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Abstract—This paper introduces paper-strip sculptures,
a physical mesh data-structure used to represent 2-
manifold mesh surfaces for understanding topological and
geometrical aspects of shape modeling with visual and
tactual examples. With paper strips it is possible to
construct simple paper sculptures that can convincingly
illustrate a variety of ideas in shape modeling — such as 2-
manifold mesh surfaces, discrete Gaussian curvature, and
the Gauss-Bonnet theorem — with hands-on experiments.
Such sculptures can also represent links, knots and weav-
ing. Paper-strip sculptures are also useful to represent and
understand non-orientable surfaces such as the projective
plane and the Klein bottle.
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1. INTRODUCTION AND MOTIVATION

In this paper, we present a simple way to construct

paper sculptures that can illustrate a wide variety of

concepts related to geometric modeling. These paper

sculptures are conceptualized as data structures that can

easily be constructed by combining strips of paper.

We call these structures paper-strip structures. These

paper-strip sculptures are 3D representations of the band

structures introduced by Gross and Tucker to represent

2-manifold mesh surfaces [1]. In addition to the power of

band structures for representing the topological nature of

2-manifold mesh surfaces, paper-strip sculptures provide

visual and tactual intuition for important geometric con-

cepts, such as discrete Gaussian curvature (face-defect)

and the Gauss-Bonnet theorem.

Paper strips are a powerful tool for teaching difficult

geometric modeling concepts with tangible examples.

They are also useful for research, because of their sim-

plicity and immediacy. For instance, some of our ideas

for studying links started from paper-strip structures.

We have revised some existing surgery theorems of

topological graph theory based on our observations from

paper strips. Our theoretical results in this regard appear

in [2] and [3].

2. DEFINITIONS

Paper-strip sculptures are assembled from a set of

strips of paper by using various types of connectors,

such as staples, tape, glue, sew-on snaps, or brass

fasteners. For uniform appearance and cleanly cut paper

strips (as in Figure 1(a)), we use laser cutting.

For experimenting with paper-strip sculptures, we

prefer metallic connectors, since they allow changing the

angle between two strips by freely rotating around the

connection points. Moreover, using metallic connectors

permits reuse of the paper strips. On the other hand, to

construct a final structure, it is helpful to use staples,

tape, or glue to fix the cyclic order of the paper strips

incident at each of the connectors. Figure 1(b) shows

a pair of sew-on snaps. Figure 1(c) shows three round-

head brass fasteners.

Fig. 1. Basic elements of paper-strip sculptures are the paper strips
and the connectors, such as sew-on snaps and brass fasteners.

To construct the visual sculptures in the figures of

this paper, we used paper strips that were cut by a

laser cutter. To get the images for our figures, we first

photographed the paper sculptures. We then improved

the visual quality of photographs by re-painting over

the photographs. Unfortunately, even with our improve-

ments, the photographs fail to provide the complete

visual and tactual power of the paper sculptures. There-

fore, we strongly suggest building them to experience

first-hand the power of these sculptures.

2.1 Finger Traversing a Boundary Walk

Let P be a paper-strip sculpture that is constructed (in

3D-space) by connecting a set of paper strips, some of

which may be twisted. We envision an extension from

the surface of sculpture P to a closed 2-manifold S,

such that P − S consists of a set of non-intersecting

open disks. Such an extension always exists (but not

necessarily in Euclidean 3D-space), and the extension

induces a cellular decomposition of the 2-manifold S.

To traverse a boundary component in a paper-strip

sculpture, one can put a finger on the edge of one of

the paper strips and trace forward (i.e., without reversal)

until returning to the starting position, as shown in

Figure 2.
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(a) Toroid. (b) Finger’s Trajectory (c) Open cell.

Fig. 2. A face-boundary walk can be traversed with a finger. (b)
shows the finger trajectory. (c) shows that it is possible to insert a
stretchable rubber disk into space, whose boundary is matched to that
boundary cycle of the paper sculpture.

The finger trajectory can be a complicated space

curve, even for simple examples such as the toroidal

shape shown in Figure 2. This toroidal shape is rep-

resented by a paper sculpture built from two paper

strips and one connector, as shown in Figure 2(a). The

image in (b) shows the finger trajectory along the only

boundary component of the sculpture. Thus, the (invis-

ible) extension to a closed surface requires only one 2-

cell, which caps off that one boundary component. By

physically finger-traversing the boundary of a paper-strip

sculpture, one may be able to see that the boundary cycle

is unknotted in space, which is a necessary condition for

it to be possible to insert a stretchable rubber disk into

space whose boundary is matched to that boundary cycle

of the paper sculpture. Figure 2(c) shows an extension

of Figure 2(a) to a torus.

3. TOPOLOGICAL PROPERTIES

Two paper-strips in a sculpture are said to be adjacent
if they meet at a connector. Some sequences of adjacent

paper strips form closed walks within the sculpture. A

paper-strip sculpture and its associated closed surface

are non-orientable if any of these closed walks forms a

Möbius band. Otherwise the sculpture and its associated

surface are orientable. (See the Orientability Algorithm

for band decompositions in [1].)

Alternatively, we can paint one side of each paper-

strip. If there is no connector at which a painted side

of some strip meets an unpainted side of some other

strip (or of the same strip) then the surface is certainly

orientable. On the other hand, in non-orientable surfaces

such as a Klein bottle, we would have to paint both

sides of each strip to avoid having a painted side meet

an unpainted side.

In general, the Euler characteristic of the surface

represented by a paper-strip sculpture P has the Euler

characteristic χ(P) = V − E where V is the number

of connectors and E is the number of paper strips. The

Euler characteristic of the corresponding closed surface

S is χ(S) = V − E + F , where F is the number of

boundary components of P .

Finger-traversing the boundary of a face remains

easy even when the surface is non-orientable. Fig-

ure 3 illustrates the space curves resulting from finger-

traversals of the face boundary of a projective plane

(a0) and of a Klein bottle (a1). The projective plane

(non-orientable genus-1) in (a0) has one paper strip,

one connection point, and only one 2-cell. The Klein

bottle (non-orientable genus-2) in (a1) consists of two

paper strips, one connection point, and only one cell.

The images in (b0) and (b1) show the trajectory of a

finger tip. These single faces again are conceptualized

by disks that are bounded by the finger-trajectories,

but whose immersion in 3D-space without intersections

is impossible, even though the finger trajectories are

unknotted closed curves in 3D-space. In other words,

unknottedness of a boundary component of the surface

represented by the paper sculpture is not sufficient to

avoid intersections. Closed non-orientable 2-manifolds

in 3D-space necessarily have self-intersections. These

paper-strip sculptures provide an alternative representa-

tion in which self-intersection is avoided.

(a0) (b0) (a1) (b1)

Fig. 3. Finger trajectories for boundary walk of non-orientable
surfaces. (a0) and (b0) are projective plane and finger’s trajectory for
projective plane. (a1) and (b1) are Klein bottle and the corresponding
finger’s trajectory.

3.1 Relation with Graph Rotation Systems

Graph Rotation Systems have been a powerful model

in the study of topological graph theory [1], [4], [5],

[6]. A rotation at a vertex of a graph is a cyclic

ordering of the set of the edge-ends that are incident

at that vertex. A rotation system for a graph consists

of a rotation at every vertex. It is well-known (see

Theorem 3.2.2 of [1]) that a rotation system specifies a

graph embedding. The abstract mathematical properties

of Graph Rotation Systems can be realized and analyzed

visually and tactually using paper-strip sculptures, which

are similar to the band-decomposition structure studied

in topological graph theory [1]. They are also helpful

for discovering properties that are either not known or

not well-understood previously.

A most useful property of paper-strip sculptures to

explain mesh data structures is their amenability to

finger-tracing of the face boundaries. This finger-tracing

process explains how a graph rotation system specifies

an embedding in a closed surface [1]. By assuming

that each paper-strip is a representation of a regular

neighborhood of an edge of the graph, and that each

connection point of the paper strips represents a vertex,

the 2-cells (i.e. disks) become the faces of the extension

of P to a closed surface. The cyclic order of the edge-

ends incident at a vertex is always well-defined and

visually clear in a paper-strip model. The set of paper

strips that are connected together form a planar region

around the connection point. Therefore, we can always

see the cyclic order of the edge-ends in that planar

region.
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3.2 Relation with Polygonal Data Structures

Paper-strip sculptures are especially useful for 3D

visualization and tactualization of topological properties

of polygonal data structures. The long sides of a strip

represent half-edges, in the sense of [7]. Cyclically

ordered sets of half-edges represent faces, and a set of

ordered edge-ends represents a vertex. The two holes

at the ends of a strip can be considered edge-ends [8].

Paper strips also correspond to quadedges, in the sense

of [9]. Akleman et al. showed that starting from a set

of vertex-manifolds, any orientable or non-orientable

manifold mesh can be constructed by inserting and

twisting edges [10]. To be able to insert an edge into a

paper-strip structure, we first need to define the concept

of a corner.

Definition A corner of a paper-strip sculpture is

specified as a triple containing one side of a paper strip,

one side of another paper strip, and a connector that

joins the two paper strips so that the designated sides

of the two paper strips are locally on the same side of

the surface, and consecutive in the cyclic order at that

connector. If there is no paper-strip, the corner is just a

connector. Rotation order of the strips at the connector is

consistent with the rotation order around the connector

(i.e., vertex). The number of corners at a connector

equals the number of paper-strip ends incident at that

connector.

3.3 Links and Weaving

Akleman et al. noticed that the boundary walks in-

duced by a graph rotation system define a link in 3D-

space, and they used this property to construct plain-

weaving cycles on arbitrary polygonal mesh surfaces [3],

[2]. This insight can be realized visually using paper-

strip sculptures, as shown in Figure 4. Figure 4(a) gives

an octahedron constructed by paper strips, embedded

in a sphere. As shown in Figure 4(b), the eight face-

boundary walks of the octahedron are unlinked in 3D-

space. However, if the edges are twisted as shown in

Figure 4(c), then the cycles represented by the boundary

walks become linked, as in Figure 4(d).

Whereas the standard band decompositions [1] used

by topological graph theorists model the twisting on a

band modulo 2 (i.e., as twisted or untwisted), our ex-

tended band decompositions model the twisting over the

integers (For more information on integer twisting see

[2]). Not only the number of twists matters, but also the

orientation of the twists matters. As a simple example,

consider twists on a band decomposition corresponding

to the graph C3, the 3-cycle. If the three bands have

twists 1, 2, and 2, then the knot obtained is 51. If the

twists are −1, 2, 2, then the knot is 31, the trefoil. If

the twists are 1, −2, 2, the result is an unknot.

4. GEOMETRIC PROPERTIES

With paper-strip sculptures, it is possible to assign

geometric information to the topological entities such

(a) (b) (c) (d)

Fig. 4. The boundary walks of paper-strip sculptures are links in 3D
space.

as corners. Such information is useful to teaching geo-

metrical concepts, e.g. discrete Gaussian curvature and

the Gauss-Bonnet theorem. In paper strip sculptures, the

most useful geometric entity is the corner angle, which

we have defined as follows.

Definition A corner angle θ is the angle between two

imaginary lines passing through the centers (lengthwise)

of the ends of two paper strips that are consecutive at a

corner. The sum of all the corner angles around a vertex

is always 2π, since the strips are locally flat around

the vertex. The size of this locally flat area depends on

the stiffness of the paper and it is usually much larger

than the width of the paper strips. Therefore, the angle

between two half-edges of a corner is the same as the

corner angle, and it is always possible to use the angle

between two half-edges as the corner angle since the

paper strips do not bend much around the vertex.

4.1 Discrete Gaussian Curvature and Face-Defect

Paper strips are developable surfaces, with zero Gaus-

sian curvature. Moreover, since around a vertex a paper-

strip surface is also locally flat, the Gaussian curvature

of our sculptures is also zero around the vertices. Ac-

cordingly, all the Gaussian curvature exists in the empty

spaces that correspond to faces. We define φ, the discrete

Gaussian curvature of a face, or face-defect, for an n-

sided face, as

φ =
n∑

i=0

θi − (n− 2)π

where θi is the angle at corner i. Of course, (n − 2)π
is the sum of the angles if the polygon is planar. In

other words, the face-defect is a measure of how much

a polygon deviates from a flat surface. If the sum of

the internal angles of the triangle is exactly π, then

the result becomes a flat triangle. However, as soon as

we increase the sum of the internal angles, the triangle

becomes curved, and it becomes easy to imagine that

the triangle is drawn on a surface of a sphere.

Note that we can categorize the shapes of the faces,

based on face-defect.

• If the face-defect is zero, then either the face is flat or

the Gaussian curvatures inside of the face cancel each

other. This means that the polygon is either drawn on a

flat surface or it is a part of a toroidal or cylindrical

shape. It is also possible to call such a polygon a

Euclidean polygon.

• If the face-defect is positive, then the face has a convex
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or a concave shape. It is possible to call such polygons

elliptic. An interesting case is when every angle is π,

implying that φ = 2π, in which case the polygon forms

a circular band.

• If the face-defect is negative, then the face has a saddle

shape. We call such polygons hyperbolic, and they can

be drawn on a surface of negative curvature.

These cases are illustrated in Figure IV-A. Note that

these shapes were created from each other by simply

changing the sums of the internal angles of the polygons

formed by paper strips. Changing the internal angles is

easy using simple connectors, since the paper strips can

rotate freely around the snaps.

Positive Negative Positive Negative

(a) Triangles (b) Quadrilaterals

Fig. 5. Triangles and Quadrilaterals. (a) shows triangles with positive
and negative Gaussian curvature. (b) shows squares with positive and
negative Gaussian curvature.

4.2 Illustrating Monogons and Digons with Face-Defect

Another interesting concept to teach is polygons with

only one or two vertices, which are called monogons

and digons. Such polygons can frequently occur during

the modeling stage. However, they are non-realizable if

we render the edges as straight lines. By representing

edges with flexible paper strips, these type of polygons

becomes much more understandable, as shown in Fig-

ure 6. Note that for flat polygons, the sum of the internal

corner angles is (n− 2)π. For digons, this sum is zero;

thus, each corner angle has to be zero for flat digons.

This case is shown in Figure 6(a). On the other hand,

for a monogon, the sum of the internal angle must be

−π. In other words, a flat monogon does not exist, and

therefore we do not have an example in Figure 6(b).

Positive Positive Zero Positive Positive

(a)Digons (b) Monogons

Fig. 6. Monogons and Digons. (a) shows monogons, which always
have positive curvature. (b) shows digons, which can have zero
curvature but the result appears as a straight line.

4.3 Regular Meshes and Maps

Regular meshes are special types of meshes in which

every vertex has the same valence and every face has the

same number of sides. A regular mesh is represented by

a triple (n, m, g), where n is the face size, m is the

vertex valence, and g is the genus of the surface [11]. A

very interesting subset of regular meshes are Coxeter’s

regular maps, which are defined by an additional set

of symmetry conditions [12], [13]. The regular maps of

genus smaller than 100 have recently been by cataloged

by Conder [14], [15]. Van Wijk recently developed a

method to visualize a large subset of the regular maps

[16]. Paper strips provide a very useful and intuitive

tool to construct regular meshes and regular maps. If

one simply chooses the required vertex valences, the

number of sides of the faces, and the face-defects, then

paper strips connected by fasteners can be used to form

a symmetrical shape. We have tried constructing some

shapes, and the process is simple and educational. We

did not include any figures here, since the photographs

of paper strips with large holes do not indicate the real

power of these sculptures. We strongly urge the readers

to build their own regular meshes or maps to experience

these interesting structures.

4.4 Illustrating Gauss-Bonnet Theorem with Examples

One of the fortuitous properties of paper-strip sculp-

tures is that they can be used to illustrate the Gauss-

Bonnet Theorem [17]. The Gauss-Bonnet Theorem im-

plies that for a manifold mesh M, the sum of the face-

defects must be equal to 2π times χ(M), the Euler

characteristic of the corresponding surface. For instance,

for a genus-0 manifold mesh, this sum must be equal

to 4π. Using a set of faces whose face-defects sum to

4π, we can create ball-like shapes. On the other hand,

for genus-1 surfaces, the Euler characteristic is zero;

therefore, the face-defects must sum to 0. In this section,

we examine three genus-0 examples, which are depicted

in Figure 7, and also a toroid, with genus 1.

(a) Tetrahedron (b) Octahedron (c) Cube (4, 3, 0)

Fig. 7. Paper-Strip Representations of Platonic Solids

Platonic Solids: Platonic solids correspond to regular

meshes where g = 0, n > 2 and m > 2. Using Euler

characteristic, we can compute the number of the faces

of a platonic solid as F = 4m/(2m + 2n − nm). To

create the ball-like sculptures shown in Figure 7(a), (b)

and (c), we can introduce face-defect 4π/F for each

face, with the sum 4π of all the face-defects distributed

evenly over the F number of faces. Each face of the

platonic solid is n-sided, and the sum of the internal

angles for a flat triangle is (n− 2)π. It follows that the

sum of all the angles for such positively curved triangle

must be (n− 2)π + 4π/F = 2nπ/m. If all the internal
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angles are equal, then each of the three internal angles

has to be θi = 2π/m. Thus, by choosing each internal

angle to be 2π/m, we obtain the sculptures shown in

Figure 7(a), (b) and (c).

Regular Toroids: To create the toroidal shapes in

Figure 8, we can introduce face-defect zero for each

face, since for genus-1 surfaces the Euler characteristic

is zero. All the faces of all the illustrated toroidal shapes

are quadrilaterals, and the sum of the internal angles for

a flat quadrilateral is 2π. Of course, the sum of all the

angles for a zero-curvature quadrilateral must be 2π. If

all the internal angles are equal, then each internal angle

of a quadrilateral is π/2. It follows that by choosing each

internal angle to be π/2, we can obtain the sculptures

shown in Figure 8(a), (b) and (c). Note that in these three

cases, all the quadrilaterals are exactly the same. This is

particularly interesting, since we have both positive and

negative curvatures that cancel each other, for a total

curvature of zero, and we end up with a structure with

900 corner angles, exactly like a square, but the results

are toroidal sculptures. On the other hand, it is also

possible to build toroidal shapes using positively and

negatively curved faces as shown in Figure 8(d). In this

particular example, we have two types of quadrilaterals:

one set of quadrilaterals has positive curvature, and the

other set has negative curvature, so the total Gaussian

curvature is 0. Such exercises can be particularly helpful

to understand the distribution of the Gaussian curvature

on the surface.

(a) Four faces (b) Eight faces (d) 32 faces

Fig. 8. Four different Paper-Strip Representations of (4, 4, 1) Toroidal
Shapes .

4.5 Duality

We observe that paper-strip sculptures are a form

of geometric dual to polyhedral meshes, such as the

widely used triangular meshes. In polyhedral meshes,

every face is planar and every edge is straight. Therefore,

the discrete Gaussian curvature of every face and edge

is zero, and non-zero Gaussian curvature exists only at

vertices. When we take the dual of a mesh, the vertices

become faces and the faces becomes vertices. In the

dual, therefore, non-zero discrete Gaussian curvature

of the dual mesh should exist only at faces. Since

paper-strip sculptures exactly provides this property, we

may regard paper-strip sculptures as an authentic dual

of polyhedral meshes. For instance, the dual of any

triangular mesh can be represented by a paper-strip

sculpture in which every vertex is 3-valent.

There is a further implication of this perspective,

coming from a duality that exists between physical

and virtual representations. We all know that triangular

meshes are popular in computer graphics, since they

are easy to construct virtually. However, it is hard

to construct triangular meshes physically, because of

the conical-mesh property [18]. On the other hand,

paper strips are very easy to construct physically, since

physical constraints are automatically satisfied. Since

paper-strip sculptures can represent duals of triangular

meshes, It follows that large sculptural or architectural

shapes can be constructed using paper-strip sculptures,

by replacing paper with thin metal sheets from triangular

meshes that are modeled virtually.
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