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Abstract. We prove that the genus polynomials of the graphs called iterated claws
are real-rooted. This continues our work directed toward the 25-year-old conjec-
ture that the genus distribution of every graph is log-concave. We have previously
established log-concavity for sequences of graphs constructed by iterative vertex-
amalgamation or iterative edge-amalgamation of graphs that satisfy a commonly
observable condition on their partitioned genus distributions, even though it had
been proved previously that iterative amalgamation does not always preserve real-
rootedness of the genus polynomial of the iterated graph. In this paper, the iterated
topological operation is adding a claw, rather than vertex- or edge-amalgamation.
Our analysis here illustrates some advantages of employing a matrix representation
of the transposition of a set of productions.
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1. Introduction

Graphs are implicitly taken to be connected. Our graph embeddings are cellular
and orientable. For general background in topological graph theory, see [1, 9]. Prior
acquaintance with the concepts of partitioned genus distribution (abbreviated here as
pgd) and production (e.g., see [10, 12]) is prerequisite to reading this paper. Subject
to this prerequisite, the exposition here is intended to be accessible both to graph
theorists and to combinatorialists.

The genus distribution of a graph G is the sequence g0(G), g1(G), g2(G), . . .,
where gi(G) is the number of combinatorially distinct embeddings of G in the ori-
entable surface of genus i. A genus distribution contains only finitely many positive
numbers, and there are no zeros between the first and last positive numbers. The
genus polynomial is the polynomial

ΓG(z) = g0(G) + g1(G)z + g2(G)z2 + . . .

We say that a sequence A = (ak)nk=0 is nonnegative if ak ≥ 0 for all k. An
element ak is said to be an internal zero of A if there exist indices i and j with
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i < k < j, such that aiaj 6= 0 and ak = 0. If ak−1ak+1 ≤ a2k for all k, then A is said to
be log-concave. If there exists an index h with 0 ≤ h ≤ n such that

a0 ≤ a1 ≤ · · · ≤ ah−1 ≤ ah ≥ ah+1 ≥ · · · ≥ an,

then A is said to be unimodal. It is well-known that any nonnegative log-concave
sequence without internal zeros is unimodal, and that any nonnegative unimodal se-
quence has no internal zeros. A prior paper [7] by the present authors provides addi-
tional contextual information regarding log-concavity and genus distributions.

The LCGD Conjecture and Real-Rootedness Problems

For convenience, we sometimes abbreviate the phrase “log-concave genus distribu-
tion” as LCGD. Proofs that closed-end ladders and doubled paths have LCGDs [2]
were based on closed formulas for their genus distributions. Proof that bouquets have
LCGDs [8] was based on a recursion. The following conjecture was formulated in [8]:

LCGD Conjecture : Every graph has a log-concave genus distribution.

Stahl [13] used the term “H-linear” to describe chains of graphs obtained by amal-
gamating copies of a fixed graph H. He conjectured that a number of “H-linear”
families of graphs have genus polynomials with nonpositive real roots, which implies
the log-concavity of their sequences of coefficients, by Newton’s theorem. (Since all
the coefficients of a genus polynomial are non-negative, it follows that all the roots are
non-positive.) Although it was shown [15] that the genus polynomials of some such
families do indeed have real roots, Stahl’s conjecture of real-rootedness for W4-linear
graphs (where W4 is the 4-wheel) was disproved by Liu and Wang [11].

Our previous paper [7] proves, nonetheless, that the genus distribution of every graph
in the W4-linear sequence is log-concave. Thus, even though Stahl’s proposed approach
to log-concavity via roots of genus polynomials is sometimes infeasible, [7] does support
Stahl’s expectation that chains of copies of a graph are a relatively accessible aspect
of the general LCGD problem. Moreover, Wagner [15] has proved the real-rootedness
of the genus polynomials for a number of graph families for which Stahl made specific
conjectures of real-rootedness.

This leads to a couple of research problems that are subordinate to the LCGD
Conjecture, as follows:

Real-rootedness Problem : Characterize the graphs whose genus poly-
nomials are not real-rooted.

Real-rootedness Chain Problem : Characterize the graphs H whose
genus polynomials are real-rooted but whose H-linear chains contain
graphs whose genus polynomials are not real-rooted.

Furthermore, we shall see here that Stahl’s method of representing what we have
elsewhere ([3, 5]) presented as a transposition of a production system for a surgical
operation on graph embeddings as a matrix of polynomials can simplify a proof that a
family of graphs has log-concave genus distributions.
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Interlacing Roots in a Genus Polynomial Sequence

The earliest proofs [2, 8] of the log-concavity of the genus polynomials for a sequence
of graphs appealed directly to the condition aj−1aj+1 ≤ a2j . The need for more power-
ful techniques motivated the development of the linear combination techniques of [7].
Here, to prove the log-concavity of the genus polynomials for the sequence of iter-
ated claws, we combine Newton’s theorem that a real-rooted polynomial is log-concave
(Theorem 4.1) with a focus on interlacing of roots of consecutive genus polynomials
for the graphs in the sequence to prove their log-concavity.

2. The Sequence of Iterated Claws

Let the rooted graph (Y0, u0) be isomorphic to the dipole D3, and let the root u0 be
either vertex of D3. For n = 1, 2, . . ., we define the iterated claw (Yn, un) to be the
graph obtained the following surgical operation:

Newclaw : Subdivide each of the three edges incident on the root ver-
tex un−1 of the iterated claw (Yn−1, un−1), and then join the three new
vertices obtained thereby to a new root vertex un.

Figure 2.1 illustrates the graph (Y3, u3).
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Figure 2.1. The rooted graph (Y3, u3).

The graph K1,3 is commonly called a claw graph, which accounts for our name iterated
claw. The notation Yn reflects the fact that a claw graph looks like the letter Y . We
observe that Y1 ∼= K3,3. A recursion for the genus distribution of the iterated claw
graphs is derived in [5]. We observe that, whereas all of Stahl’s examples [13] of
graphs with log-concave genus distributions are planar, the sequence of iterated claws
has rising minimum genus. (Example 3.2 of [7] is another sequence of rising minimum
genus. However, the graphs in that sequence have cutpoints, unlike the iterated claws.)

We have seen in previous studies of genus distribution (especially [4]) that the number
of productions and simultaneous recursions rises rapidly with the number of roots and
the valences of the roots. The surgical operation newclaw is designed to circumvent
this problem.
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For a single-rooted iterated claw (Yn, un), we can define three partial genus dis-
tributions, also called partials. Let

an,i = the number of embeddings Yn → Si such that
three different fb-walks are incident on the root un;

bn,i = the number of embeddings Yn → Si such that exactly
two different fb-walks are incident on the root un;

cn,i = the number of embeddings Yn → Si such that
one fb-walk is incident three times on the root un.

We also define partial genus polynomials to be the generating functions

An(z) =
∞∑
i=0

an,iz
i

Bn(z) =
∞∑
i=0

bn,iz
i

Cn(z) =
∞∑
i=0

cn,iz
i.

Clearly, the full genus distribution is the sum of the partials. That is, for i =
0, 1, 2, . . ., we have

gi(Yn) = an,i + bn,i + cn,i
and

ΓYn(z) = An(z) + Bn(z) + Cn(z).

We define gn,i = gi(Yn).

Remark. Partitioned genus distributions and recursion systems for pgds were first
used by Furst, Gross, and Statman [2]. Stahl [13] was first to employ a matrix equivalent
of a production system to investigate log-concavity.

Theorem 2.1. For n > 1, the effect on the pgd of applying the operation newclaw to
the iterated claw (Yn−1, un−1) corresponds to the following system of three productions:

ai −→ 12bi+1 + 4ci+2(2.1)

bi −→ 2ai + 12bi+1 + 2ci+1(2.2)

ci −→ 8ai + 8ci+1(2.3)

Proof. This is Theorem 4.5 of [5]. �

Corollary 2.2. For n > 1, the effect on the pgd of applying the operation newclaw to
the iterated claw (Yn−1, un−1) corresponds to the following recurrence relations:

an,i = 2bn−1,i + 8cn−1,i(2.4)

bn,i = 12an−1,i−1 + 12bn−1,i−1(2.5)

cn,i = 4an−1,i−2 + 2bn−1,i−1 + 8cn−1,i−1(2.6)
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Proof. The recurrence system (2.4), (2.5), (2.6) is induced by the production system
(2.1), (2.2), (2.3). �

It is convenient to express such a recurrence system in matrix form:

(2.7) V (Yn) = M(z) · V (Yn−1)

with the production matrix

(2.8) M(z) =

 0 2 8
12z 12z 0
4z2 2z 8z

 .
Since the initial graph Y0 in the sequence of iterated claws is isomorphic to the
dipole D3, the initial column vector for the sequence V (Yn) is

(2.9) V (Y0) =

A0(z)
B0(z)
C0(z)

 =

 2
0
2z


Proposition 2.3. The column vector V (Yn) is the product of the matrix power Mn(z)
with the column vector V (Y0).

Corollary 2.4. The column vector V (Yn) is the product of the matrix power Mn+1(z)
with the (artificially labeled) column vector

V (Y−1) =

 0
0

1/4


Corollary 2.5. To prove that every iterated claw has an LCGD, it is sufficient to prove
that the sum of the third column of the matrix Mn(z) is a log-concave polynomial.

3. Characterizing Genus Polynomials for Iterated Claws

In this section, we investigate some properties of the genus polynomials of iterated
claws. Corollary 2.5 leads us to focus on the sum of the third column of the matrix
Mn(z), which is expressible as (1, 1, 1)Mn(z)(4V (Y−1)), which implies that it equals
4 times the genus polynomial of the iterated claw Yn−1. Theorem 3.1 formulates a gen-
erating function f(z, t) for this sequence of sums, and Theorem 3.2 uses the generating
function to construct an expression for the genus polynomials from which we establish
interlacing of roots in Section 4.

Theorem 3.1. The generating function f(z, t) =
∑

n≥0(1, 1, 1)Mn(z)(4V (Y−1))t
n for

the sequence of sums of the third column of Mn(z) has the closed form

(3.1) f(z, t) =
1 + (8− 12z)t− 24zt2

1− 20zt+ 8z(8z − 3)t2 + 384z3t3
.
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Proof. Let (pn, qn, rn) = (1, 1, 1)Mn(z) for all n ≥ 0. Then

(pn+1, qn+1, rn+1) = (pn, qn, rn)M(z)(3.2)

= (12zqn + 4z2rn, 2pn + 12zqn + 2zrn, 8pn + 8zrn).

The third coordinate of Equation (3.2) implies that

pn =
1

8
(rn+1 − 8zrn).(3.3)

By combining (3.3) with the first coordinate of (3.2) we obtain

qn =
1

96z
(rn+2 − 8zrn+1 − 32z2rn).(3.4)

The second coordinate of (3.2) yields

(3.5) qn+1 = 2pn + 12zqn + 2zrn

Substituting (3.3) and (3.4) (twice) into (3.5) leads to the recurrence relation

(3.6) rn = 20zrn−1 + 8z(3− 8z)rn−2 − 384z3rn−3

with

(3.7)

r0 = 1,

r1 = 8 + 8z,

r2 = 160z + 96z2.

By multiplying Recurrence (3.6) by tn and summing over all n ≥ 0, we obtain Gener-
ating Function (3.1). �

It is easy to see that ΓYn(z) = rn+1/4, where rn is defined in the proof of Theorem 3.1.
In terms of ΓYn(z), the recurrence relation (3.6) becomes

(3.8) ΓYn(z) = 20zΓYn−1(z) + 8z(3− 8z)ΓYn−2(z)− 384z3ΓYn−3(z).

Theorem 3.2 provides an explicit expression for the genus polynomial ΓYn(z), a result
is of independent interest. It is not used here toward proof of log-concavity.

Theorem 3.2. The genus polynomial of the iterated claw Yn is given by

(1, 1, 1)Mn+1(z)V (Y−1) = 2n−1(hn+1(z) + 2(2− 3z)hn(z)− 6zhn−1(z)),

where

hn(z) =
∑

2j+i1+i2+i3=n

(
j + i1
i1

)(
j + i2
i2

)(
j + i3
i3

)
(1 +

√
3)i2(1−

√
3)i33j+i1(2z)n−j.

Proof. By Theorem 3.1, we have

f(z, t) =
∑
n≥0

(1, 1, 1)Mn(4V (Y0))t
n =

1 + (8− 12z)t− 24zt2

1− 20zt+ 8z(8z − 3)t2 + 384z3t3
.
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Thus,

f(z/2, t/2) =
1 + (4− 3z)t− 3zt2

1− 5zt+ z(4z − 3)t2 + 6z3t3

=
1 + (4− 3z)t− 3zt2

(1− 2zt− 2z2t2)(1− 3zt)− 3zt2

=
∑
j≥0

(1 + (4− 3z)t− 3zt2)3jzjt2j

(1− 3zt)j+1(1 +
√

3zt)j+1(1−
√

3zt)j+1
.

Using the combinatorial identity (1− at)−m =
∑

j≥0
(
m−1+j

j

)
ajtj, and then finding the

coefficient of tn, we derive the equation

(1, 1, 1)Mn(z/2)V (Y0) = 2n−2(hn(z) + 2(2− 3z)hn−1(z)− 6zhn−2(z)),

which, by Corollary 2.4, completes the proof. �

Now let gn,i be the coefficient of zi in ΓYn(z). The following table of values of gn,i
for n ≤ 4 is derived in [5].

gn,i i = 0 1 2 3 4 5

n = 0 2 2 0 0 0 0
1 0 40 24 0 0 0
2 0 48 720 256 0 0
3 0 0 1920 11648 2816 0
4 0 0 1152 52608 177664 30720

Denote by Ps,t the set of polynomials of the form
∑t

k=s akz
k, where ak is a positive

integer for any s ≤ k ≤ t. The above table suggests that ΓYn(z) ∈ Pb(n+1)/2c, n+1

for n ≤ 4. Theorem 3.3 shows that it holds true in general. Like Theorem 3.2, this
enumerative result is of independent interest and is not used toward proof of log-
concavity.

Theorem 3.3. For all n ≥ 0, the polynomial ΓYn(z) ∈ Pb(n+1)/2c, n+1. Moreover, we
have the leading coefficient

(3.9) gn,n+1 = 4n

b(n+1)/2c∑
k=0

(
n+ 2

2k + 1

)
3k,

and, for any number i such that b(n+ 1)/2c+ 1 ≤ i ≤ n, we have

(3.10) gn,i > 11gn−1,i−1.

Proof. We see in the table above, for n ≤ 4, that γmin(Yn) = b(n + 1)/2c and that
γmax(Yn) = n+ 1, or equivalently, that ΓYn(z) ∈ Pb(n+1)/2c, n+1. We see also, for n ≤ 4,
that Equation (3.9) and Inequality (3.10) are true. Now suppose that n ≥ 5. For
convenience, let gk,i = 0 for all i < 0. We can also take gk,i = 0 for i > k + 1, by



8 J.L. GROSS, T. MANSOUR, T.W. TUCKER, AND D.G.L. WANG

induction using (3.8), for k < n. From Recurrence (3.8) and the induction hypothesis,
we have

(3.11) gn,i = 20gn−1,i−1 + 24gn−2,i−1 − 64gn−2,i−2 − 384gn−3,i−3, n ≥ 3.

For i > n + 1, the induction hypothesis implies that each of the four terms on the
right side of Recurrence (3.11) is zero-valued. So the degree of ΓYn(z) is at most n+ 1.
Let si = gi,i+1. Taking i = n+ 1 in (3.11), we get

(3.12) sn = 20sn−1 − 64sn−2 − 384sn−3,

with the initial values s0 = 2, s1 = 24, s2 = 256. The above recurrence can be solved by
a standard generating function method, see [16, p.8]. In practice, we use the command
rsolve in the software Maple and get the explicit formula directly as

sn = 4n
∑
k≥0

(
n+ 2

2k + 1

)
3k.

It follows that gn,n+1 > 0. Hence the degree of ΓYn(z) is exactly n+ 1.

Similarly, for i < b(n + 1)/2c, the four terms on the right side of (3.11) are zero-
valued, so the minimum genus of Yn is at least b(n+ 1)/2c. Moreover, applying (3.11)
with i = b(n+ 1)/2c and using the induction hypothesis gk,i = 0 for all i < b(k+ 1)/2c
with k < n, we find the first term is positive for n odd and zero for n even, the second
term is always positive, and the third and fourth terms are always zero. In other words,

gn,b(n+1)/2c = 20gn−1,b(n+1)/2c−1 + 24gn−2,b(n+1)/2c−1 ≥ 24gn−2,b(n+1)/2c−1 > 0.

This confirms the minimum genus of Yn is exactly b(n+ 1)/2c.
Now consider i such that b(n + 1)/2c + 1 ≤ i ≤ n. By (3.11), and using (3.10)

inductively, we deduce

gn,i = 11gn−1,i−1 + 24gn−2,i−1 + (9gn−1,i−1 − 64gn−2,i−2 − 384gn−3,i−3)

> 11gn−1,i−1 + 24gn−2,i−1 + (35gn−2,i−2 − 384gn−3,i−3)

> 11gn−1,i−1 + 24gn−2,i−1 + gn−3,i−3

≥ 11gn−1,i−1.

So Inequality (3.10) holds true. It follows that gn,i > 0. Hence

ΓYn(z) ∈ Pb(n+1)/2c,n+1.

This completes the proof. �

4. Genus Polynomials for Iterated Claws are Real-Rooted

Our goal in this section is to establish in Theorem 4.3 the real-rootedness of the
genus polynomials ΓYn(z) of the iterated claws, via an associated sequence Wn(z) of
normalized polynomials. It follows from this real-rootedness that the genus polynomials
for iterated claws are log-concave, by the following theorem of Newton.
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Theorem 4.1 (Newton’s theorem). Let a0, a1, . . . , an be real numbers and let all the
roots of the polynomial

P (x) =
n∑

j=0

aix
i

be real. Then a2j ≥ aj−1aj+1 for j = 1, . . . , n− 1.

Proof. For instance, see Theorem 2 of [14]. �

To proceed, we “normalize” the polynomials ΓYn(z) by defining

(4.1) Wn(z) = z−b(n+1)/2cΓYn(z),

so that Wn(z) starts from a non-zero constant term, and has the same non-zero roots
as ΓYn(z). We use the symbol dn to denote the degree of Wn(z), that is,

(4.2) dn = degWn(z) = (n+ 1)−
⌊
n+ 1

2

⌋
=

⌈
n+ 1

2

⌉
.

By Theorem 3.3, we have Wn(z) ∈ P0,dn . Substituting (4.1) into the recurrence rela-
tion (3.8), we derive

(4.3) Wn(z) =

{
20zWn−1(z) + 8(3− 8z)Wn−2(z)− 384z2Wn−3(z), if n is even,

20Wn−1(z) + 8(3− 8z)Wn−2(z)− 384zWn−3(z), if n is odd,

with the initial polynomials

(4.4)

W0(z) = 2(1 + z),

W1(z) = 8(5 + 3z),

W2(z) = 16(3 + 45z + 16z2).

Let P denote the union ∪n≥0P0,n = ∪n≥0{
∑n

k=0 akz
k | ak ∈ Z+}. Lemma 4.2 is

ultimately a consequence of the intermediate value theorem.

Lemma 4.2. Let P (x), Q(x) ∈ P. Suppose that P (x) has roots x1 < x2 < · · · < xdegP ,
and that Q(x) has roots y1 < y2 < · · · < ydegQ. If degQ − degP ∈ {0, 1} and if the
roots interlace so that

x1 < y1 < x2 < y2 < · · · ,
then

(−1)i+degPP (yi) > 0 for all 1 ≤ i ≤ degQ,(4.5)

(−1)j+degQQ(xj) < 0 for all 1 ≤ j ≤ degP .(4.6)

Proof. Since P (x) is a polynomial with positive coefficients, we have

(4.7) (−1)degPP (−∞) > 0.

We suppose first that degP (x) is odd, and we consider the curve P (x). We see that
Inequality (4.7) reduces to P (−∞) < 0. Thus, the curve P (x) starts in the lower half
plane and intersects the x-axis at its first root, x1. From there, the curve P (x) proceeds
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without going below the x-axis, until it meets the second root, x2. Since x1 < y1 < x2,
we recognize that (4.5) holds for i = 1, i.e.,

(4.8) P (y1) > 0.

After passing through x2, the curve P (x) stays below the x-axis up to the third root, x3.
It is clear that the curve P (x) continues going forward, intersecting the x-axis in this
alternating way. It follows from this alternation that

(4.9) P (yk)P (yk+1) < 0 for all 1 ≤ k ≤ degQ− 1.

From (4.8) and (4.9), we conclude that (4.5) holds for all 1 ≤ i ≤ degQ, when degP (x)
is odd.

We next suppose that degP (x) is even. In this case, we can draw the curve P (x)
so that it starts in the upper half plane, first intersects the x-axis at x1, then goes
below the axis up to x2, and continues alternatingly. Therefore the sign-alternating
relation (4.9) still holds. Since P (y1) < 0 when degP (x) is even, we have proved (4.5).

It is obvious that Inequality (4.6) can be shown along the same line. This completes
the proof of Lemma 4.2. �

Now we proceed with our main theorem on the genus polynomial of iterated claws.
Beyond proving real-rootedness of the genus polynomials, we derive two interlacing
relationships on their roots.

Theorem 4.3. For every n ≥ 0, the polynomial Wn(z) is real-rooted. Moreover, if the
roots of Wk(z) are denoted by xk,1 < xk,2 < · · · , then we have the following interlacing
properties:

(i) for every n ≥ 2, the polynomial Wn(z) has one more root than Wn−2(z), and
the roots interlace so that

xn,1 < xn−2,1 < xn,2 < xn−2,2 < · · · < xn,dn−1 < xn−2,dn−1 < xn,dn ;

(ii) for every n ≥ 1, the polynomial Wn(z) has either one more (when n is even) or
the same number (when n is odd) of roots as Wn−1(z), and the roots interlace
so that

xn,1 < xn−1,1 < xn,2 < xn−1,2 < · · · < xn−1,dn−1 < xn,dn when n even;

and

xn,1 < xn−1,1 < xn,2 < xn−1,2 < · · · < xn,dn < xn−1,dn when n odd.

Proof. From the initial polynomials (4.4), it is easy to verify Theorem 4.3 for n ≤ 2.
We suppose that n ≥ 3 and proceed inductively.

For every k ≤ n − 1, we denote the roots of Wk(z) by xk,1 < xk,2 < · · · < xk,dk .
For convenience, we define xk,0 = −∞ and xk,dk+1 = 0, for all k ≤ n − 1. To clarify
the interlacing properties, we now consider the signs of the function Wm(z) at −∞
and at the origin, for any m ≥ 0. Since Wm(z) is a polynomial of degree dm, with all
coefficients non-negative, we deduce that

(4.10) (−1)dmWm(−∞) > 0.
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Having the constant term positive implies that

(4.11) Wm(0) = gn,0 > 0.

By the intermediate value theorem and Inequality (4.10), for the polynomial Wn(z)
to have dn = degWn(z) distinct negative roots and for Part (i) of Theorem 4.3 to hold,
it is necessary and sufficient that

(4.12) (−1)dn+jWn(xn−2,j) > 0 for 1 ≤ j ≤ dn−2 + 1.

In fact, for j = dn−2 + 1, Inequality (4.12) becomes

(4.13) (−1)dn+dn−2+1Wn(0) > 0.

By (4.11), Inequality (4.13) holds if and only if dn + dn−2 is odd, which is true since

dn + dn−2 =

⌈
n+ 1

2

⌉
+

⌈
n− 1

2

⌉
= 2

⌈
n− 1

2

⌉
+ 1.

Now consider any j such that 1 ≤ j ≤ dn−2. We are going to prove (4.12). We will
use the particular indicator function Ieven, which is defined by

Ieven(n) =

{
1, if n is even,

0, if n is odd.

Note that xn−2,j is a root of Wn−2(z). By Recurrence (4.3), we have

(4.14) Wn(zn−2,j) = x
Ieven(n)
n−2,j

(
20Wn−1(xn−2,j)− 384xn−2,jWn−3(xn−2,j)

)
.

Since xn−2,j < 0, the factor x
Ieven(n)
n−2,j contributes (−1)n+1 to the sign of the right hand

side of (4.14). On the other hand, it is clear that the sign of the parenthesized factor
can be determined if both the summands 20Wn−1(xn−2,j) and −384xn−2,jWn−3(xn−2,j)
have the same sign. Therefore, Inequality (4.12) holds if

(−1)dn+j+n+1Wn−1(xn−2,j) > 0,(4.15)

(−1)dn+j+n+1Wn−3(xn−2,j) > 0.(4.16)

By the induction hypothesis on part (ii) of this theorem, we can substitute P = Wn−1
and Q = Wn−2 into Lemma 4.2. Then Inequality (4.5) gives

(4.17) (−1)dn−1+jWn−1(xn−2,j) > 0.

Thus, Inequality (4.15) holds if and only if the total power

dn + j + n+ 1 + dn−1 + j =

⌈
n+ 1

2

⌉
+

⌈
n

2

⌉
+ n+ 2j + 1

of (−1) in (4.15) and (4.17) is even, which is clear by a simple parity argument. More-
over, again using the induction hypothesis on part (ii), we can make substitutions
P (x) = Wn−2(x) and Q(x) = Wn−3(x) into Lemma 4.2. Then Inequality (4.6) gives

(4.18) (−1)dn−3+jWn−3(xn−2,j) < 0.
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Thus, Inequality (4.16) holds if and only if the total power

(4.19) dn + j + n+ 1 + dn−3 + j =

⌈
n+ 1

2

⌉
+

⌈
n− 2

2

⌉
+ n+ 2j + 1

of (−1) in (4.16) and (4.18) is odd, which is also clear by a simple parity argument.
This completes the proof of (4.12), and the proof of Part (i).

The approach to proving Part (ii) is similar to that used to prove Part (i). By the
intermediate value theorem and Inequality (4.10), Part (ii) holds if and only if

(4.20) (−1)dn+jWn(xn−1,j) > 0 for 1 ≤ j ≤ dn−1,

and also for j = dn−1 + 1 when n is even. In fact, when n is even and j = dn−1 + 1, we
have

(4.21) (−1)dn+dn−1+1Wn(0) > 0.

By (4.11), Inequality (4.21) holds if and only if (−1)dn+dn−1+1 = 1, which is clear since

dn + dn−1 + 1 =

⌈
n+ 1

2

⌉
+

⌈
n

2

⌉
+ 1 = n+ 2.

For 1 ≤ j ≤ dn−1, we are now going to show (4.20). By setting x = xn−1,j, Recur-
rence (4.3) turns into

(4.22) Wn(xn−1,j) = 8(3− 8xn−1,j)Wn−2(xn−1,j)− 384x
1+Ieven(n)
n−1,j Wn−3(xn−1,j).

Since xn−1,j < 0, we see that 8(3 − 8xn−1,j) > 0, and that the factor −384x
1+Ieven(n)
n−1,j

contributes (−1)n+1 to the sign of the right-hand side of (4.22). Therefore, Inequal-
ity (4.20) holds if

(−1)dn+jWn−2(xn−1,j) > 0,(4.23)

(−1)dn+j+n+1Wn−3(xn−1,j) > 0.(4.24)

Substituting P (x) = Wn−1(x) and Q(x) = Wn−2(x) into Lemma 4.2, we find that
Inequality (4.6) yields

(4.25) (−1)dn−2 + jWn−2(xn−1,j) < 0 when 1 ≤ j ≤ dn−1.

Thus, Inequality (4.23) holds if and only if the total power

dn + j + dn−2 + j =

⌈
n+ 1

2

⌉
+

⌈
n− 1

2

⌉
+ 2j

of (−1) in (4.23) and (4.25) is odd, which holds true, obviously, by parity. On the
other hand, by the induction hypothesis on Part (i) and substituting P (x) = Wn−1(x)
and Q(x) = Wn−3(x) into Lemma 4.2, Inequality (4.6) becomes

(4.26) (−1)dn−3+jWn−3(xn−1,j) < 0.

Therefore, Inequality (4.24) holds if and only if the total power dn +j+n+1+dn−3 +j
of (−1) in (4.24) and (4.26) is odd, which coincides with (4.19). This completes the
proof of (4.20), ergo the proof of Part (ii), and hence the entire theorem. �
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Corollary 4.4. The sequence of coefficients for every genus polynomial ΓYn(z) is log-
concave.

Proof. Recalling Equation (4.1), we have

ΓYn(z) = zb(n+1)/2cWn(z).

By Theorem 4.3, we know that the polynomial Wn(z) is real-rooted. It follows that
the polynomial ΓYn(z) is real-rooted. Applying Theorem 4.1 (Newton’s theorem), we
know that the polynomial ΓYn(z) is log-concave. �

5. On Real-Rootedness

In the study of genus polynomials, the role of real-rootedness may rise beyond being
a sufficient condition for log-concavity. The introductory section presents two basic
research problems specifically on real-rootedness. One may reasonably anticipate that
continuing study of the roots of genus polynomials will lead to new insights into the
imbeddings of graphs.
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