common feature:
their solution can be reduced to the problem of finding the roots of some

polynomial or analytic function.”

One such reduction is due to Newton’s inequality, which implies that every real-rooted polynomial is
log-concave. As observed by Brenti [1, 2], polynomials that arise from combinatorial problems often
turn out to be real-rooted.

Given a sequence {Wn(x)}n≥0 of polynomials, we refer to the distribution of the set of zeros, taken
over all n, as the root geometry of that sequence. General information for the root geometry of
polynomials, especially the geometry of non-real roots, is given by Marden [19]; see also [21,24].

This research arose during efforts by the present authors to affirm a quarter-century old conjecture
(abbr. the LCGD conjecture) that the genus distribution (or genus polynomial, equivalently) of every
graph is log-concave [8]. Although it was conjectured by Stahl [28] that genus polynomials are real-
rooted, Chen and Liu [4] proved otherwise by the counterexample of iterated 4-wheels. Subsequently,
various genus polynomials have been shown to have complex roots. Of course, this separates the
problem of determining which graphs have real-rooted genus polynomials from trying to prove the
LCGD conjecture. The log-concavity of genus distribution of the iterated 4-wheels is confirmed
recently by the authors, see [13].

After unexpected success [12] in proving the real-rootedness of the genus polynomials of iterated
claws, we attempted the real-rootedness of genus polynomials for iterated 3-wheels [23]. The iterated
3-wheel Wn

3 is the graph obtained from the cartesian product C3�Pn+1, where Pk is a path graph with
k vertices, by contracting a 3-cycle C3 at one end of the product to a single vertex. By a preprocess
of normalization, we transformed the problem equivalently into the following conjecture.

Conjecture 1.1. Let W0(x) = 1/27, W1(x) = 1 + 7x, W2(x) = 1 + 139x+ 1120x2 + 468x3, and

Wn(x) = (1 + 144x)Wn−1(x) + 54x(2− 29x+ 306x2)Wn−2(x)− 5832x3(1− 11x)Wn−3(x),

for n ≥ 3. Then each of the polynomials Wn(x) is real-rooted.

Real-rootedness of the genus polynomials of iterated 3-wheels Wn
3 was confirmed by brute force

computation for all n ≤ 220. The complications encountered led us to consider the more general
problem for polynomial sequences defined by a general linear recurrence of degree 3, with polynomial
coefficients. As one may imagine, the difficulty did not decrease. This led us to some recurrences of
degree 2. In particular, let Wn(x) be a sequence of polynomials satisfying the recursion

(1.1) Wn(x) = A(x)Wn−1(x) +B(x)Wn−2(x)

for n ≥ 2, where A(x) and B(x) are polynomials, W0(x) is a constant, andW1(x) is a linear polynomial.
When the polynomials A(x) and B(x) have degrees k and `, respectively, we call the sequence {Wn(x)}
defined by Rec. (1.1) a recursive polynomial sequence of type (k, `).

Classical bounds on the roots of a polynomial are given in terms of its coefficients. Examples
include the Fujiwara bound [7], the Cauchy bound [3], and the Hirst-Macey bound [16]. More bounds
and also some background are given by Rahman and Schmeisser [25], where the reader may also find,
for instance, Rouché’s theorem, Landau’s inequality, and the Laguerre-Samuelson inequality, subject
to bounding the roots of a polynomial. Conversely, the real-rooted polynomials with all roots in a
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prescribed interval have been characterized in terms of positive semi-definiteness of related Hankel
matrices; see Lasserre [18].

This paper is primarily concerned with the root geometry of a sequence of recursive polynomials
of type (0, 1).

2. Main Results and Examples

As a preliminary, we consider a recursive polynomial sequence of type (0, 0), that is, one in which
the polynomials A(x) and B(x) are constants, A and B. This serves as a bridge to considering a
recursive sequence of polynomials of types in which A(x) and B(x) have other degree combinations.

Lemma 2.1. Let A,B ∈ R with A 6= 0. Let {Wn}n≥0 be a sequence of real numbers satisfying the
initial condition W0 = 1 and the recursion Wn = AWn−1 +BWn−2. Writing

∆ = A2 + 4B and g± =
2W1 −A±

√
∆

2
,

we have

(2.1) Wn =


(

1 +
n(2W1 −A)

A

)(
A

2

)n
, if ∆ = 0;

g+(A+
√

∆ )n − g−(A−
√

∆ )n

2n
√

∆
, if ∆ 6= 0.

In particular, if Reiθ is the polar representation of A+
√

∆, then we have

(2.2) Wn =

(
R

2

)n(
cosnθ +

sinnθ√
−∆

)
, if ∆ < 0.

Proof. The solution (2.1) to Rec. (1.1) can be found in elementary textbooks; for more extensive

discussion, see Kocic and Ladas [17]. Note that when A +
√

∆ = Reiθ, we have A −
√

∆ = Re−iθ,

since
√

∆ is either purely real or purely imaginary. Then, Eq. (2.2) can be obtained from Eq. (2.1)
directly. �

For instance, the Fibonacci sequence {fn}n≥0 is defined by the recursion fn = fn−1 + fn−2, with

f0 = f1 = 1. With A = B = W1 = 1 (hence, ∆ = 5 and g± = (1±
√

5)/2), Lemma 2.1 gives Binet’s
formula, as expected:

Wn =
(g+)n+1 − (g−)n+1

√
5

.

Thus, we see how Lemma 2.1 creates conditions for recursive sequences of type (0, 0), under which
the root geometry problem becomes easy.
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2.1. Main result. The aim of this paper is to describe the root geometry of all recursive polynomial
sequences of type (0, 1). In order to formulate the main results of this paper, we use the following
terminology.

Definition 2.2. The zero-set of a polynomial is defined to be the set of all its roots. It is said to be
distinct-real-rooted if all its roots are distinct and real.

Definition 2.3. Let s be a positive integer, and let t ∈ {s − 1, s}. Let X = {x1, x2, . . . , xs} and
Y = {y1, y2, . . . , yt} be ordered sets of real numbers. We say that the set X interlaces the set Y from
both sides, denoted X ./ Y , if t = s− 1 and

(2.3) x1 < y1 < x2 < y2 < · · · < xs−1 < yt < xs.

Note that the bow-tie symbol ./ consists of a “times” symbol × in the middle and a bar at each side.
The left (resp., right) bar indicates that the smallest (resp., largest) number in Ineq. (2.3) is from the
set X. We say that the set X interlaces Y from the right, denoted X o Y , if either X ./ Y , or

(2.4) y1 < x1 < y2 < x2 < · · · < xs−1 < yt < xs, where t = s.

Here the bar to the right of the “times” symbol × within the symbol o means that the largest number
in Ineq. (2.4) is from X. We observe that any set consisting of a single real number interlaces the
empty set.

For any integers m ≤ n, we denote the set {m, m+ 1, . . . , n} by [m,n]. Moreover, when m = 1, we
may denote the set [1, n] by [n]. Lemma 2.4 presents some essential consequences of the interlacing
property.

Lemma 2.4. Let f(x) and g(x) be polynomials with zero-sets X and Y respectively. Let β ∈ R, and
let

X ′ = X ∩ (−∞, β) = {x1, x2, . . . , xp} and Y ′ = Y ∩ (−∞, β) = {y1, y2, . . . , yq}
be two ordered sets such that X ′ o Y ′. Let x0 = y0 = −∞ and yq+1 = β.

• If f(β) 6= 0, then we have

(2.5) f(yj)f(β)(−1)q−j < 0 for all j ∈ [q + 1− p, q + 1];

• If g(β) 6= 0, then we have

(2.6) g(xi)g(β)(−1)p−i > 0 for all i ∈ [p− q, p].

Proof. See Appendix A. �

Notation 2.5. For any sequence {xn} of real numbers, we write xn ↘ x if xn converges to the
number x decreasingly, and we write xn ↗ x if xn converges to the number x increasingly.

Our main result, Theorem 2.6, concerns a polynomial sequence Wn(x) of type (0, 1) in which
A(x) = a and B(x) = bx+ c, with ab 6= 0 and c ∈ R.

Theorem 2.6. Let {Wn(x)}n≥0 be the polynomial sequence defined by the recursion

(2.7) Wn(x) = aWn−1(x) + (bx+ c)Wn−2(x),

with W0(x) = 1 and W1(x) = t(x − r), where a, b, t > 0, c, r ∈ R, and r 6= −c/b. Then the
polynomial Wn(x) has degree dn = b(n+ 1)/2c and is distinct-real-rooted. Moreover, let

Rn = {ξn,1, ξn,2, . . . , ξn,dn}



ROOT GEOMETRY OF POLYNOMIAL SEQUENCES I: TYPE (0, 1) 5

be the zero-set of Wn(x), where ξn,1 < ξn,2 < · · · < ξn, dn . Let R′n = Rn \{ξn, dn}. Using the notations

x∗ = −4c+ a2

4b
, r∗ = x∗ − a

2t
, and y∗ = r +

(at+ b)−
√

(at+ b)2 + 4t2(br + c)

2t2
,

we have the following conclusions:

(i) If r ∈ (−∞, r∗], then Rn+1 oRn and Rn+2 ./ Rn for n ≥ 1; ξn, dn−i ↗ x∗ for any i ≥ 0.

(ii) If r ∈ (r∗,−c/b) then Rn+1 oRn and Rn+2 ./ Rn for n ≥ 1; ξn, dn−i ↗ x∗ for any i ≥ 1; and
ξn,dn ↗ y∗ with x∗ < y∗.

(iii) If r ∈ (−c/b,+∞) then R′n+1 o R′n and R′n+2 ./ R
′
n for n ≥ 3; ξn,dn−i ↗ x∗ for any i ≥ 1;

ξ2n,d2n ↗ y∗ and ξ2n−1,d2n−1 ↘ y∗ with x∗ < −c/b < ξ2,d2 < y∗ < r.

The best bounds for the set ∪n≥1Rn are, in these three respective cases, (−∞, x∗), (−∞, y∗) and
(−∞, r). Furthermore, the sequence ξn,i converges to −∞ for any fixed i ≥ 1.

We observe that in the statement of Theorem 2.6, the limit point x∗ does not depend on the initial
polynomial W1(x), as long as the polynomial W1(x) is linear, and furthermore, no root lies in the
interval (x∗, −c/b) for case (iii).

In fact, when W1(x) = t(x − r), we can always normalize the polynomials by the linear transfor-
mation

Wn(x) = Wn(x/t+ r),

whose root geometry differs from that of the sequence Wn(x) only by magnification and translation.
From Rec. (2.7), one may infer that

Wn(x) = aWn−1(x) + (bx/t+ br + c)Wn−2(x),

with W 0(x) = 1 and W 1(x) = x. Therefore, we can suppose that W1(x) = x from the beginning.

Suppose W1(x) = x. Now, if c = 0, then the number 0 is a root of every polynomial Wn(x). In
this circumstance, we have

W2(x) = (a+ b)x and W3(x) = aW2(x) + bx2.

Consider the polynomials

W̃n(x) =
Wn+2((a+ b)(x− a)/b)

W2((a+ b)(x− a)/b)
.

From Rec. (2.7), we infer that

(2.8) W̃n(x) = aW̃n−1(x) + (a+ b)(x− a)W̃n−2(x),

with W̃0(x) = 1 and

W̃1(x) =
W3((a+ b)(x− a)/b)

W2((a+ b)(x− a)/b)
= a+

b

a+ b
· (a+ b)(x− a)

b
= x.

Since the constant term of the coefficient polynomial (a+ b)(x− a) in Rec. (2.8) is −a(a+ b) 6= 0, we
can suppose that c 6= 0 from the beginning.

To give a proof of Theorem 2.6, we state its “normalized” version as Theorem 2.8, in which we
restrict W1(x) = x and c 6= 0. As will be seen, Theorem 2.8 implies Theorem 2.6 conversely. The
following notion of (0, 1)-sequence of polynomials is the key object we will study; see Sections 3 to 5.
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Definition 2.7. Let {Wn(x)}n≥0 be the polynomial sequence defined recursively by

Wn(x) = aWn−1(x) + (bx+ c)Wn−2(x),

with W0(x) = 1 and W1(x) = x, where a, b > 0 and c 6= 0. In this context, we say {Wn(x)}n≥0 is
a (0, 1)-sequence of polynomials. It is clear that (0, 1)-sequence of polynomials is the particular case
studied in Theorem 2.6 for t = 1 and r = 0.

Theorem 2.8. Let {Wn(x)}n≥0 be a (0, 1)-sequence of polynomials. Then the polynomial Wn(x) (of
degree dn = b(n+ 1)/2c) is distinct-real-rooted. Let

(2.9) x∗ = −4c+ a2

4b
, r∗ = x∗ − a

2
, and y∗ =

a+ b−
√

(a+ b)2 + 4c

2
.

Let Rn = {ξn,1, ξn,2, . . . , ξn,dn} be the ordered zero-set of Wn(x).

(i) If r∗ ≥ 0, then Rn+1 oRn and Rn+2 ./ Rn for n ≥ 1; ξn, dn−i ↗ x∗ for any fixed i ≥ 0.

(ii) If 0 ∈ (r∗,−c/b) then Rn+1 oRn and Rn+2 ./ Rn for n ≥ 1; ξn, dn−i ↗ x∗ for any fixed i ≥ 1;
and ξn,dn ↗ y∗ with x∗ < y∗.

(iii) If c > 0 then R′n+1 o R′n and R′n+2 ./ R′n for n ≥ 3; ξn,dn−i ↗ x∗ for any fixed i ≥ 1;
ξ2n,d2n ↗ y∗ and ξ2n−1,d2n−1

↘ y∗ with x∗ < −c/b < y∗ < x2,d2 .

For these three cases, the respective best bounds for the set ∪n≥1Rn are (−∞, x∗), (−∞, y∗), and
(−∞, r). Moreover, the sequence ξn,i converges to −∞ for any fixed i ≥ 1.

When considering the root geometry problem of general recursive polynomial sequences of type (0, 1),
it is acceptable to suppose that degW0(x) ≤ degW1(x) and that the polynomial W0(x) is monic. As-
sume that W0(x) is a constant. Then we have W0(x) = 1.

Consider the polynomials

(2.10) Ŵn(x) = (−1)nWn(−x).

It is routine to verify the recurrence

(2.11) Ŵn(x) = −aŴn−1(x) + (−bx+ c)Ŵn−2(x),

with Ŵ0(x) = 1 and Ŵ1(x) = x. Then the roots of the polynomials Wn(x) are the opposites of roots

of the polynomials Ŵn(x). From this point of view, when a < 0, one may consider the root geometry

of the polynomials Ŵn(x), for which the coefficient −a in Rec. (2.11) is positive. Therefore, we can
suppose that a > 0 from the beginning.

Provided that a > 0. Then the case b < 0 is unexplored. In fact, when b < 0, both the degrees and
the leading coefficients of the polynomials Wn(x) may vary irregularly. We also note that dropping
Condition (iii) may yield non-real-rooted polynomials Wn(x). For example, when a = 1, b = −1, and
c = −1, we have W3(x) = −x2 − x − 1, which has no real roots. From the argument for supposing
a > 0, we do not handle the case ab < 0 essentially.

We remark that in a general setting, beyond the genus polynomials of graphs, the polynomi-
als Wn(x) might have negative coefficients. In summary, this study of the root geometry of recursive
polynomials of type (0, 1) has only two restrictions. One is that the polynomial W0(x) is a constant.
The other is the assumption that the number b has the same sign as the number a.
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2.2. Some examples. We now present several examples to illustrate our results.

Example 2.9. One kind of Fibonacci polynomials Wn(x) is defined by the recursion

(2.12) Wn(x) = Wn−1(x) + xWn−2(x),

where W0(x) = 1 and W1(x) = x+ 1; see [20, Table 3] and [27, A011973]. Accordingly,

a = b = 1, c = 0, and r = −1,

and we compute from Def. (2.9) that

x∗ = −4c+ a2

4b
= −1

4
and r∗ = x∗ − a

2
= −1

4
− 1

2
= −3

4
> −1 = r.

By Theorem 2.6 (i), we know that each polynomial Wn(x) is distinct-real-rooted and that all roots
are less than −1/4. Also, for any ε > 0, there exists a number M ′ > 0 such that every polynomial
Wn(x) with n > M ′ has a root in the interval (−1/4− ε, −1/4). Moreover, by the final conclusion of
Theorem 2.6, we know that for any N > 0, there exists a number M > 0 such that every polynomial
Wn(x) with n > M has a root less than −N .

In the next two examples, we examine how the set of convergent points is affected when we change
the coefficient of Wn−2(x) in Rec. (2.12) to 2x/5 and to x+ 2.

Example 2.10. Let Wn(x) be the polynomial sequence defined by the recursion

Wn(x) = Wn−1(x) +
2x

5
Wn−2(x),

with initial values W0(x) = 1 and W1(x) = x+ 1. We see that

a = 1, b = 2/5, c = 0, and r = −1.

We calculate from Def. (2.9) that

x∗ = −4c+ a2

4b
= −5

8
< −3

5
= y∗ and r = −1 ∈

(
−9

8
, 0

)
=
(
r∗, −c

b

)
.

By Theorem 2.6, the polynomial Wn(x) is distinct-real-rooted, and the largest roots converge to −3/5
increasingly. Moreover, for any i ≥ 1, the roots xn, dn−i converge to −5/8 increasingly as n→∞, and
the roots xn, i converge to −∞ decreasingly.

Example 2.11. Let Wn(x) be the polynomial sequence defined by the recursion

Wn(x) = Wn−1(x) + (x+ 2)Wn−2(x),

with initial values W0(x) = 1 and W1(x) = x+ 1. Thus,

a = b = 1, c = 2, and r = −1.

We compute that W2(x) = 2x+ 3, and that

x∗ = −9

4
, r = −1 > −2 = −c

b
, and y∗ = −

√
2.

Therefore, we have x∗ < −c/b < x2, d2 . By Theorem 2.6, every polynomial Wn(x) is distinct-real-

rooted, and has exactly one root larger than −9/4. The largest roots converge to −
√

2 oscillatingly.
Moreover, for any positive integer i, the roots xn, dn−i converge to −9/4 increasingly as n→∞, and
the roots xn, i converge to −∞ decreasingly.
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Example 2.12. This example illustrates how our results can be used to prove the real-rootedness
of a sequence of partial genus polynomials. Let Dn(x) be the polynomial sequence defined by the
recursion

Dn(x) = 2Dn−1(x) + 8xDn−2(x),

with D0(x) = 1 and D1(x) = 2x, which may be recognized by those familiar with enumerative
research in topological graph theory (for example, see [8,10,14]) as a partial genus distribution for the
closed-end ladder Ln, which is shown in Fig. 1.

v

Figure 1. The closed-end ladder L4 with a 2-valent root-vertex v.

The polynomialDn(x) is the generating function for the number of cellular imbeddings of the ladder Ln
such that two different faces are incident on the root-vertex. By Theorem 2.6, each Dn(x) is a
distinct-real-rooted polynomial, and the root sequence ξn, dn−i converges to−1/8 for every nonnegative
integer i. In particular, none of the polynomials Dn(x) has a root larger than −1/8. Unfortunately,
we do not yet know what topological information is implied by this convergent point.

3. Distinct Real-Rootedness

The proof of Theorem 2.8 begins here with an investigation of the real-rootedness of a (0, 1)-sequence
of polynomials. The remainder of the proof will be given in Sections 4 and 5.

For any polynomial f(x), we follow the usual definition that

f(±∞) = lim
x→±∞

f(x).

We start our analysis of (0, 1)-sequences {Wn(x)}n≥0 by finding a formula for the degree and the
leading coefficient of each of the polynomials.

Lemma 3.1. Let {Wn(x)}n≥0 be a (0, 1)-sequence of polynomials, with tn the leading coefficient
of Wn(x). Then

dn = deg(Wn(x)) =

⌊
n+ 1

2

⌋
, t2n+1 = bn, and t2n = bn−1(na+ b).

Moreover, for all n ≥ 1, we have

Wn(−∞)(−1)dn = Wn(+∞) = +∞.

Proof. The formulas for the degree dn and the leading coefficients tn can be verified by induction on
the integer n. For any polynomial f(x) with positive leading coefficient, it is clear that

f(−∞)(−1)deg f(x) = +∞ and f(+∞) = +∞.
Since tn > 0, we infer that

Wn(−∞)(−1)dn = Wn(+∞) = +∞.
The sign relations follow immediately. �
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Using the intermediate value theorem for a (0, 1)-sequence of polynomials, we derive the following
criterion for their distinct-real-rootedness.

Theorem 3.2. Let {Wn(x)}n≥0 be a (0, 1)-sequence of polynomials, with zero-set Rn and degree dn
of the polynomial Wn(x). Let β ≤ −c/b. Suppose that for some numbers m, k ∈ N, we define

(3.1) Tm = Rm ∩ (−∞, β) and Tm+1 = Rm+1 ∩ (−∞, β),

and suppose, further, that

|Tm| = dm − k,(3.2)

|Tm+1| = dm+1 − k,(3.3)

Tm+1 o Tm, and(3.4)

Wn(β)(−1)k > 0,(3.5)

for n ∈ {m, m+ 1, m+ 2}. Then there exists a set Tm+2 ⊆ Rm+2 ∩ (−∞, β) such that

|Tm+2| = dm+2 − k and Tm+2 o Tm+1.

Moreover, if

(3.6) Tm+2 = Rm+2 ∩ (−∞, β),

then we have Tm+2 ./ Tm.

Proof. By Eqs. (3.2) and (3.3) in the premises, we can suppose that

Tm+1 = {x1, x2, . . . , xp} and Tm = {y1, y2, . . . , yq}
are ordered sets, where

(3.7) p = dm+1 − k and q = dm − k.
Def. (3.1) implies that xp < β. In view of Relation (3.4), together with the premise β ≤ −c/b, we
have the following ordering:

(3.8) · · · < yq−2 < xp−2 < yq−1 < xp−1 < yq < xp < β ≤ −c/b.
Note that Relation (3.4) also implies that p ≥ 1 and q ∈ {p− 1, p}. For convenience, let

x0 = y0 = −∞ and xp+1 = yq+1 = β.

We will apply Lemma 2.4 with

f(x) = Wm+1(x) and g(x) = Wm(x).

In this case, we have

X = Rm+1 and Y = Rm.

Consequently, by Def. (3.1), we have

X ′ = Rm+1 ∩ (−∞, β) = Tm+1 and Y ′ = Rm ∩ (−∞, β) = Tm.

Then, Relation (3.4) reads X ′ o Y ′. Taking n = m in Ineq. (3.5) gives

(3.9) Wm(β)(−1)k > 0.

It follows that Wm(β) 6= 0. Therefore, we can use Ineq. (2.6), which gives that

(3.10) Wm(xi)Wm(β)(−1)p−i > 0 for all i ∈ [p− q, p].



10 J.L. GROSS, T. MANSOUR, T.W. TUCKER, AND D.G.L. WANG

Let i ∈ [p]. Since xi ∈ Tm+1 ⊆ Rm+1, we have

Wm+1(xi) = 0.

Taking n = m+ 2 and x = xi in Rec. (2.7), we find

Wm+2(xi) = (bxi + c)Wm(xi).

From Ineq. (3.8), we see that xi < −c/b, and thus bxi + c 6= 0. Therefore, we can substitute

Wm(xi) =
Wm+2(xi)

bxi + c

into Ineq. (3.10), which gives that

Wm+2(xi)

bxi + c
Wm(β)(−1)p−i > 0.

Since b > 0 and xi < −c/b, we deduce that bxi + c < 0. Thus the above inequality can be reduced to

(3.11) Wm+2(xi)Wm(β)(−1)p−i < 0.

We notice that Ineq. (3.11) also holds true for i = p+ 1, namely,

Wm+2(xp+1)Wm(β)(−1)p−(p+1) < 0,

that is,

Wm+2(β)Wm(β) > 0,

whose truth can be seen from Ineq. (3.5). Consequently, we can replace i by (i + 1) in Ineq. (3.11),
which gives

Wm+2(xi+1)Wm(β)(−1)p−i−1 < 0.

Multiplying it by Ineq. (3.11), we obtain that

Wm+2(xi)Wm+2(xi+1) < 0.

By the intermediate value theorem, the polynomial Wm+2(x) has a root in the interval (xi, xi+1).
Let zi be such a root.

When i = 1, Ineq. (3.11) is

(3.12) Wm+2(x1)Wm(β)(−1)p−1 < 0.

On the other hand, Lemma 3.1 gives

(3.13) Wm+2(−∞)(−1)dm+2 > 0.

Multiplying Ineqs. (3.9), (3.12) and (3.13), we find

Wm(β)(−1)k ·Wm+2(x1)Wm(β)(−1)p−1 ·Wm+2(−∞)(−1)dm+2 < 0,

that is,

(3.14) Wm+2(−∞)Wm+2(x1)(−1)dm+2+k+p−1 < 0.

Recall from (3.7) that p = dm+1 − k, and from Lemma 3.1 that

dm+1 + dm+2 = m+ 2.

Inequality (3.14) implies that

Wm+2(−∞)Wm+2(x1)(−1)m > 0.
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Therefore, by the intermediate value theorem, the polynomial Wm+2(x) has a root in the interval
(−∞, x1) when m is odd. Let z0 be such a root. Define

(3.15) Tm+2 =

{
{z1, z2, . . . , zp}, if m is even;

{z1, z2, . . . , zp} ∪ {z0}, if m is odd.

We shall now show that this set Tm+2 has the desired properties.

• For each j ∈ [0, p], the number zj is chosen to be a root of the polynomial Wm+2(x). Therefore,
Tm+2 ⊆ Rm+2.

• For each j ∈ [0, p], the number zj is chosen from the interval (xj , xj+1), which is contained
in the interval (−∞, β). Therefore, Tm+2 ⊂ (−∞, β).

• From Def. (3.15), we see that

– if m is even, then

|Tm+2| = p = dm+1 − k = (m+ 2)/2− k = dm+2 − k;

– otherwise m is odd, then

|Tm+2| = p+ 1 = dm+1 − k + 1 = (m+ 3)/2− k = dm+2 − k.
Hence, in any case, we have that |Tm+2| = dm+2 − k.

• Since for all j ∈ [0, p],

(3.16) zj ∈ (xj , xj+1),

we have Tm+2 o Tm+1 according to Definition 2.3.

It remains to show that Tm+2 ./ Tm. We apply Lemma 2.4 again, for

f(x) = Wm+1(x) and g(x) = Wm(x).

Taking n = m+ 1 in Ineq. (3.5), we find

(3.17) Wm+1(β)(−1)k > 0.

It follows that Wm+1(β) 6= 0. Therefore, from Ineq. (2.5), we infer that

(3.18) Wm+1(yj)Wm+1(β)(−1)q−j < 0

for all j ∈ [q + 1− p, q + 1]. Now, let j ∈ [q]. Taking n = m+ 2 and x = yj in Rec. (1.1) gives

Wm+2(yj) = aWm+1(yj).

Since a > 0, we can substitute

Wm+1(yj) =
Wm+2(yj)

a
into Ineq. (3.18), and obtain that

(3.19) Wm+2(yj)Wm+1(β)(−1)q−j < 0.

It is noticeable from Ineq. (3.5) that Ineq. (3.19) holds also for j = q+ 1. Therefore, we can replace j
by (j + 1) in Ineq. (3.19), which gives

Wm+2(yj+1)Wm+1(β)(−1)q−j−1 < 0.
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Multiplying it with Ineq. (3.19), we find

Wm+2(yj)Wm+2(yj+1) < 0.

By the intermediate value theorem, the polynomialWm+2(x) has an odd number of roots in the interval
(yj , yj+1) for each j ∈ [q]. If some of the intervals contains at least three roots, then Wm+2(x) has at
least (q + 2) roots in the interval union

∪qj=1(yj , yj+1) ⊂ (−∞, β).

On the other hand, the premise Eq. (3.6) and the result

|Tm+2| = dm+2 − k = dm + 1− k = q + 1

imply that the polynomial Wm+2(x) has exactly (q + 1) roots in the interval (−∞, β). This contra-
diction yields that Wm+2(x) has exactly one root in each of the intervals (yj , yj+1). Since

zp ∈ (xp, β) ⊂ (yq, β) = (yq, yq+1),

we infer that for each j ∈ [p],

(3.20) zj ∈ (yq−p+j , yq−p+j+1).

If m is even, then q = p− 1, and Relation (3.20) can be written as

(3.21) z1 < y1 < z2 < y2 < · · · < zp−1 < yq < zp < β.

Recall that Tm+2 = {z1, z2, . . . , zp} in this case, and Tm = {y1, y2, · · · , yq}. Inequality (3.21) implies
immediately Tm+2 ./ Tm.

Otherwise m is odd, then q = p, and Relation (3.20) reads

y1 < z1 < y2 < z2 < · · · < yp < zp < β.

Recall that Tm+2 = {z0, z1, . . . , zp} in this case. It remains to show z0 < y1. In fact, when j = 1,
Ineq. (3.18) becomes

(3.22) Wm+1(y1)Wm+1(β)(−1)q−1 < 0.

Multiplying Ineqs. (3.13), (3.17) and (3.22), we obtain

Wm+2(−∞)(−1)dm+2 ·Wm+1(β)(−1)k ·Wm+1(y1)Wm+1(β)(−1)q−1 < 0,

that is,

Wm+2(−∞)Wm+1(y1) < 0.

Thus by the intermediate value theorem, the polynomial Wm+2(x) has an odd number of roots less
than y1. From Eq. (3.6) and Relation (3.16), we infer that the number z0 is the unique root of
Wm+2(x) which is smaller than x1. Since m is odd, we have y1 < x1, and thus z0 must be the unique
root of Wm+2(x) which is smaller than y1. This completes the proof. �

The usage of the above interlacing method dates back at least to Harper [15], who established the
real-rootedness of the Bell polynomials in this way.

Let {Wn(x)}n≥0 be a (0, 1)-sequence of polynomials, with the zero-set Rn of the polynomial Wn(x).
It is direct to compute that W2(x) = (a+ b)x+ c. Therefore, the polynomials W1(x) and W2(x) are
real-rooted, and

(3.23) R1 = {0} and R2 = {−c/(a+ b)}.
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In the remainder of this section, we will use Theorem 3.2 frequently. We will always set the constant k
to be either 0 or 1. The following lemma is for the particular case k = 0.

Lemma 3.3. Let {Wn(x)}n≥0 be a (0, 1)-sequence of polynomials, with the zero-set Rn of the poly-
nomial Wn(x). Let c < 0, and

(3.24) − c/(a+ b) < β ≤ −c/b.
Let N be a positive integer. If Wm(β) > 0 for all m ∈ [N ], then we have

Rm ⊂ (−∞, β) for all m ∈ [N + 2],

Rm+1 oRm for all m ∈ [N + 1], and

Rm+2 ./ Rm for all m ∈ [N ].

In particular, if Wm(β) > 0 for all m ≥ 1, then the above three relations hold for all m ≥ 1.

Proof. First, we show the following relations by induction on the integer m:

(3.25) Rm ⊂ (−∞, β), Rm+1 ⊂ (−∞, β), and Rm+1 oRm for all m ∈ [N + 1].

Recall from the equations in (3.23) that R1 = {0} and R2 = {−c/(a + b)}. When m = 1, the
relations in (3.25) reduce to

R1 ⊂ (−∞, β), R2 ⊂ (−∞, β), and R2 oR1,

that is,
0 < β, −c/(a+ b) < β, and 0 < −c/(a+ b).

Since a, b > 0, the above relations hold by the negativity of the number c and Ineq. (3.24) in the
premises. Suppose that the relations in (3.25) hold for m ∈ [N ], and we need to show them for m+ 1.

Let k = 0. The upper bound −c/b of the parameter β is as same as that in Theorem 3.2. We are
going to verify the conditions: Eqs. (3.2) and (3.3), Relation (3.4), and Ineq. (3.5).

• From Def. (3.1) and the induction hypothesis Rm ⊂ (−∞, β), we infer that Tm = Rm ∩
(−∞, β) = Rm. It follows that |Tm| = |Rm| = dm, i.e., Eq. (3.2) holds.

• Similarly, we have Tm+1 = Rm+1, i.e., Eq. (3.3) holds.

• Thus, by the induction hypothesis we have that Rm+1 o Rm, which is equivalent to Rela-
tion (3.4).

• Since k = 0, the premise Wm(β) > 0 for all m ≥ 1 justifies Ineq. (3.5).

Therefore, we can apply Theorem 3.2 and obtain the existence of a set Tm+2 ⊆ Rm+2 ∩ (−∞, β) such
that Tm+2oTm+1 and |Tm+2| = dm+2. Since the sets Tm+2 and Rm+2 have the same cardinality dm+2,
we obtain that

(3.26) Tm+2 = Rm+2.

Consequently, the result Tm+2 ⊂ (−∞, β) becomes the desired relation

(3.27) Rm+2 ⊂ (−∞, β);

and the result Tm+2oTm+1 becomes the desired relation Rm+2oRm+1. This completes the induction
proof for the relations in (3.25).

By Eq. (3.26) and Relation (3.27), we infer that Tm+2 = Rm+2∩(−∞, β), which is exactly Eq. (3.6).
Hence, by Theorem 3.2, we derive that Tm+2 ./ Tm, i.e., Rm+2 ./ Rm, which completes the proof. �
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In order to continue with our discussions, we fix more parameters of (0, 1)-sequences of polynomials.
Inspired by Lemma 2.1, we introduce the following notations.

Definition 3.4. Let {Wn(x)}n≥0 be a (0, 1)-sequence of polynomials. We define

∆(x) = a2 + 4(bx+ c) = 4bx+ a2 + 4c,

g±(x) =
(
2x− a±

√
∆(x)

)
/2 =

(
2x− a±

√
4bx+ a2 + 4c

)
/2,

g(x) = g−(x)g+(x) = x2 − (a+ b)x− c.

We denote the zeros of the functions B(x) = bx+ c, ∆(x) and g+(x) by

(3.28) xB = −c
b
, x∆ = −a

2 + 4c

4b
, and xg =

(a+ b)−
√

(a+ b)2 + 4c

2
,

respectively. We also define

n0 =
2ab

a2 + 2ab+ 4c
.

We observe that Lemma 2.1 implies the following:

Wn(xB) = an−1W1(xB),(3.29)

Wn(x∆) =

(
1 +

n(2x∆ − a)

a

)(
a

2

)n
, and(3.30)

Wn(xg) = xng .(3.31)

The following technical lemma provides the ordering among the numbers x∆, xg, xB , and 0, for the
sake of determining the sign of the value Wn(x) for specific numbers x in the proofs of Theorem 3.8.

Lemma 3.5. Let {Wn(x)}n≥0 be a (0, 1)-sequence of polynomials. Then we have the following.

(i) If 4c
a2+2ab ≤ −1, then Wn(x∆) > 0 for all n ≥ 1.

(ii) If 4c
a2+2ab > −1,then xg ∈ R, x∆ < xg, and

(3.32) Wn(x∆) ≥ 0 ⇐⇒ n ≤ n0 =
2ab

a2 + 2ab+ 4c
,

where the equality on the left hand side of Relation (3.32) holds if and only if the equality on
the right hand side holds. Moreover, if c > 0, then Wn(x∆) < 0 and xB < xg < 0; otherwise,
we have 0 < xg < xB.

Proof. See Appendix B. �

Below is an example illustrating the cases −(a2 + 2ab)/4 < c < 0 and c > 0, respectively.

Example 3.6. Let {Wn(x)}n≥1 be a (0, 1)-sequence of polynomials defined by the recursion

Wn(x) = Wn−1(x) + (x− 1/2)Wn−2(x),

with initial values W0(x) = 1 and W1(x) = x. We see that a = b = 1 and c = −1/2. It is direct to
compute that

4c

a2 + 2ab
= −2

3
, n0 = 2, xB =

1

2
, x∆ =

1

4
, and xg = 1− 1√

2
.
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By Relation (3.32), we infer that Wn(1/4) ≥ 0 if and only if n ≤ 2, and that 0 < xg < xB .

Example 3.7. Let {Wn(x)}n≥1 be a (0, 1)-sequence of polynomials with parameters specified as in
Definition 3.4, and with a = b = 1 and c = 1, which puts us in Case (i); here we have

Wn(x) = Wn−1(x) + (x+ 1)Wn−2(x),

with W0(x) = 1 and W1(x) = x. This time, we have c > 0. By Definition 3.4, we have x∆ = −5/4,

xg = 1−
√

2, xB = −1, and n0 = 2/7. These data correspond to the inequalities xB < xg and x∆ < xg
in the conclusion of Lemma 3.5.

We are now ready to establish the real-rootedness of every polynomial Wn(x).

Theorem 3.8. Let {Wn(x)}n≥1 be a (0, 1)-sequence of polynomials. Then every polynomial Wn(x) is
distinct-real-rooted. Moreover, let us denote the ordered zero-set of Wn(x) by Rn, and let yn = maxRn
be the largest real root of the polynomial Wn(x). For all n ≥ 1, we may conclude the following:

(i) if c < 0, then yn < xB, Rn+1 oRn, and Rn+2 ./ Rn.

(ii) if c > 0, then yn > xB, R′n+1 ⊂ (−∞, x∆), R′n+2 o R′n+1, and R′n+2 ./ R
′
n, where R′n =

Rn \ {yn}.

Proof. From Eq. (3.29), we see that

(3.33) cWn(xB) < 0.

Below we will show (i) and (ii) individually.

(i) Let c < 0. Then Ineq. (3.33) reduces to Wn(xB) > 0 for all n ≥ 1. Take β = −c/b. Then
Ineq. (3.24) holds trivially. By Lemma 3.3, we deduce that Rn ⊂ (−∞, xB), Rn+1 oRn and Rn+2 ./
Rn for all n ≥ 1.

(ii) Let c > 0. Then Ineq. (3.33) implies that Wn(xB) < 0. By Lemma 3.1, we have Wn(+∞) > 0.
Therefore, by the intermediate value theorem, the polynomial Wn(x) has a real root in this interval
(xB ,+∞). In particular, the largest root yn is larger than xB . Note that x∆ = −(a2 + 4c)/(4b) <
−c/b = xB . Thus, we have

(3.34) x∆ < xB < yn for all n ≥ 1.

For the remaining desired relations, it suffices to show the following:

(3.35) R′n ⊂ (−∞, x∆), R′n+1 ⊂ (−∞, x∆), R′n+1 oR′n, R′n+1 ./ R
′
n−1, for all n ≥ 2.

We proceed by induction on n. Consider n = 2. Since d1 = d2 = 1, we have R′1 = R′2 = ∅. Since
a, b, c > 0, from Def. (3.28), we have

x∆ = −(a2 + 4c)/(4b) < 0.

In view of Eq. (3.30), we deduce that

(3.36) Wn(x∆) =

(
1 +

n(2x∆ − a)

a

)(
a

2

)n
< 0, for all n ≥ 1.

In particular, we have W3(x∆) < 0. On the other hand, Lemma 3.1 gives that W3(−∞)(−1)d3 > 0.
Since d3 = 2, it reduces to W3(−∞) > 0. Therefore, by the intermediate value theorem, we infer that
the polynomial W3(x) has a root, say, r3, in the interval (−∞, x∆). From Ineq. (3.34), we see that
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y3 > x∆, and thus, r3 < x∆ < y3. It follows that R3 = {r3, y3}, and thus, R′3 = {r3}. Therefore, the
relations in (3.35) for n = 2 are respectively

∅ ⊂ (−∞, x∆), {r3} ⊂ (−∞, x∆), {r3}o ∅, {r3} ./ ∅,
all of which hold trivially, except the second one holds since r3 < x∆.

Suppose that all the relations in (3.35) hold for some n ≥ 2, by induction, it suffices to show that

(3.37) R′n+2 ⊂ (−∞, x∆), R′n+2 oR′n+1, and R′n+2 ./ R
′
n.

In applying Theorem 3.2, we set

k = 1, β = x∆, and m = n.

We shall verify the conditions: Eqs. (3.2) and (3.3), Relation (3.4), and Ineq. (3.5).

• From Def. (3.1), we have Tn = Rn ∩ (−∞, x∆). Note that in the zero-set Rn, except the
largest root yn, which is not in the interval (−∞, x∆) by Ineq. (3.34), all the other roots
(whose union is the set R′n) are in the interval (−∞, x∆) by the relations (3.35). Therefore,
we infer that Rn ∩ (−∞, x∆) = R′n, and thus, Tn = R′n. It follows that |Tn| = |R′n| = dn − 1,
which verifies Eq. (3.2).

• Similarly, we have Tn+1 = R′n+1, and Eq. (3.3) holds true.

• Consequently, the hypothesis Tn+1oTn in (3.35) can be rewritten as R′n+1oR′n, which verifies
Relation (3.4).

• Inequality (3.36) with k = 1 guarantees the truth of Ineq. (3.5).

By Theorem 3.2, there exists a set Tn+2 ⊆ Rn+2 ∩ (−∞, x∆) such that |Tn+2| = dn+2 − 1 and
Tn+2 o Tn+1. From Ineq. (3.34), we see that yn+2 > x∆. It follows that

(3.38) Rn+2 ∩ (−∞, x∆) = (R′n+2 ∪ {yn+2}) ∩ (−∞, x∆) ⊆ R′n+2.

Thus, we have Tn+2 ⊆ R′n+2. Since the sets Tn+2 and R′n+2 have the same cardinality dn+2 − 1, we
infer that Tn+2 = R′n+2. Now, the result Tn+2 ⊂ (−∞, x∆) is one of the desired relations:

(3.39) R′n+2 ⊂ (−∞, x∆);

the result Tn+2 o Tn+1 is another one of the desired relations:

R′n+2 oR′n+1.

In view of our goal (3.37), it suffices to show that R′n+2 ./ R
′
n, i.e., Tn+2 ./ Tn. By Theorem 3.2, it

suffices to verify Eq. (3.6), i.e.,
R′n+2 = Rn+2 ∩ (−∞, x∆).

In view of Relation (3.39), we deduce that R′n+2 ⊆ Rn+2 ∩ (−∞, x∆). Together with Relation (3.38),
we find the above equation, which completes the proof. �

Continuing Examples 3.6 and 3.7, we present the approximate values of roots in the ordered set
Rn = {ξn,1, ξn,2, . . . , ξn,dn}.

Example 3.9. This example continues Example 3.6. Table 1 illustrates that for n ≤ 8, we have

yn = maxRn < xB = 1/2, Rn+1 o Rn and Rn+2 ./ Rn.

A more careful observation suggests that the second largest root ξn, dn−1 is bounded by the number
x∆ = 0.25. In fact, this is true in general, which motivates Theorem 4.1.
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Table 1. The approximate roots of Wn(x) (1 ≤ n ≤ 8) in Example 3.6.

ξn, dn−3 ξn, dn−2 ξn, dn−1 ξn, dn = yn
n = 1 0
n = 2 0.2500
n = 3 −1.7807 0.2807
n = 4 −0.2886 0.2886
n = 5 −4.2912 0 0.2912
n = 6 −1.0218 0.1046 0.2922
n = 7 −7.5833 −0.3639 0.1547 0.2926
n = 8 −1.9561 −0.1194 0.1827 0.2927

Example 3.10. This example continues Example 3.7. Table 2 illustrates that for n ≤ 8,

ξn, dn−1 < x∆ = −5/4 and yn > xB = −1.

A more careful observation suggests that the largest root yn converges to the point xg in an oscillating

Table 2. The approximate roots of Wn(x) (1 ≤ n ≤ 8) in Example 3.7.

ξn, dn−3 ξn, dn−2 ξn, dn−1 ξn, dn = yn
n = 1 0
n = 2 −0.5000
n = 3 −2.6180 −0.3819
n = 4 −1.5773 −0.4226
n = 5 −5.1819 −1.4064 −0.4116
n = 6 −2.2405 −1.3444 −0.4149
n = 7 −8.5525 −1.7194 −1.3140 −0.4139
n = 8 −3.1548 −1.5342 −1.2966 −0.4142

manner, where xg equals approximately −0.4142. In fact, this convergence is true in general; see
Theorems 4.1 and 5.5.

4. Bound on the Zero-Set Rn

As consequence of the real-rootedness of the (0, 1)-sequence polynomials {Wn(x)}n≥0, we improve
the bound of the zero-set Rn of Wn(x).

Theorem 4.1. Let {Wn(x)}n≥0 be a (0, 1)-sequence of polynomials, with zero-set Rn of the polyno-
mial Wn(x). Let yn = maxRn be the largest real root of Wn(x), and let R′n = Rn \ {yn}. Then we
have the following.

(i) If c ≤ −(a2 + 2ab)/4, then Rn ⊂ (−∞, x∆) for all n ≥ 1.

(ii) If −(a2 + 2ab)/4 < c < 0, then we have

– Rn ⊂ (−∞, x∆), for n < n0;
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– R′n ⊂ (−∞, x∆) and yn = x∆, for n = n0;

– R′n ⊂ (−∞, x∆) and yn ∈ (x∆, xg), for n > n0;

(iii) If c > 0, then we have R′n ⊂ (−∞, x∆), and

(4.1) xB < y2 < y4 < y6 < · · · < y2n < · · · < xg < · · · < y2n−1 < · · · < y5 < y3 < y1 = 0.

Proof. We treat the three cases individually.

(i) Let c ≤ −(a2 + 2ab)/4. Since a, b > 0, it is routine to check that

−c/(a+ b) < −(a2 + 4c)/(4b) < −c/b,

which verifies Ineq. (3.24) for β = x∆. By Lemma 3.5, we have

(4.2) Wn(x∆) > 0 for all n ≥ 1.

Now, by Lemma 3.3, we deduce that Rn ⊂ (−∞, x∆) for all n ≥ 1.

(ii) Let −(a2 + 2ab)/4 < c < 0.

Case n < n0. Recall from the equations in (3.23) that R1 = {0} and R2 = {−c/(a+b)}. If n0 ≤ 1,
then nothing needs to be shown in this case. Next suppose that n0 > 1, i.e., a2 + 4c < 0. Together
with b > 0, this implies that

0 < −(a2 + 4c)/(4b) = x∆,

i.e., R1 ⊂ (−∞, x∆). If n0 ≤ 2, then nothing else needs to be shown. And then suppose that n0 > 2,
i.e., a2 + ab+ 4c < 0. Together with a, b > 0, it is routine to check that

(4.3) − c/(a+ b) < −(a2 + 4c)/(4b),

i.e., R2 ⊂ (−∞, x∆). If n0 ≤ 3, nothing else needs to be shown. So we may suppose that n0 > 3.

Let N = dn0e − 3. Since n0 > 3, the integer N is positive. Take β = x∆. From x∆ < −c/b,
together with Ineq. (4.3), we see that Ineq. (3.24) holds true. By Lemma 3.5, we have Wn(x∆) > 0
for all n ∈ [N ]. By Lemma 3.3, we have Rn ⊂ (−∞, x∆) for all n ∈ [N + 2] = [dn0e − 1], i.e., for all
n < n0.

Case n = n0. It follows that the number n0 is an integer. By Lemma 3.5, we have Wn0
(x∆) = 0.

It suffices to show that the polynomial Wn0
(x) has no roots larger than the number x∆. If n0 = 1,

then the polynomial Wn0
(x) = W1(x) = x has only one root. So we are done. Suppose that n0 ≥ 2.

By the interlacing property Rn0 oRn0−1 obtained in Theorem 3.8, we see that the second largest root
of the polynomial Wn0(x) is less than the largest root of the polynomial Wn0−1(x), which is less than
the number x∆, in view of the case n < n0. This completes the proof for the case n = n0.

Case n > n0. First, we show that yn < xg, i.e., Rn ⊂ (−∞, xg). We do this by applying

Lemma 2.4 for β = xg. Recall from Def. (3.28) that xg = (a + b−
√

(a+ b)2 + 4c)/2. Since a, b > 0
and −(a2 + 2ab)/4 < c < 0, it is routine to check that

(4.4) − c/(a+ b) < (a+ b−
√

(a+ b)2 + 4c)/2.

By Lemma 3.5 (ii), we have

(4.5) max(0, x∆) < xg < xB .
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The particular inequality xg < xB , together with Ineq. (4.4), verifies Ineq. (3.24). On the other hand,
since xg > 0, Eq. (3.31) implies that

(4.6) Wn(xg) > 0, for all n ≥ 1.

From Lemma 3.3, we deduce that Rn ⊂ (−∞, xg) for all n ≥ 1.

By Lemma 3.5, we have Wn(x∆) < 0. In view of Ineq. (4.6), the polynomial Wn(x) has different
signs at the ends of the interval (x∆, xg). Therefore, the polynomial Wn(x) has an odd number,
say pn, of roots in the interval (x∆, xg). In particular, we have

(4.7) pn ≥ 1 for all n > n0.

It suffices to show that pn = 1, for all n > n0. We proceed the proof by induction on n. Note that the
largest root of the polynomial Wbn0c(x) is less than or equal to the number x∆. By the interlacing
property Rbn0c+1oRbn0c, the polynomial Wbn0c+1(x) has at most one root larger than the number x∆,
i.e., pbn0c+1 ≤ 1. In view of Ineq. (4.7), we deduce that pbn0c+1 = 1. Thus, we can suppose that there
is some n > n0 such that pk = 1 for all n0 < k ≤ n. If n ≤ 2, then the degree dn ≤ 1. It follows
immediately that pn = 1. Suppose that n ≥ 3. By the interlacing property Rn+1 o Rn, the third
largest root of the polynomial Wn+1(x) is less than the second largest root of the polynomial Wn(x),
which is at most x∆ since pn = 1. Therefore, the polynomial Wn+1(x) has at most two roots larger
than the number x∆, i.e., pn ≤ 2. Since the integer pn is odd, in view of Ineq. (4.7), we infer that
pn = 1. This completes and the induction and hence the proof of (ii).

(iii) Let c > 0. The bound for the set R′n has been confirmed in Theorem 3.8. It suffices to show
Ineq. (4.1). By Theorem 3.8, we have yn > xB for all n ≥ 1. It suffices to show that

y2n < y2n+2 < xg and(4.8)

xg < y2n+1 < y2n−1(4.9)

for all n ≥ 0, where y0 = xB and y−1 = +∞. We proceed by induction on the integer n. When n = 0,
the desired Ineqs. (4.8) and (4.9) become y2 < xg < y1, i.e.,

−c/(a+ b) < (a+ b−
√

(a+ b)2 + 4c)/2 < 0.

Since a, b, c > 0, it is routine to check the truth of the above inequalities. Now, based on the induction
hypothesis that

(4.10) y2n < xg < y2n−1,

we are going to show Ineqs. (4.8) and (4.9).

Since the number y2n is largest real root of the polynomial W2n(x), and y2n−1 > y2n by Ineq. (4.10),
we infer that the value W2n(y2n−1) has the same sign as the limit W2n(+∞), which is positive by
Lemma 3.1. Therefore, we find W2n(y2n−1) > 0. Replacing n by 2n − 1 in Rec. (2.7), and taking
x = y2n−1, we obtain that

(4.11) W2n+1(y2n−1) = aW2n(y2n−1) > 0.

On the other hand, by Lemma 3.5, we have xg < 0. Thus from Eq. (3.31), we infer that

(4.12) Wn(xg)(−1)n > 0, for all n ≥ 1.

In particular, we haveW2n+1(xg) < 0. Together with Ineq. (4.11), we see that the polynomialW2n+1(x)
attains different signs at the ends of the interval (xg, y2n−1). By the intermediate value theorem,
the polynomial W2n+1(x) has a root in the interval (xg, y2n−1). By Theorem 3.8, only the largest
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root y2n+1 of the polynomial W2n+1(x) is larger than the number xB . Since xB < xg, we conclude
that y2n+1 ∈ (xg, y2n−1). This proves Ineq. (4.9).

Denote by z2n+1 the second largest root of the polynomial W2n+1(x). From the interlacing property
R2n+1 oR2n, we infer that

W2n+1(x)W2n+1(+∞) < 0 for all x ∈ (z2n+1, y2n+1).

By Lemma 3.1, we see that the limit W2n+1(+∞) = +∞. It follows that

(4.13) W2n+1(x) < 0 for all x ∈ (z2n+1, y2n+1).

Now, from Ineqs. (4.9) and (4.10), we see that y2n < xg < y2n+1. From Theorem 3.8, we see that
z2n+1 < xB < y2n. By Eq. (4.13), we infer that W2n+1(y2n) < 0.

Replacing n by 2n+ 2 in Rec. (2.7), and taking x = y2n, we obtain that

(4.14) W2n+2(y2n) = aW2n+1(y2n) < 0.

By Ineq. (4.12), we have W2n+2(xg) > 0. By the intermediate value theorem, the polynomial W2n+2(x)
has a root in the interval (y2n, xg). Since only its largest root is larger than the number xB , and
since y2n > xB , we conclude that y2n+2 ∈ (y2n, xg). This proves Ineq. (4.8), which completed the
induction. �

In summary, we see that “almost all” roots lie in the open interval (−∞, x∆). Precisely speaking,
when c ≤ −(a2 + 2ab)/4, all roots lie in (−∞, x∆); when c > −(a2 + 2ab)/4, only the largest root of
the polynomial Wn(x) is possibly but “eventually” larger than x∆, with maximum value max(xg, 0).

Before ending this section, we mention that the recurrence system defined by Rec. (2.7) can be
solved always by transforming the polynomials Wn(x) into Chebyshev polynomials. More precisely,
by induction and by the fact that Chebyshev polynomials of the second kind satisfy the recursion

Un(t) = 2tUn−1(t)− Un−2(t)

with initial conditions U0(t) = 1 and U1(t) = t, we obtain that

Wn(x) =
√
−bx− c

n
(

x√
−bx− c

Un−1

(
a

2
√
−bx− c

)
− Un−2

(
a

2
√
−bx− c

))
.

By this, it is now clear that all roots of Wn(x) are real and bounded.

5. Limit Points of the Zero-Set Rn

In this section, we show that one of the intervals (−∞, x∆), (−∞, xg), and (−∞, y2) is the best
bound of all roots, depending on the range of the constant term c of the linear polynomial coeffi-
cient B(x) = bx + c. More precisely, we will demonstrate three limit points of the zero-set ∪n≥1Rn
over the course of several subsections. We say that a proposition holds for large n, if there exists a
number N such that the proposition holds whenever n > N .
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5.1. The number xg can be a limit point. The following lemma will help determine all limit
points of the zero-set ∪n≥1Rn, which are larger than the number x∆.

Lemma 5.1. Let {Wn(x)}n≥0 be a (0, 1)-sequence of polynomials, with zero-set Rn of the polyno-
mial Wn(x). Let x0 6= xg and ∆(x0) > 0. Then (x0 − xg)Wn(x0) > 0, for large n.

Proof. See Appendix C. �

Using Lemma 5.1, we can confirm that the roots outside the interval (−∞, x∆) converges to the
number xg when n→∞ as follows.

Theorem 5.2. Let {Wn(x)}n≥0 be a (0, 1)-sequence of polynomials, with zero-set Rn of the polyno-
mial Wn(x). Let yn = maxRn be the largest real root of Wn(x).

(i) If −(a2 + 2ab)/4 < c < 0, then we have yn ↗ xg.

(ii) If c > 0, then we have y2n ↗ xg and y2n+1 ↘ xg.

Proof. We treat the two cases individually.

(i) Suppose that −(a2 + 2ab)/4 < c < 0. Since Rn+1 o Rn, the sequence yn increases. In virtue of
Theorem 4.1, we have yn < xg for all n ≥ 1. Therefore, the sequence yn converges to a finite number y∗

as n→∞. If y∗ < xg, then there exists x0 ∈ (x∆, xg) such that the values Wn(x0) and Wn(xg) have
the same sign for large n, i.e., Wn(x0) > 0 for large n; see Ineq. (4.6). This contradicts Lemma 5.1.
Hence, we have that yn ↗ xg.

(ii) Suppose that c > 0. From Theorem 4.1, we see that the sequence y2n converges to a finite
number y∗. Then we have xB < y∗ ≤ xg. Suppose to the contrary that y∗ < xg, so there exists
x0 ∈ (y∗, xg) such that the numbers W2n(x0) and W2n(xg) have the same sign for large n, i.e.,
W2n(x0) > 0 for large n; see Ineq. (4.12). This contradicts Lemma 5.1. Along the same line, we can
show the convergence y2n+1 ↘ xg, which completes the proof. �

An illustration for the convergences above can be found in Tables 1 and 2.

5.2. The number x∆ is a limit point. In an analog with Lemma 5.1, we give a characterization
of the sign of the value Wn(x0) for the case ∆(x0) < 0. This time the criterion for the sign is for

all positive integers n. We define lx0
to be the straight line

√
−∆(x0)x + (2x0 − a)y = 0, and the

radian θ(x0) to be arctan

√
−∆(x0)

a .

Lemma 5.3. Let {Wn(x)}n≥0 be a (0, 1)-sequence of polynomials, and let ∆(x0) < 0.

• If the radian nθ(x0) lies to the left of the line lx0
, then Wn(x0) < 0;

• If the radian nθ(x0) lies on the line lx0
, then Wn(x0) = 0;

• If the radian nθ(x0) lies to the right of the line lx0
, then Wn(x0) > 0.

Proof. See Appendix D. �

Let us get some illustration of this characterization from the example below.
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Example 5.4. This example continues Example 3.6. Take x0 = −1, we have

∆(x0) = −5 < 0 and θ(x0) = arctan(
√

5).

The line lx0
becomes

√
5x− 3y = 0. Thus a radian φ lies to the left of the line lx0

if and only if

(5.1) φ ∈
(
arctan(

√
5/3) + 2`π, arctan(

√
5/3) + (2`+ 1)π

)
for some integer `.

By approximating arctan(
√

5/3) ≈ 0.6405, we have that

θ(x0) ≈ 1.1502, 2θ(x0) ≈ 2.3005, and 3θ(x0) ≈ 3.4507.

By Relation (5.1), we deduce that θx0
, 2θx0

and 3θx0
lie to the left of the line lx0

. In the same way
we can deduce that the radians

4θ(x0) ≈ 4.6010, 5θ(x0) ≈ 5.7513, and 6θ(x0) ≈ 6.9015

lie to the right of the line lx0
. The truth is, as one may compute directly, that

W1(−1) = −1, W2(−1) = −5/2, W3(−1) = −1,

W4(−1) = 11/4, W5(−1) = 17/4, W6(−1) = 1/8.

The above data verifies the fact that Wn(x0) < 0 for n ∈ {1, 2, 3}, and that Wn(x0) > 0 for n ∈
{4, 5, 6}, coinciding with the characterization.

Now we are ready to justify that the number x∆ is a limit point.

Theorem 5.5. Let {Wn(x)}n≥0 be a (0, 1)-sequence of polynomials, with ordered zero-set

Rn = {ξn,1, ξn,2 . . . , ξn,dn}
of the polynomial Wn(x). Then we have

(5.2) lim
n→∞

ξn, dn−i = x∆

for all i ≥ 0 if c ≤ −(a2 + 2ab)/4; and for all i ≥ 1 otherwise.

Proof. Let c ≤ −(a2 + 2ab)/4. We will show Eq. (5.2) for all i ≥ 0. As will be seen, the other case
can be done in the same vein.

From the interlacing property obtained in Theorem 3.8, we see that the sequence {ξn, dn−i}n≥1

increases and all its members are less than the number x∆, which implies that it converges to a
number which is at most x∆. Suppose, by way of contradiction, that the limit point of the se-
quence {ξn, dn−i}n≥1 is not the point x∆.

When i = 0, there exists a point x0 < x∆ such that the numbers Wn(x0) and Wn(x∆) have the
same sign, i.e., we have Wn(x0) > 0 for large n. Therefore, by Lemma 5.3, the radian nθ(x0) resides
in certain one side of the line lx0

forever for large n. This is impossible because θ(x0) < π/2. Hence
we deduce that limn→∞ ξn,dn = x∆.

Now for i = 1, the sequence {ξn, dn−1}n≥1 converges to some point less than x∆. Thus, there exists
a number x1 < x∆ such that the numbers Wn(x1) and Wn(x∆) have distinct signs, i.e., we have
Wn(x1) < 0 for large n. Here again, the radian θ(x1) resides in certain one side of the line lx1

for
large n, a contradiction. This confirms the truth of Eq. (5.2) for i = 1. Continuing in this way, we
can deduce that for a general i ≥ 2, there exists a number xi < x∆, such that

Wn(xi)(−1)i > 0 for large n,
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which contradicts Lemma 5.3. Hence, we conclude that Eq. (5.2) holds true for all i ≥ 0.

Now we consider the other possibility that c > −(a2 + 2ab)/4. In fact, the above contradiction
idea still works. This is because that, whatever sign does the value Wn(x∆) have, it is a fixed sign.
However, the sign of the value Wn(x0) for any point x0 < x∆ can not be invariant for large n. This
completes the proof. �

5.3. The negative infinity is a limit point. We are ready to study the negative infinity as a limit
point.

Theorem 5.6. Let {Wn(x)}n≥0 be a (0, 1)-sequence of polynomials, with ordered zero-set

Rn = {ξn,1, ξn,2, . . . , ξn,dn}
of the polynomial Wn(x). Then we have

lim
n→∞

ξn,i = −∞, for all i ≥ 1.

Proof. From the interlacing property Rn+2 ./ Rn obtained in Theorem 3.8, we see that the se-
quences {ξ2n, i}n≥1 decreases, and so does the sequence {ξ2n−1, i}n≥1. Therefore, these two sequences
converge respectively. We shall show that both of these sequences converge to the negative infinity.

Suppose, by way of contradiction, that the sequence {ξ2n, 1}n≥1 converges to some real number x∗.
Then for any number x0 < x∗, the number Wn(x0) has the sign of Wn(−∞). It follows that the sign
of the number Wn(x0) would not change for large n, which contradicts Lemma 5.3. This proves that
limn→∞ ξ2n,i = −∞ for i = 1. Its truth for general i, in fact, along the same lines, if it does not
hold for some i ≥ 2, then we can deduce the existence of a number xi such that xi < x∆ and that the
sign of the number Wn(xi) keeps invariant for large n, which leads to a contradiction.

Along the same lines, we can prove that limn→∞ ξ2n−1, i = −∞, for all i ≥ 1.

Now, for any fixed i ≥ 1, the subsequences {ξ2n, i}n≥1 and {ξ2n−1, i}n≥1 converge to the same
point −∞. Hence, the joint sequence {ξn,i}n≥1 converges to the negative infinity as well, which
completes the proof. �

For an illustration for the convergences in Theorems 5.5 and 5.6, the reader can refer to Tables 1
and 2.
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Appendix A. Proof of Lemma 2.4

Let x0 = y0 = −∞ and yq+1 = β. The interlacing property X ′ o Y ′ in the premises implies that
p ≥ 1 and q ∈ {p− 1, p}. Since X ′ ⊂ (−∞, β), we infer that xp < β. Therefore, we have that

· · · < yq−2 < xp−2 < yq−1 < xp−1 < yq < xp < β.

We shall show Ineqs. (2.5) and (2.6) respectively.

Let i ∈ [p]. From the definition X ′ = X ∩ (−∞, β) and the interlacing property X ′ o Y ′ in the
premises, we see that the number xp+1−i is the unique root of the polynomial f(x) in the interval
(yq+1−i, yq+2−i). Suppose that f(β) 6= 0. By the intermediate value theorem, we infer that

f(yq+1−i)f(yq+2−i) < 0,
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that is,

f(yq)f(β) < 0 (i = 1),

f(yq−1)f(yq) < 0 (i = 2),

...

f(yq−p+1)f(yq−p+2) < 0 (i = p).

Multiplying the first i inequalities in the above list results in that

f(yq+1−i)f(β)(−1)i−1 < 0.

Replacing i by q + 1− j in it yields Ineq. (2.5) for j ∈ [q + 1− p, q]. When j = q + 1, since yq+1 = β
stands as a premise, Ineq. (2.5) holds true trivially.

From the definition Y ′ = Y ∩ (−∞, β), we deduce that the polynomial g(x) has no roots in the
interval (yq, β). Suppose that g(β) 6= 0. By the intermediate value theorem, we infer that g(x)g(β) > 0
for all x ∈ (yq, β). In particular, we have

(A.1) g(xp)g(β) > 0,

which is Ineq. (2.6) for j = p. Below we can suppose that p ≥ 2, and thus, q ≥ 1.

Let j ∈ [q]. Similar to the previous proof, we have

g(xp−j)g(xp+1−j) < 0,

that is,

g(xp−1)g(xp) < 0 (j = 1),

g(xp−2)g(xp−1) < 0 (j = 2),

...

g(xp−q)g(xp−q+1) < 0 (j = q).

Multiplying the first j inequalities in the above list, we find that

g(xp−j)g(xp)(−1)j−1 < 0.

Multiplying it by Ineq. (A.1) results in that

g(xp−j)g(β)(−1)j−1 < 0.

Replacing j by p− i in it yields that

g(xi)g(β)(−1)p−i > 0.

Together with Ineq. (A.1), we obtain Ineq. (2.6). This completes the proof. �
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Appendix B. Proof of Lemma 3.5

From Eq. (3.30), we have that

(B.1) Wn(x∆)
(
a+ n(2x∆ − a)

)
> 0.

(i) If c ≤ −(a2 + 2ab)/4, then we have

(B.2) x∆ = −a
2 + 4c

4b
≥ −a

2 − (a2 + 2ab)

4b
=

a

2
,

that is, 2x∆ − a ≥ 0. It follows that

a+ n(2x∆ − a) > 0 for all n ≥ 1.

By Ineq. (B.1), we obtain that Wn(x∆) > 0.

(ii) Below we suppose that c > −(a2 + 2ab)/4. From the Ineq. (B.2), we see that 2x∆ − a < 0. If
n < n0, then we have

a+ n(2x∆ − a) > a+
2ab

a2 + 2ab+ 4c
·
(

2

(
−a

2 + 4c

4b

)
− a
)

= 0,

which, by Ineq. (B.1), implies that Wn(x∆) > 0. Similarly, if n = n0 then we have that

a+ n(2x∆ − a) = 0,

and thus Wn(x∆) = 0 by Ineq. (B.1); and if n > n0 then we have that a+ n(2x∆ − a) < 0, and thus
Wn(x∆) < 0 by Ineq. (B.1).

When c > 0, we have that

n0 =
2ab

a2 + 2ab+ 4c
< 1.

Therefore, the case n > n0 happens for all n ≥ 1, that is, Wn(x∆) < 0. Thus, by Definition 3.4 we
obtain that xg < 0. Moreover, we have

xg − xB =
(a+ b)−

√
(a+ b)2 + 4c

2
+
c

b
=

ab+ b2 + 2c− b
√
a2 + 2ab+ b2 + 4c

2b
.

Thus, to show that xg > xB , it suffices to show that

(ab+ b2 + 2c)2 > b2(a2 + 2ab+ b2 + 4c).

By direct calculation, this inequality is equivalent to 4c(ab+ c) > 0, which is true since a, b, c > 0.

When c < 0, we have xg > 0 from Definition 3.4 straightforwardly. Suppose to the contrary that
xg ≥ xB . It follows that

2c+ b(a+ b) ≥ b
√

(a+ b)2 + 4c > 0.

Solving the inequality (2c+ b(a+ b))2 ≥ (b
√

(a+ b)2 + 4c )2 with c < 0, we see that c ≤ −ab. On the
one hand, by solving 2c+ b(a+ b) > 0, we get

−b(a+ b)/2 < c ≤ −ab,
which implies that a < b. On the other hand, we have

−(a2 + 2ab)/4 < c ≤ −ab,
which implies that a > 2b. Hence, we obtain 2b < a < b, a contradiction. This proves xg < xB when
−(a2 + 2ab)/4 < c < 0. �
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Appendix C. Proof of Lemma 5.1

By Lemma 2.1, the value Wn(x0) can be recast as the following form

Wn(x0) =

(
A(x0) +

√
∆(x0)

)n
2n
√

∆(x0)

[
g+(x0)− g−(x0)

(
A(x0)−

√
∆(x0)

A(x0) +
√

∆(x0)

)n]
.

Since A(x0) = a > 0 and
√

∆(x0) > 0, we deduce that∣∣∣∣∣A(x0)−
√

∆(x0)

A(x0) +
√

∆(x0)

∣∣∣∣∣ < 1.

Thus we obtain that

(C.1) Wn(x0)g+(x0) > 0 for large n.

Note that the function

2g+(x) = 2x− a+
√

4(bx+ c) + a2

is increasing. Since g+(xg) = 0, we infer that

(x0 − xg)g+(x0) > 0.

In view of Ineq. (C.1), we conclude that

(x0 − xg)Wn(x0) > 0

for large n, which completes the proof. �

Appendix D. Proof of Lemma 5.3

By Lemma 2.1, the sign of the value Wn(x0) is equal to the sign of the value F = cos θ + ` sin θ,

where θ = nθ(x0), and ` = (2x0 − a)/
√
−∆(x0).

If x0 = a/2, then the line lx0 becomes the imagine axis x = 0. In this case, the sign of the value
Wn(x0) is determined by the sign of the value cos θ. In other words, we have Wn(x0) > 0 if and only
if the radian nθ0 lies in the right open half-plane, and Wn(x0) < 0 if and only if the radian nθ0 lies in
the left open half-plane.

Below we can suppose that x0 6= a/2. It follows that ` 6= 0.

• Assume that ` > 0. It is elementary to find the following equivalence relation

F > 0 ⇐⇒


tan θ > −1/`, if cos θ > 0;

sin θ > 0, if cos θ = 0;

tan θ < −1/`, if cos θ < 0.

In this case, we have F > 0 if and only if the radian θ lies to the right of the line y = −x/`,
that is, of the line lx0

. By symmetry, we have F < 0 if and only if the radian θ lies to the
left of the line lx0

. It follows immediately that F = 0 if and only if the radian θ lies on the
line lx0 .
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• Now suppose that ` < 0. Then we have the following equivalence relation in the same vein:

F > 0 ⇐⇒


tan θ < −1/`, if cos θ > 0;

sin θ < 0, if cos θ = 0;

tan θ > −1/`, if cos θ < 0.

In this case, we have the same desired characterization.

This completes the proof. �
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