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ENUMERATION OF DIGRAPH EMBEDDINGS

YICHAO CHEN, JONATHAN L. GROSS, AND XIAODONG HU

Abstract. A cellular embedding of an Eulerian digraph D into a closed surface
is said to be directed if the boundary of each face is a directed closed walk in D.
The directed genus polynomial of an Eulerian digraph D is the polynomial

ΓD(x) =
∑
h≥0

gh(D)xh

where gh(D) is the number of directed embeddings into the orientable surface
Sh, of genus h, for h = 0, 1, . . . . The sequence {gh(D)|h ≥ 0}, which is called
the directed genus distribution of the digraph D, is known for very few
classes of graphs, compared to the genus distribution of a graph. This paper
introduces a variety of methods for calculating the directed genus distributions
of Eulerian digraphs. We use them to derive an explicit formula for the directed
genus distribution of any 4-regular outerplanar digraph. We show that the
directed genus distribution of such a digraph is determined by the red-blue
star decompositions of the characteristic tree for an outerplanar embedding.
The directed genus distribution of a 4-regular outerplanar digraph is proved
to be log-concave, which is consistent with an affirmative answer to a question
of Bonnington, et al. [2]. Indeed, the corresponding genus polynomial is real-
rooted. We introduce Eulerian splitting at a vertex of a digraph, and we prove
a splitting theorem for digraph embedding distributions that is analogous to
the splitting theorem for (undirected) graph embedding distributions. This
new splitting theorem allows conversion of the enumeration of embeddings of
a digraph with vertex degrees larger than 4 into a problem of enumerating the
embeddings of some 4-regular digraphs.

1. Introduction

Whereas the study of graph embeddings dates back to the 18th century and has
been studied extensively over the past 40 years, the systematic study of directed
embeddings of a Eulerian digraph begins with Bonnington, Conder, Morton, and
McKenna [2]. Bonnington, Hartsfield, and Širáň [3] have studied obstructions to
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directed embeddings of Eulerian digraphs in the plane and proved Kuratowski-
type theorems for directed embeddings in the plane. Stahl [16] has offered a
visualization of a permutation-partition, which is an abstract combinatorial gen-
eralization of a graph embedding, by means of a kind of Eulerian digraph called
the transition digraph. Building on that, Cerè, Donati and Ferri [5] have defined a
new kind of genus of a group G to be the minimum genus of a surface into which
the transition digraph of a presentation of G embeds. Hao and Liu [12] have cal-
culated the directed genus distribution for a class of cross-ladder digraphs. Hales
and Hartsfield [11] have investigated the directed genus of the de Bruijn graph.
Further information is available, including [1, 13].

Analogous to a well-known conjecture [10], that the genus distribution of a
graph is strongly unimodal (or, equivalently, log-concave), Bonnington, et al. [2]
asked whether the directed genus distribution of a digraph is (strongly) unimodal.
Hao, Liu, Zhang, and Xu [14] have calculated the directed genus distributions for
two classes of 4-regular digraphs, one of which they also proved to be strongly
unimodal. One purpose of this paper is to respond to the question of Bonnington,
et al. The other is to begin to provide methods that may prove useful in the
development of a theory of directed genus distributions.

In this paper, we introduce the concept of an Eulerian splitting of a vertex
and augment the emerging theory of directed genus distributions, by proving a
splitting theorem for directed embeddings. This splitting theorem implies that
the directed genus distribution of a digraph is a linear combination of the directed
genus distributions of some 4-regular digraphs. Furthermore, we derive an explicit
formula for the directed genus distribution of any 4-regular outerplanar digraph
and we prove its strong unimodality. (By a 4-regular digraph, we mean that every
vertex has indegree 2 and outdegree 2.)

1.1. Directed graphs. A directed graph or digraph D consists of a finite
nonempty set V (D) of vertices together with a set A(D) called arcs or directed
edges. Associated to each arc is either a pair of vertices, called its tail and its
head, or a single vertex, in which case the arc is called a self-arc. Two or more
arcs with the same head and the same tail are said to be parallel arcs. The
digraph is called simple if it has no self-arcs and no instance of parallel arcs.

For an arc a with tail u and head v, we may write a = −→uv. In a simple digraph,
the notation −→uv can be used as an unambiguous way to designate the arc. Then
arc a is said to join u and v. We further say that arc a is an out-arc at u and
an in-arc at v. Moreover, u is said to be adjacent to v, and v is said to be
adjacent from u. The outdegree out(v) of a vertex v of a digraph D is the
number of out-arcs at v. The indegree in(v) of v is the number of in-arcs at v.
The degree d(v) of a vertex v of D is defined by d(v) = out(v) + in(v).
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The underlying graph of a digraph D is the graph G obtained from D by
deleting all directions from the arcs of D, which means eliminating the distinction
between head and tail. The vertex-connectivity κ(G) of a graph G is the
minimum number of vertices whose removal from G results in a disconnected or
trivial graph. The edge-connectivity κ1(G) of G is the minimum number of
edges whose removal from G results in a disconnected or trivial graph. A digraph
D is said to be κ-connected (κ1-edge connected) if its underlying graph G is
κ-connected (κ1-edge connected), or strongly connected if for every ordered
pair of vertices u and v, there there is a directed path from u to v. A digraph
D is called an Eulerian digraph if D contains a directed Eulerian circuit. It is
known that a digraph D is Eulerian if and only if in(v) = out(v) for each vertex
v of D. In this paper all digraphs considered are Eulerian.

1.2. Directed embeddings. A surface is a compact 2-manifold without bound-
ary. Topologists classify surfaces into the orientable surfaces Sg, with g han-
dles (g ≥ 0), and the nonorientable surfaces Nk, with k crosscaps (k > 0). A
directed embedding of an Eulerian directed graph D into an orientable surface
Sg is a cellular embedding, i.e., the interior of every face is homeomorphic to
an open disc, of D into Sg such that every face is bounded by a directed circuit
in D. An “embedding” here is taken to be cellular unless it is explicitly declared
to be otherwise.

The (minimum)directed genus of a digraph D, denoted γmin(D), and the
maximum directed genus of D, denoted γmax(D), are the minimum value and
maximum value of p, respectively, for which the digraph D has a directed embed-
ding into a surface of genus p. There is an analogue [2] to Duke’s interpolation
theorem, which asserts that for any integer k such that γmin(D) ≤ k ≤ γmax(D),
there exists a directed embedding of D into the surface Sk.

We denote the number of cellular directed embeddings of D on the surface
Si by gi(D), where, by the number of embeddings, we mean the number of
equivalence classes under ambient isotopy. The directed genus distribution of
the digraph D is the sequence

g0(D), g1(D), g2(D), . . . ,

The directed genus polynomial of D is the polynomial

ΓD(x) =
∑
h≥0

gh(D)xh.

As with undirected embeddings, a directed embedding has a combinatorial rep-
resentation. An alternating rotation at a vertex v of a Eulerian digraph D is
a cyclic ordering of all the arcs incident with v such that the in-arcs and out-arcs
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at v alternate. An alternating rotation system ρ of a graph D is an assign-
ment of an alternating rotation at every vertex of D. Two directed embeddings
of a digraph D are equivalent (or, informally, the same) if they have the same
alternating rotation system.

Analogous to the undirected case, there is a bijection between the set of al-
ternating rotation systems and the set of directed embeddings of an Eulerian
digraph D. This implies the following property.

Proposition 1.1. For any Eulerian digraph D, the number of directed embeddings
of D equals ∑

h≥0

gh(D) =
∏

v∈V (D)

(
d(v)

2
− 1

)
!

(
d(v)

2

)
!.

�

2. Eulerian Splitting and the Splitting Theorem

Gross [6] obtained a splitting theorem for the genus distribution of graphs with
maximum degree 4. Chen, et al. [4] proved a more general splitting theorem for the
genus distribution of a graph and used this result to derive the genus distributions
of some small diameter graphs. In this section, we derive a splitting theorem for
digraph embeddings that is analogous to the splitting theorem of Chen, et al.

2.1. Eulerian splitting. In order to describe all the possible ways to split an
Eulerian digraph D at a given vertex so as to obtain an Eulerian digraph D, we
provide some definitions.

Definition 2.1. Let e = −→uw be an arc of an Eulerian digraph D, such that the
head vertex w has valence 2n ≥ 4, and let k be a number such that 2 ≤ k ≤ n−1.
We let

e1 = −−→u1w, e2 = −−→u2w, . . . , en−1 = −−−→un−1w,

be the other in-arcs to w, besides e = −→uw, and we let

f1 = −−→wv1, f2 = −−→wv2, . . . , fn = −−→wvn,
be the out-arcs from w. The operation called a 2k-degree Eulerian splitting
of a digraph D at vertex w with designated in-arc e = −→uw has two cases.

Case (a): We choose a (k − 2)-subset of the in-arcs to w

ei1 = −−→ui1w, ei2 = −−→ui2w, . . . , eik−2
= −−−−→uik−2

w,

and a k-subset of the out-arcs from w.

fj1 = −−→wvj1 , fj2 = −−→wvj2 , . . . , fjk = −−→wvjk ,
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The Eulerian digraph

Dui1
,...,uik−2

,vj1 ,...,vjk

is obtained from the digraph D in six steps:

(1) Insert new vertex x and new arc −→ux, and delete arc e = −→uw.
(2) Insert new vertex y and new arc −→yx.
(3) For t = 1, 2, . . . , k − 2, insert new arc −−→uitx, and delete arc eit .
(4) Delete every other in-arc at w, and join its tail to vertex y.
(5) For t = 1, 2, . . . , k, insert new arc −−→xvit , and delete arc fit .
(6) Delete every other out-arc from w, and join y to its head.

We observe that the digraph Dui1
,...,uik−2

,vj1 ,...,vjk
has in-degree and out-degree k

at vertex x, in-degree and out-degree n − k + 1 at vertex y, and in-degree and
out-degree n elsewhere.

Case (b): We choose a (k − 1)-subset of the in-arcs to w

ei1 = −−→ui1w, ei2 = −−→ui2w, . . . , eik−1
= −−−−→uik−1

w,

and a (k − 1)-subset of the out-arcs from w.

fj1 = −−→wvj1 , fj2 = −−→wvj2 , . . . , fjk−1
= −−−−→wvjk−1

,

The Eulerian digraph

Dui1
,...,uik−1

,vj1 ,...,vjk−1

is obtained from the digraph D in six similar steps. There are differences in three
of the steps.

(2) Insert new vertex y and new arc −→xy.
(3) For t = 1, 2, . . . , k − 1, insert new arc −−→uitx, and delete arc eit .
(5) For t = 1, 2, . . . , k − 1, insert new arc −→yvit , and delete arc fit .

As in Case 1, the digraph Dui1
,...,uik−1

,vj1 ,...,vjk−1
has in-degree and out-degree k

at vertex x, in-degree and out-degree n − k + 1 at vertex y, and in-degree and
out-degree n elsewhere. Any digraph that can result from this operation is called
a 2k-degree Eulerian split of the digraph D at w. Figure 2.1 illustrates all
such digraphs.

Definition 2.2. The operation called a 2k-degree Eulerian splitting of a
digraph D at vertex w with designated out-arc e = −→wu is defined similarly
to the case with designated in-arc.
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Figure 2.1. The 2-degree Eulerian splits of a digraph D at w with a desig-
nated in-arc uw.

Proposition 2.1. Let w be a vertex of in-degree and out-degree n in an Euler-
ian digraph D. Then the number of 2k-degree Eulerian splits at w of types
Dui1

,...,uik−2
,vj1 ,...,vjk

and Dui1
,...,uik−1

,vj1 ,...,vjk−1
are(

n− 1

k − 2

)(
n

k

)
and

(
n− 1

k − 1

)(
n

k − 1

)
,

respectively. �

Proposition 2.2. Let w be a vertex of in-degree and out-degree n in an Eulerian
digraph D, and let D be a 2k-degree Eulerian split at w. Then the ratio of the
number of directed embeddings of D to the number of directed embeddings of D is

n!(n− 1)!

k!(k − 1)!(n− k + 1)!(n− k)!
. �
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Proposition 2.3. Let n0 = ΓD(1) be the number of embeddings of the Eulerian
digraph D, and let n1 be the sum of the numbers of embeddings of its 2k-degree
Eulerian splits at a vertex w with a designated in-arc (or, alternatively, with a
designated out-arc). Then the ratio of the those two numbers is 1 : 2k − 1.

Proof. Using Propositions 2.1 and 2.2, we calculate

n0

n1

=
n!(n− 1)!((

n−1
k−2

)(
n
k

)
+
(
n−1
k−1

)(
n

k−1

))
(k!(k − 1)!(n− k)!(n− k + 1)!)

=
1

2k − 1
�

Example 2.1. We observe in Figure 2.1, for instance, that the number of directed
embeddings of the digraph D would be 2!3!N = 12N , where N depends on the
degrees at the vertices other than w. We observe that each of the 9 Eulerian
splittings has 2!1!2!1!N = 4N directed embeddings. Thus, the ratio is 12 : 9 · 4,
that is, 1 : 3. Since k = 2, this corroborates Proposition 2.3.

2.2. Splitting theorem. In this subsection, we derive a splitting theorem for an
Eulerian digraph. We present only the case of a vertex with a designated in-arc.
The case with a designated out-arc is similar.

Suppose that the vertex w of the Eulerian digraph D has degree 2n, with
in-arcs e and e1, e2, . . . , en−1 and out-arcs f1, f2, . . . , fn. Consider an alternating
rotation system ρ on D, with rotation ρ(w) as follows:

w. fi1ej1fi2ej2 . . . fin−1ejn−1fine

where il ∈ {1, 2, . . . , n}, for l = 1, 2, . . . , n, and where jm ∈ {1, 2, . . . , n − 1}, for
m = 1, 2, . . . , k − 1 and e = −→uw, as in Figure 2.2.

u uj2

vi1 vi2

uj1

ujn−1

vin−1vin

we

fi1
ej1

fi2

ej2

fin−1

ejn−1

fin

Figure 2.2. The rotation ρ(w) at vertex w of digraph D.
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Now suppose that vertices x and y of the digraph Dui1
,...,uik−2

,vj1 ,...,vjk
, obtained

by a 2k-degree splitting at w, with designated in-arc e = −→uw, are given the
rotations

(2.1)
x. fi1ej1fi2ej2 . . . fik−m

−→yxfin−mejn−m . . . fin−1ejn−1fine
y. ejk−m

fik−m+1
ejk−m+1

fik−m+2
ejk−m+2

. . . fin−mejn−m

−→yx
Suppose that all other rotations are whatever ρ has assigned to the other vertices
of the digraph D. We call this an induced rotation system or a 2k-degree
Eulerian split of the rotation system ρ, and we denote it by ρ(−→yx,m). We
observe that the rotation at vertex w has been split so that there are 2k consecutive
alternating arc incidences at new vertex x and 2n−2k+2 alternating arc incidences
at new vertex y. We observe that each of the split embeddings contracts to
the embedding of D corresponding to ρ; topologically, under a contraction, we
envision the arc −→yx shrinking down to a single point, thus merging vertices y and x.
Figure 2.3 illustrates the rotations of ρ(−→yx,m) at vertices x and y.

fi1

ej1 ejk−m−1

fik−m

fin

ein−1 ejn−m

fin−m

fik−m−1

fin−1

fik−m+1

ejk−m+1

ejn−m−1

fin−m−1

ejk−m

e x y

Figure 2.3. The induced rotation at the vertices x and y.

Proposition 2.4. Let ρ be a rotation system for an Eulerian digraph D with a
2n-valent vertex w with designated in-arc. Then there are k−1 2k-degree Eulerian
splits of ρ at vertex w with rotations at new vertices x and y as given by (2.1),
each of which contracts to ρ.

Proof. There is one such split for each value of m = 1, 2, . . . , k − 1. �

Similarly, the split digraphs Dui1
,...,uik−1

,vj1 ...,vjk−1
have induced rotation systems,

for l = 0, 1, . . . , k − 1, in which the vertices x and y are given the rotations

(2.2)
x. fi1ej1fi2ej2 . . . fik−l

ejk−l

−→xy ejn−l
fin−l+1

ejn−l+1
. . . ejn−1fine

y. fik−l+1
ejk−l+1

fik−l+2
ejk−l+2

. . . fin−l−1
ejn−l−1

fin−l

−→xy
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Proposition 2.5. Let ρ be a rotation system for an Eulerian digraph D with a
2n-valent vertex w with a designated in-arc. Then there are k Eulerian splits of ρ
at vertex w with rotations at new vertices x and y as given by (2.2), each of which
contracts to ρ.

Proof. There is one such split for each value of l = 0, 1, . . . , k − 1. �

Lemma 2.6. Let w be a 2n-valent vertex (2n ≥ 6), with designated in-arc e = −→uw,
in an Eulerian digraph D with rotation system ρ. Then there correspond exactly
2k − 1 2k-degree Eulerian splits of D at w with designated in-arc −→uw that are
2k-degree Eulerian splits of ρ, each of which contracts to ρ.

Proof. This follows from Propositions 2.4 and 2.5. �

Lemma 2.7. Let w be a 2n-valent vertex (2n ≥ 6), with designated out-arc −→wu,
in an Eulerian digraph D with rotation system ρ. Then there correspond exactly
2k − 1 2k-degree Eulerian splits of D at w with designated out-arc −→wu that are
2k-degree Eulerian splits of ρ, each of which contracts to ρ.

Proof. This follows by the same reasoning as for Lemma 2.6. �

Theorem 2.8 (Splitting Theorem). Let w be a 2n-valent vertex (where 2n ≥ 6),
with designated in-arc or out-arc, in a connected Eulerian digraph D. Let Λ be
the set of all graphs Dui1

,...,uik−2
,vj1 ,...,vjk

and Dui1
,...,uik−1

,vj1 ,...,vjk−1
obtainable by

2k-degree Eulerian splitting at w. Then we have

ΓD(x) =
1

2k − 1

∑
D∈Λ

ΓD(x).

Proof. This follows from Proposition 2.3 and Lemma 2.6. �

Example 2.2. Up to isomorphism, there is only one way to give an Eulerian
assignment of directions to the bouquet B3. According to Proposition 1.1, there
are 12 embeddings of B3. We proceed to use the Splitting Theorem to calculate
the genus polynomial for B3. Corresponding to each Eulerian embedding of B3,
there are three split embeddings corresponding to rotations like (2.1) at the new
vertices. There are also six split embeddings corresponding to rotations like (2.2).
Among these nine split digraphs, the underlying graph of three is isomorphic
to the dipole D4, and of the other six like J3. The graphs B3, D4, and J3 are
illustrated in Figure 2.4.



10 YICHAO CHEN, JONATHAN L. GROSS, AND XIAODONG HU

B3 D4 J3

w

Figure 2.4. The directed Eulerian bouquet B3 and the two Eulerian di-
graphs into which it splits.

By face-tracing, we calculate the directed genus polynomials

ΓD4(x) = 2 + 2x and ΓJ3(x) = 4.

We now calculate ΓB3(x), using Theorem 2.8, to obtain

ΓB3(x) =
1

3
[3ΓD4(x) + 6ΓJ3(x)]

=
1

3
[3(2 + 2x) + 6× 4]

= 10 + 2x.

The result ΓB3(x) = 10 + 2x can be confirmed by routine face-tracing.

3. Directed Genus Distributions of 4-Regular
Outerplanar Digraphs.

An outerplanar graph is a graph that can be embedded in the plane so that
all of the vertices lie on the boundary walk of the unbounded region f∞. Alter-
natively, a graph G is outerplanar if the graph formed from G by adding a new
vertex, with edges connecting it to all the other vertices, is a planar graph. An
outerplane embedding is said to be normalized if all self-loops of the graph lie
on the face-boundary walk of the unbounded region f∞. We observe that an out-
erplanar graph may have inequivalent outerplane embeddings. By an outerplane
graph, we mean an outerplanar graph with a fixed outerplane embedding.

The weak dual of a plane graph G is obtained from the dual by deleting
the vertex corresponding to the unbounded region f∞ of G. Suppose that G is
a 2-connected outerplane graph; that is, the minimum number of vertices of G
whose removal would disconnect G is at least 2. It is easy to see that the weak dual
of G is acyclic, since a cycle in the weak dual would represent a set of bounded
regions in G that separate a vertex v from the unbounded face. By Theorem 26
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of [17], we know that the dual of a 2-connected plane graph is 2-connected. This
leads to the following proposition:

Proposition 3.1. The weak dual of a 2-connected graph G is a plane tree. �

We call this plane tree the characteristic tree of the outerplane graph G.
Figure 3.1 illustrates an outerplane graph and its characteristic tree. We shall see
that a 2-connected outerplane graph is uniquely characterized by its characteristic
tree.

Figure 3.1. A 2-connected outerplane graph, with solid vertices and solid
lines; its characteristic tree, with hollow vertices and broken
lines

3.1. Restricted tree colorings. A leaf of a tree T is a vertex of degree one. A
proper coloring of a tree T is called a restricted coloring if all leaves of T have
the same color.

Since every tree is bipartite, the chromatic number χ(T ) of a non-trivial tree
is 2. However, the restricted chromatic number χR(T ) of a tree may be greater
than 2. We observe that χR(T ) ≥ χ(T ) = 2. For example, the restricted coloring
of a path P2n, (n ≥ 2) equals 3. Figure 3.2 shows two different trees with restricted
chromatic numbers 3 and 2.

Figure 3.2. Optimal restricted colorings of two trees.
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Proposition 3.2. Let T be an n-vertex tree (n ≥ 3). Then we have either
χR(T ) = 2 or χR(T ) = 3.

Proof. Let T− be the subtree obtained from T by deleting all the leaves. Since
T− is a tree, we can give it a proper 2-coloring with the colors red and blue. Then
we color all the leaves of T yellow, to obtain a restricted coloring of T . Thus,
χR(T ) ≤ 3. �

By an n-star, with n ≥ 2, we mean any graph isomorphic to the complete
bipartite graph K1,n. It is easy to see that the χR(K1,n) = 2. An n-star is called
a red-blue star if all the leaves are red and the other vertex is blue. We now
characterize a tree T with χR(T ) = 2.

Theorem 3.3. Let T be a red-leafed plane tree with χR(T ) = 2. Then T can be
obtained by a sequence of vertex-amalgamations of plane red-blue stars.

Proof. We proceed by induction on the number of vertices k of T . For k = 3, 4,
the tree T is the star graph K1,2 or S1,3, respectively, i.e., already a red-blue star.
Now we suppose that the theorem is true whenever T has at most n vertices, and
we let T have n+1 vertices. If T is an n-star, the conclusion is clear. Accordingly,
we suppose that T is not a n-star. Let the vertex v be the neighbor of any leaf.
Since the leaf is red, the color of v is blue. Moreover, the vertex v and its neighbors
form a red-blue star T0 isomorphic to K1,deg(v).

Each of the components T1, T2, . . . , Tdeg(v) of the graph obtained by deleting the
blue vertex v is either a tree with all leaves red, or a red isolated vertex. By
induction, each of the trees Ti, except for the isolated vertices, can be obtained
by a series of vertex-amalgamations of red-blue stars, as illustrated in Figure 3.3.
The tree T can be reconstructed by iterative vertex-amalgamation of subtrees
T0, T1, T2, . . . , Td(v). The result follows. �

v
T0 T1

T2

T3
Figure 3.3. A plane tree with restricted chromatic number 2, and its red-

blue star decomposition

3.2. Characterizing 4-regular outerplane graphs. In this subsection, we es-
tablish that a tree T is a characteristic tree of a 4-regular outerplane graph if and
only if χR(T ) = 2.
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A bracelet BRn is a 4-regular graph obtained from the n-cycle Cn by doubling
every edge. It is easy to see that BRn has an outerplane embedding, whose char-
acteristic tree is the star graph K1,n. Figure 3.4 shows the outerplane embedding
of BR4 and its characteristic tree K1,4.

Figure 3.4. The bracelet BR4 and its characteristic tree K1,4.

We observe that there are exactly two ways to assign directions to the edges of
a bracelet graph BRn, so as to obtain an Eulerian digraph:

(1) In a bi-directional bracelet BBr, the two parallel edges in each pair
are assigned opposite directions: the head of one arc is the tail of the
other. For instance, in Figure 3.4, the direction of the outer cycle could be
counterclockwise, and the direction of the inner cycle could be clockwise.
This would be a directed embedding of BB4.

(2) In a uni-directional bracelet UBr, the two parallel edges in each pair
are assigned the same direction: the two arcs have the same head and the
same tail. In Figure 3.4, the outer and inner cycles might both be clockwise
or both counterclockwise. Neither would be a directed embedding of UB4,
since the boundary walks of the four digons would not be directed walks.

Proposition 3.4. For r ≥ 3, the uni-directional bracelet UBr is non-planar.

Proof. In an alternating rotation system for UBr, the edges joining any vertex v
with its two neighbors would have to alternate. It follows that the restriction
of the corresponding embedding to the vertex v, its two neighbors, and the four
edges incident at v is already non-planar. �

Let G1 and G2 be disjoint connected graphs. Let e = uv ∈ E(G1) and let
f = xy ∈ E(G2). The cross-connection (G1, uv) � (G2, xy) is the graph is
obtained from G1 ∪ G2 by adding two edges ux and vy and deleting the edges e
and f , as shown in Figure 3.5.
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u

v

x

y

u

v

x

y

G1 G2 G

Figure 3.5. A cross-connection of graphs G1 and G2.

We partition the interior faces of a 4-regular outerplane graph into two types:

Type I: Every edge of the face-boundary is a chord of the outer spanning
cycle.

Type II: At least one edge of the face-boundary lies on the outer cycle.

Theorem 3.5. A tree T is the characteristic tree of a 4-regular outerplane graph G,
if and only if χR(T ) = 2.

Proof. First, let T be a characteristic tree of a 4-regular outerplanar graph G.
We color all the Type I faces blue and all the Type II faces red. Since G is a
4-regular outerplanar graph, the Type I faces are adjacent only to Type II faces.
By transferring the face colors to the dual tree T , we obtain a restricted 2-coloring
of T . Thus, χR(T ) = 2.

Conversely, let χR(T ) = 2. Then, by Theorem 3.3, the tree T can be constructed
by a sequence of vertex-amalgamations of red-blue stars. Each red-blue star K1,n

is the weak dual of a bracelet BRn. The vertex-amalgamation of two stars dualizes
to a cross-connection of two bracelets, in which the four vertices involved all lie on
the exterior region, so that the two new edges also lie on the exterior region. Thus,
such a cross-connection preserves outerplanarity. By reiterating this process, we
construct a 4-regular outerplane graph whose characteristic tree is T . �

The preorder traversal of an n-vertex rooted plane tree (T, v) is defined
recursively, as a sequence of vertices of T :

Basis: If n = 1, then the traversal is the root v.

Recursive Step: For n > 1, we consider the principal subtrees, T1, T2, . . . , Tk
of T at the root v. We start the traversal of T at the root v, and then we con-
catenate the preorder traversals of the principal subtrees, choosing those subtrees
in left-to-right order.
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Theorem 3.6. There is a bijection between the set of all 4-regular 2-connected
outerplane graphs and the set of all plane trees T with χR(T ) = 2.

Proof. First, we see that given a 4-regular 2-connected outerplane graph G, its
characteristic plane tree T is uniquely determined, by the definition of a charac-
teristic tree. By Theorem 3.5, we have χR(T ) = 2.

Now let T be a plane tree with χR(T ) = 2. By Theorem 3.3, the tree T can
be obtained by a sequence of vertex-amalgamations of plane red-blue stars. We
visit the blue vertices to T according to a preorder traversal, and we obtain an
outerplane graph by a sequence of cross-connections of bracelets, according to that
traversal ordering, as shown in Figure 3.6. This reconstructs the unique 4-regular
2-connected outerplane graph G whose characteristic tree is T .

An alternative reconstruction of the outerplane graph G can be obtained from
the plane tree T as follows:

(1) Joint a new vertex v∞ to each red vertex w of T by a multi-edge whose
multiplicity equals the valence of w, so that between each consecutive pair
of edges from blue vertices incident on w there is a single edge from v.
This forms a 2-connected plane bipartite graph H, in which every face-
boundary walk contains two edges of the tree T and two edges incident
on v∞.

(2) Then the 4-regular 2-connected outerplane graph G is the dual of H.

�

1 2
4

3
r

1

BR3G

2

BR2

4

3

BR2

BR2

Figure 3.6. A 4-regular outerplane graph G and the sum operation of its
bracelet graphs. The large red vertex is the root, and the num-
bers within the bracelets indicate the preorder traversal.

3.3. Directed genus distribution of a cross-connection. Corresponding to
the cross-connection operation for undirected graphs, we now introduce the di-
rected counterpart.

Let D1 and D2 be disjoint connected digraphs. Let a = −→uv ∈ E(D1) and
b = −→yx ∈ E(D2). The directed cross-connection D0 = (D1,

−→uv) � (D2,
−→yx)
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is the digraph obtained from D1 ∪D2 by adding arcs −→ux and −→yv and deleting the
directed edges a and b, as shown in Figure 3.7.

u

v

x

y

u

v

x

y

D1 D2 D0 = D1 ! D2

Figure 3.7. From the digraphs D1 and D2 to the digraph D0

Theorem 3.7. Let D1 and D2 be disjoint connected digraphs, with −→uv ∈ E(D1)
and −→yx ∈ E(D2). Then the directed genus polynomial of the directed cross-
connection D0 = (D1,

−→uv) � (D2,
−→yx) is given by

(3.1) ΓD1�D2(x) = ΓD1(x) ΓD2(x).

Proof. Let ρ1 be a rotation system for D1 with rotations

u : (Av) v : (Bu)

where A is a sequence of the neighbors of u, excluding v, and B is sequence of
the neighbors of v, excluding u. Similarly, let ρ2 be a rotation system for D2 with
rotations

x : (Cy) y : (Dx)

where C is a sequence of the neighbors of x, excluding y, and D is is a sequence of
the neighbors of y, excluding x. Then the rotation system ρ0 for D0 has rotations

u : (Ax) v : (By) x : (Cu) y : (Dv)

with all its other rotations as in ρ1 and ρ2.

For each i ∈ {0, 1, 2}, we let pi, qi, ri, and gi denote the numbesr of vertices,
arcs, and faces and the genus of the directed embedding (Di, ρi). Clearly,

p0 = p1 + p2(3.2)

q0 = q1 + q2(3.3)

We observe that each arc of a directed graph embedding is on the boundary of
exactly two different regions.

In this context, the region whose boundary direction is consistent with the orien-
tation of the surface is called a face, and the other region is called an antiface.
Suppose that the arc −→uv of D1 lies on the face f 1

1 = (uvW ) and the antiface
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f 2
1 = (vuQ). Suppose also that the arc −→yx of D2 lies on the face f 1

2 = (yxX)
and the antiface f 2

2 = (xyY ). Then the new edges −→ux and −→yv both lie on the face
f 1

0 = (uxXyvW ) and the antiface f 2
0 = (vyY xuQ), as illustrated in Figure 3.8.

The other faces of (D0, ρ0) are the same as the faces of (D1, ρ1) and (D2, ρ2). It
follows that

(3.4) r0 = r1 + r2 − 2

v

u

f 1
1 f 2

1

D1

y

x

f 2
2 f 1

2

D2

v

u

y

x

D0

Figure 3.8. Cross-connecting two directed embeddings.

Using Euler’s polyhedral equation p− q+ r = 2−2g and (3.2), (3.3), and (3.4),
we have

2− 2g(D0, ρ0) = p0 − q0 + r0

= (p1 + p2)− (q1 + q2) + (r1 + r2 − 2)

= (2− 2g(D1, ρ1)) + (2− 2g(D2, ρ2))− 2

This implies that

(3.5) g0 = g1 + g2

from which we infer

�(3.6) ΓD1�D2(x) = ΓD1(x) ΓD2(x).

3.4. Directed genus distribution of a vertex-amalgamation. A formula for
the genus distribution of the graph obtained by amalgamating two graphs at
a 2-valent root in each, in terms of the partitioned genus distributions of the
amalgamands, was derived by [9]. In this subsection, we derive a much simpler
formula for the directed genus polynomial of an Eulerian digraph obtained by
amalgamating two Eulerian digraphs at a 2-valent root in each. This simpler
formula involves no partitioning of the directed genus distributions.

Let (D1, r1) and (D2, r2) be Eulerian digraphs, each with a 2-valent root. The
directed vertex-amalgamation D1 ∗r1=r2 D2, is the Eulerian digraph obtained
by identifying the two roots.
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Theorem 3.8. Let D1 and D2 be disjoint connected Eulerian digraphs, with arcs
a = −→uv ∈ E(D1) and b = −→yx ∈ E(D2). Let D

′
1 and D

′
2 be the digraphs obtained

from D1 and D2 by inserting subdivision vertices w1 and w2 into arcs a and b.
Let D0 = D

′
1 ∗w1=w2 D

′
2. Then the directed genus polynomial of D0 is given by

(3.7) ΓD0(x) = 2ΓD1(x) ΓD2(x).

Proof. Figure 3.9 illustrates the vertex amalgamation, in which we have taken w
to be the 4-valent vertex that results from merging the 2-valent vertices w1 and w2.

u

w1

v

x

w2

y

u

v

x

y

w

D1 D2 D0

Figure 3.9. Vertex-amalgamation of the digraphs D1 and D2.

Suppose that the rotation system ρ1 for D1 has rotations

u : (Av) v : (Bu)

where A is a sequence of the neighbors of u, excluding v, and B is a sequence of
the neighbors of v, excluding u. Suppose also that the rotation system ρ2 forD2

has rotations
x : (Cy) y : (Dx)

where C is a sequence of the neighbors of x, excluding y, and D is a sequence of
the of neighbors of y, excluding x. Since the vertex w has two different alternating
rotations, each pair of rotation systems with one for D1 and the other for D2 will
induce two rotation systems for D0. The proof has two cases.

Case 1 Let ρ0 be the rotation system for D0 with rotations

u : (Ax) v : (By) x : (Cu) y : (Dv) w : (uxyv)

and all other vertex rotations as in ρ1 and ρ2.

For each i ∈ {0, 1, 2}, we let pi, qi, ri, and gi denote the numbers of vertices,
arcs, faces, and genus of (Di, ρi). Clearly,

p0 = p1 + p2 + 1(3.8)

q0 = q1 + q2 + 2(3.9)

Suppose that the arc −→uv of (D1, ρ1) lies on the face f 1
1 = (uvW ) and the antiface

f 2
1 = (vuQ). Suppose also that the arc −→yx of (D2, ρ2) lies on the face f 1

2 =
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(yxX) and the antiface f 2
2 = (xyY ). Then the new edges −→uw, −→yw, −→wx, and −→wv

collectively lie on the three different faces: f 1
0 = (Wuwv), f 2

0 = (ywxX), and
f 3

0 = (uwxY −ywvQ−). The other faces of ρ0 are the same as the faces of ρ1

and ρ2. It follows that

(3.10) r0 = r1 + r2 − 1

Figure 3.10 illustrates the situation.

v

u

f 1
1 f 2

1

D1

y

x

f 2
2 f 1

2

D2

v

u

y

x

w

D0

Figure 3.10. Vertex-amalgamation of two directed embeddings.

By Euler’s polyhedral equation and (3.8), (3.9), and (3.10), we have

2− 2g(D0, ρ0) = p0 − q0 + r0

= (p1 + p2 + 1)− (q1 + q2 + 2) + (r1 + r2 − 1)

= (2− 2g(D1, ρ1)) + (2− 2g(D2, ρ2)) + 2

which implies that
g0 = g1 + g2

Case 2: Now let ρ0 be the rotation system of D0 with rotations

u : (Ax) v : (By) x : (Cu) y : (Dv) w : (yxuv)

and all other vertex rotations as in ρ1 and ρ2. We omit the details, which are
similar to Case 1, with the same result:

g0 = g1 + g2

Accordingly, we conclude that

ΓD0(x) = 2ΓD1(x) ΓD2(x). �
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3.5. Cobblestone paths and bracelets. The cobblestone digraph Jn is a
directed path Pn with a reversal of each arc added. Figure 3.11 illustrates the
cobblestone digraph J5.

Figure 3.11. The cobblestone digraph J5

Theorem 3.9. The directed genus distribution of the cobblestone digraph Jn con-
sists of 2n−2 embeddings of genus 0.

Proof. By Proposition 2.1, the number of directed embeddings of Jn is 2n−2. By
Theorem 3.8, we know that the cobblestone digraph Jn has maximum genus 0. �

Bonnington, Conder, Morton and McKenna [2] have proved that the directed
genus distribution of the bi-directional bracelet digraph BB2k consists of two
embeddings of genus 0 and 22k − 2 embeddings of genus 1. We now extend this
directed genus distribution formula to BBn for all integers n ≥ 2.

Theorem 3.10. The directed genus distribution of the bi-directional bracelet BBn,
for n ≥ 2, consists of two embeddings of genus 0 and 2n−2 embeddings of genus 1.

Proof. The bi-directional braceletBBn can be obtained by identifying the two end-
vertices u and v of a cobblestone digraph Jn+1. Consider a cellular embedding
of Jn+1 in the surface Sh with k faces. (Of course, we have k = n + 1 − 2h.)
Since each arc of Jn lies in two different faces, each vertex must lie in at least two
different faces. In particular, suppose that the vertex u lies in faces f1 and f2 and
that vertex v lies in faces f3 and f4, as shown in Figure 3.12.

u vf3 f4f1 f2
Sh with k faces

Figure 3.12. A directed embedding of the cobblestone digraph Jn+1.

The two kinds of directed embeddings of BBn that correspond to this embed-
ding of Jn+1 occur as determined by the following two cases.

(1) The faces f1 and f2 that border vertex u are both different from the faces
f3 and f4 that border vertex v. In this case, both resulting directed em-
beddings of BBn are on the surface Sh+1 with k− 1 faces. See Figure 3.13
for details.
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u v
f1f2 f3 f4

k faces k − 1 faces

f1 f3

Figure 3.13. Case 1: Vertices u and v do not lie on a common face.

(2) One of the faces bordering vertex u also borders vertex v. In this case,
there is one imbedding of BBn on Sh, with k+1 faces, and one embedding
on Sh+1, with k − 1 faces. See Figure 3.14 for details.

u v
f1 f3

k faces k + 1 faces k − 1 faces

f1 f3

Figure 3.14. Case 2: Vertices u and v lie on a common face.

By Theorem 3.9, all 2n−1 directed embeddings of the cobblestone digraph Jn+1

have genus 0. Suppose that we consider the alternating rotation system for a
cobblestone digraph with corresponding S0-embedding as shown in Figure 3.11 as
an initial position. We observe that the end-vertices lie on the same face, so we
are in Case (2). If the rotations at all the interior vertices are changed, then we
are also in Case (2). These two are the only alternating rotation systems that
correspond to Case (2). From each of these two, we have one embedding in S0

and one in S1. The other 2n−1−2 embeddings are in Case (1). From each of them
we have two embeddings in S1. Therefore,

ΓBRn(x) = 2(1 + x) +
(
2n−1 − 2

)
x

= 2 + (2n − 2)x �

3.6. 4-regular outerplanar digraphs. We recall that the characteristic tree T
of a 4-regular outerplane digraph D is the weak dual of the underlying graph
of D. In Theorem 3.11, the 2-connectedness restriction is to defer the treatment
of self-arcs, which are allowed under the premises of Theorem 3.12.
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Theorem 3.11. Let D be a 2-connected 4-regular outerplanar digraph, and let T
be the characteristic tree for any planar embedding of D. Let K1,i1 , K1,i2 , . . . , K1,ik

be the stars in a red-blue star decomposition of T . Then the directed genus poly-
nomial of the digraph D is given by

ΓD(x) =
k∏

j=1

(
2 + (2ij − 2)x

)
.(3.11)

Proof. It follows from Theorem 3.3 and Theorem 3.5 that the characteristic tree T
of a 4-regular outerplane digraph has a red-blue star decomposition. As we have
discussed in §3.2, the duals of these red-blue stars are bracelet graphs. Ac-
cordingly, the digraph D is constructible by iterated amalgamation of directed
bracelets, that is, of copies of BBr and UBs, for r, s ∈ {i1, i2, . . . , ik}. However,
Proposition 3.4 and Theorem 3.7 imply that, if any of these directed bracelets
actually was a uni-directional bracelet UBs, then the digraph D would be non-
planar. It follows from Theorem 3.10 that

ΓD(x) =
k∏

j=1

ΓBBij
(x) =

k∏
j=1

(
2 + (2ij − 2)x

)
. �

Example 3.1. Let D be the 2-edge connected 4-regular outerplanar digraph of
Figure 3.15, and let us find the directed genus polynomial ΓD(x). According to
Equation (3.11) of Theorem 3.11, we obtain

ΓD(x) = ΓBB3(x)ΓBB2(x)3 = (2 + 6x)(2 + 2x)3

BB3D BB2

BB2

BB2

Figure 3.15. Bracelet decomposition of a 2-edge-connected 4-regular outer-
planar digraph.

When a 4-regular outerplanar digraph D has self-arcs, we use a normalized
outerplane embedding to calculate its directed genus distribution. Whenever D is
not 2-connected, the weak dual of a normalized outerplane embedding of D is a
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forest, rather than a tree, with a tree for each 2-connected component or self-arc,
as illustrated by Figure 3.16. In the case of a self-arc, the tree is trivial. Here,
in a stretch of our definition of red-blue star, we regard K1 as the star K1,0. The
following theorem is implied by Theorem 3.8 and Theorem 3.11, and the details
of the proof are omitted.

Theorem 3.12. Let D be a normalized 4-regular outerplane digraph, and let
T1, T1, . . . , Tk be the components of its weak dual forest F . Let

{K1,i1 , K1,i2 , . . . , K1,il} with (l ≥ 1)

be the union of the stars in the red-blue star decompositions of T1, T1, . . . , Tk. Then
the directed genus polynomial of D is given by

ΓD(x) = 2k−1

k∏
i=1

l∏
j=1

ΓBBij
(x)(3.12)

Where

ΓBBij
(x) =

{
2 + (2ij − 2)x, if ij > 1

1, otherwise.
�

Example 3.2. Let D be the 4-regular outerplanar digraph of Figure 3.16, and
let us find the directed genus polynomial ΓD(x). According to formula (3.12) of
Theorem 3.12, we obtain

ΓD(x) = 23ΓBB1(x)ΓBB1(x)ΓBB3(x)ΓBB2(x) = 8(2 + 6x)(2 + 2x)

BB3D

BB1

BB1

BB2

Figure 3.16. The directed genus polynomial of a normalized 4-regular outer-
planar digraph D.
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3.7. Unimodality. We show in this subsection that the directed genus distribu-
tion of a 4-regular outerplanar digraph is strongly unimodal. We recall that a
real sequence a0 a1, . . . , an is called unimodal if for some number m such that
0 ≤ m ≤ n, we have

a0 ≤ a1 ≤ . . . ≤ am ≥ am+1 ≥ . . . ≥ an,

in which case, m is called the mode of the sequence. Moreover, if for every j
such that 1 ≤ j ≤ n − 1, we have aj

2 ≥ aj−1aj+1, then the sequence is called
log-concave or strongly unimodal. Obviously, a strongly unimodal sequence
is unimodal.

Theorem 3.13. The directed genus distribution of a 4-regular outerplanar digraph
is strongly unimodal.

Proof. The directed genus distribution of the directed bracelet BBk is strongly
unimodal, by Theorem 3.10. Accordingly, by Theorem 3.12, recalling that the
convolution of two strongly unimodal sequences is strongly unimodal, we conclude
that the directed genus distribution of a 4-regular outerplanar digraph is strongly
unimodal. Indeed, from Theorem 3.12, we see that the genus polynomial is a
product of binomials, which implies that it is real-rooted, a stronger condition
than strong unimodality. �

4. Conclusions

Whereas the calculations of genus distributions, inaugurated by [8], are now
quite numerous, the calculation of directed genus distributions, starting with [2],
is a new venture. The genus distribution of 4-regular outerplanar graphs was
calculated by Poshni et al.[15]. Here we have calculated the directed genus distri-
bution for this same class of graphs, and proved that this distribution is strongly
unimodal. In the course of so doing, we have developed methods that can be
used to calculate directed genus distributions of various other Eulerian digraphs.
For example, by Theorem 3.7 and Theorem 3.8, we can calculate (1) the directed
genus distribution of the directed cross-connection G � H of any two digraphs
G and H whose directed genus distributions are known, and (2) the directed
genus distribution of the vertex amalgamation (G, u) ∗ (H, v) of any two digraphs
G and H with two 2-valent roots whose directed genus distributions are known,
with arbitrarily large degrees at vertices of G and H other than at the roots. We
have also proved a splitting theorem for directed embeddings, which implies that
the enumeration of digraph embeddings with any vertex degrees larger than four
can be converted into a problem of enumerating embeddings of some 4-regular
digraphs. We note that the medial graph of a graph is 4-regular, an additional
reason for interest among topological graph theorists in 4-regular graphs.
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