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ABSTRACT
The proliferation and ubiquity of temporal data across many
disciplines has generated substantial interest in the analysis
and mining of time series. Clustering is one of the most pop-
ular data mining methods, not only due to its exploratory
power, but also as a preprocessing step or subroutine for
other techniques. In this paper, we describe k-Shape, a novel
algorithm for time-series clustering. k-Shape relies on a scal-
able iterative refinement procedure, which creates homoge-
neous and well-separated clusters. As its distance measure,
k-Shape uses a normalized version of the cross-correlation
measure in order to consider the shapes of time series while
comparing them. Based on the properties of that distance
measure, we develop a method to compute cluster centroids,
which are used in every iteration to update the assignment
of time series to clusters. An extensive experimental evalu-
ation against partitional, hierarchical, and spectral cluster-
ing methods, with the most competitive distance measures,
showed the robustness of k-Shape. Overall, k-Shape emerges
as a domain-independent, highly accurate, and efficient clus-
tering approach for time series with broad applications.

1. INTRODUCTION
Temporal, or sequential, data mining deals with problems

where data are naturally organized in sequences [28]. We
refer to such data sequences as time-series sequences if they
contain explicit information about timing (e.g., stock, au-
dio, speech, and video) or if an ordering on values can be
inferred (e.g., streams and handwriting). Large volumes of
time-series sequences appear in almost every discipline, in-
cluding astronomy, biology, meteorology, medicine, finance,
robotics, engineering, and others [1, 5, 21, 23, 29, 43, 59,
62]. The ubiquity of time series has generated a substantial
interest in querying [2, 38, 39, 41, 52, 61, 65], indexing [8, 11,
34, 35, 37, 63], classification [30, 47, 58, 70], clustering [36,
45, 54, 69, 71], and modeling [3, 31, 68] of such data.
Among all techniques applied to time-series data, cluster-

ing is the most widely used as it does not rely on costly
human supervision or time-consuming annotation of data.
With clustering, we can identify and summarize interesting
patterns and correlations in the underlying data [27]. In the
last few decades, clustering of time-series sequences has re-
ceived significant attention [4, 14, 21, 40, 51, 54, 56, 69, 71],
not only as a powerful stand-alone exploratory method, but
also as a preprocessing step or subroutine for other tasks.

The original version of this paper was published in ACM
SIGMOD 2015 [53].

30 40 50 60 70 80 90 100
-6

-4

-2

0

2

4

6

Class A

ECG classes

10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Non-linear (local)

Types of sequence alignment

Class B

Class A

30 40 50 60 70 80 90 100

Class B Linear drift (global)

Class A

Class B

Figure 1: ECG sequence examples and types of alignments
for the two classes of the ECGFiveDays dataset [1].

Most time-series analysis methods, including clustering,
critically depend on the choice of distance measure. A key
issue when comparing two sequences is how to handle the
variety of distortions, as we will discuss, that are character-
istic of the sequences. To illustrate this point, consider the
ECGFiveDays dataset [1], with ECG sequences recorded for
the same patient on two different days. While the sequences
seem similar overall, they exhibit patterns that belong in
one of the two distinct classes (see Figure 1): Class A is
characterized by a sharp rise, a drop, and another gradual
increase while Class B is characterized by a gradual increase,
a drop, and another gradual increase. Ideally, a shape-based
clustering method should generate a partition similar to the
classes shown in Figure 1, where sequences exhibiting simi-
lar patterns are placed into the same cluster based on their
shape similarity, regardless of differences in amplitude and
phase. As the notion of shape cannot be precisely defined,
dozens of distance measures have been proposed [9, 10, 12,
16, 18, 46, 64] to offer invariances to multiple inherent distor-
tions in the data. However, it has been shown that distance
measures offering invariances to amplitude and phase per-
form exceptionally well [15, 66] and, hence, such measures
are used for shape-based clustering [44, 50, 54, 69].
Due to these difficulties and the different needs for invari-

ances from one domain to another, more attention has been
given to the creation of new distance measures rather than
to the creation of new clustering algorithms. It is generally
believed that the choice of distance measure is more im-
portant than the clustering algorithm itself [6]. As a conse-
quence, time-series clustering relies mostly on classic cluster-
ing methods, either by replacing the default distance mea-
sure with one that is more appropriate for time series, or
by transforming time series into “flat” data so that existing
clustering algorithms can be directly used [67]. However, the
choice of clustering method can affect: (i) accuracy, as ev-
ery method expresses homogeneity and separation of clus-
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ters differently; and (ii) efficiency, as the computational cost
differs from one method to another. For example, spectral
clustering [17] or certain variants of hierarchical clustering
[33] are more appropriate to identify density-based clusters
(i.e., areas of higher density than the remainder of the data)
than partitional methods such as k-means [42] or k-medoids
[33]. On the other hand, k-means is more efficient than hi-
erarchical, spectral, or k-medoids methods.
Unfortunately, state-of-the-art approaches for shape-based

clustering, which use partitional methods with distance mea-
sures that are scale- and shift-invariant, suffer from two
main drawbacks: (i) these approaches cannot scale to large-
volumes of data as they depend on computationally expen-
sive methods or distance measures [44, 50, 54, 69]; and
(ii) these approaches have been developed for particular do-
mains [69] or their effectiveness has only been shown for a
limited number of datasets [44, 50]. Moreover, the most suc-
cessful shape-based clustering methods handle phase invari-
ance through a local, non-linear alignment of the sequence
coordinates, even though a global alignment is often ade-
quate. For example, for the ECG dataset in Figure 1, an
efficient linear drift can reveal the underlying differences in
patterns of sequences of two classes, whereas an expensive
non-linear alignment might match every corresponding in-
crease or drop of each sequence, making it difficult to distin-
guish the two classes (see Figure 1). Importantly, to the best
of our knowledge, these approaches have never been exten-
sively evaluated against each other, against other partitional
methods, or against different approaches such as hierarchical
or spectral methods. We summarize such an experimental
evaluation below. Our original paper [53] has further details.
In this article, we discuss k-Shape, a novel algorithm for

shape-based time-series clustering that is efficient and do-
main independent. k-Shape is based on a scalable iterative
refinement procedure similar to the one used by the k-means
algorithm, but with significant differences. Specifically, k-
Shape uses both a different distance measure and a different
method for centroid computation from those of k-means. As
argued above, k-Shape attempts to preserve the shapes of
time-series sequences while comparing them. To do so, k-
Shape requires a distance measure that is invariant to scal-
ing and shifting. Unlike other clustering approaches [44, 54,
69], for k-Shape we adapt the cross-correlation statistical
measure and we show: (i) how we can derive in a principled
manner a time-series distance measure that is scale- and
shift-invariant; and (ii) how this distance measure can be
computed efficiently. Based on the properties of the normal-
ized version of cross-correlation, we develop a novel method
to compute cluster centroids, which are used in every itera-
tion to update the assignment of time series to clusters.
To demonstrate the effectiveness of the distance measure

and k-Shape, we have conducted an extensive experimental
evaluation on 48 datasets and compared the state-of-the-art
distance measures and clustering approaches for time series
using rigorous statistical analysis. We took steps to ensure
the reproducibility of our results, including making avail-
able our source code as well as using public datasets. Our
experimental evaluation suggests that: (1) cross-correlation
measures, which are not widely adopted as time-series dis-
tance measures, outperform Euclidean distance (ED) [16]
and are as competitive as state-of-the-art measures, such as
constrained Dynamic Time Warping (cDTW) [60], but sig-
nificantly faster; (2) the k-means algorithm with ED, in con-

trast to what has been reported in the literature, is a robust
approach for time-series clustering, but inadequate modifica-
tions of its distance measure and centroid computation can
reduce its performance; (3) the choice of clustering method,
which was believed to be less important than that of dis-
tance measure, is as important as the choice of distance mea-
sure; and (4) k-Shape outperforms all scalable approaches
in terms of accuracy. Furthermore, k-Shape also outper-
forms all non-scalable (and hence impractical) approaches,
with one exception that achieves similar accuracy results.
However, unlike k-Shape, this approach requires tuning of
its distance measure and is two orders of magnitude slower
than k-Shape. Overall, k-Shape is a highly accurate and
scalable choice for time-series clustering that performs ex-
ceptionally well across domains [53].
We start by reviewing the state of the art for clustering

time series, as well as with our problem definition (Section
2). We then describe our approach, as follows:
• We show how a scale-, translate-, and shift-invariant dis-
tance measure can be derived in a principled manner
from the cross-correlation measure and how this mea-
sure can be efficiently computed (Section 3.1).
• We present a novel method to compute a cluster centroid
when that distance measure is used (Section 3.2).
• We describe k-Shape, a centroid-based algorithm for time-
series clustering (Section 3.3).
• We summarize our extensive experimental evaluation (Sec-
tions 4 and 5).

We conclude with the implications of our work (Section 6).
Please refer to [53] for further details on our approach and
the experimental evaluation.

2. PRELIMINARIES
In this section, we review distortions that are common in

time series (Section 2.1) and the most popular distance mea-
sures for such data (Section 2.2). Then, we summarize exist-
ing approaches for clustering time-series data (Section 2.3)
and for centroid computation (Section 2.4). Finally, we for-
mally present our problem of focus (Section 2.5).

2.1 Time-Series Invariances
Based on the domain, sequences are often distorted in

some way, and distance measures need to satisfy a number
of invariances in order to compare sequences meaningfully.
In this section, we review common time-series distortions
and their invariances. For a more detailed review, see [6].
Scaling and translation invariances: In many cases, it
is useful to recognize the similarity of sequences despite dif-
ferences in amplitude (scaling) and offset (translation). In
other words, transforming a sequence ~x as ~x′ = a~x+b, where
a and b are constants, should not change ~x’s similarity to
other sequences. For example, these invariances might be
useful to analyze seasonal variations in currency values on
foreign exchange markets without being biased by inflation.
Shift invariance: When two sequences are similar but dif-
fer in phase (global alignment) or when there are regions
of the sequences that are aligned and others are not (local
alignment), we might still need to consider them similar.
For example, heartbeats can be out of phase depending on
when we start taking the measurements (global alignment)
and handwritings of a phrase from different people will need
alignment depending on the size of the letters and on the
spaces between words (local alignment).

70 SIGMOD Record, March 2016 (Vol. 45, No. 1)



Uniform scaling invariance: Sequences that differ in
length require either stretching of the shorter sequence or
shrinking of the longer sequence so that we can compare
them effectively. For example, this invariance is required for
heartbeats with measurement periods of different duration.
Occlusion invariance: When subsequences are missing,
we can still compare the sequences by ignoring the subse-
quences that do not match well. This invariance is useful in
handwritings if there is a typo or a letter is missing.
Complexity invariance: When sequences have similar
shape but different complexities, we might want to make
them have low or high similarity based on the application.
For example, audio signals that were recorded indoors and
outdoors might be considered similar, despite the fact that
outdoor signals will be more noisy than indoor signals.
For many tasks, some or all of the above invariances are

required when we compare time-series sequences. To satisfy
the appropriate invariances, we could preprocess the data
to eliminate the corresponding distortions before clustering.
For example, by z-normalizing [24] the data we can achieve
the scaling and translation invariances. However, for invari-
ances that cannot be trivially achieved with a preprocessing
step, we can define sophisticated distance measures that of-
fer distortion invariances. In the next section, we review the
most common such distance measures.

2.2 Time-Series Distance Measures
The two state-of-the-art approaches for time-series com-

parison first z-normalize the sequences and then use a dis-
tance measure to determine their similarity, and possibly
capture more invariances. The most widely used distance
metric is the simple ED [16]. ED compares two time series
~x= (x1, . . . ,xm) and ~y = (y1, . . . ,ym) of length m as follows:

ED(~x,~y) =
√∑m

i=1
(xi−yi)2 (1)

Another popular distance measure is DTW [60]. DTW can
be seen as an extension of ED that offers a local (non-linear)
alignment. To achieve that, an m-by-m matrix M is con-
structed, with the ED between any two points of ~x and ~y. A
warping path W = {w1,w2, . . . ,wk}, with k≥m, is a contigu-
ous set of matrix elements that defines a mapping between
~x and ~y under several constraints [37]:

DTW (~x,~y) = min
√∑k

i=1
wi (2)

This path can be computed on matrixM with dynamic pro-
gramming for the evaluation of the following recurrence:
γ(i, j) =ED(i, j)+min{γ(i−1, j−1),γ(i−1, j),γ(i, j−1)}.
It is common practice to constrain the warping path to
visit only a subset of cells on matrix M . The shape of the
subset matrix is called band and the width of the band is
called warping window. The most frequently used band for
constrained Dynamic Time Warping (cDTW) is the Sakoe-
Chiba band [60]. Figure 2a shows the difference in align-
ments of two sequences offered by ED and DTW distance
measures, whereas Figure 2b presents the computation of
the warping path (dark cells) for cDTW constrained by the
Sakoe-Chiba band with width 5 cells (light cells).
Recently, Wang et al. [66] extensively evaluated 9 distance

measures and several variants thereof. They found that ED
is the most efficient measure with a reasonably high accu-
racy, and that DTW and cDTW perform exceptionally well
in comparison to other measures. cDTW is slightly better

ED

DTW

(a) (b)
Figure 2: Similarity computation: (a) alignment under ED
(top) and DTW (bottom), (b) Sakoe-Chiba band with a
warping window of 5 cells (light cells in band) and the warp-
ing path computed under cDTW (dark cells in band).

than DTW and significantly reduces the computation time.
Several optimizations have been proposed to further speed
up cDTW [55]. In the next section, we review clustering
algorithms that can utilize these distance measures.

2.3 Time-Series Clustering Algorithms
Several methods have been proposed to cluster time se-

ries. All approaches generally modify existing algorithms,
either by replacing the default distance measures with a
version that is more suitable for comparing time series (raw-
based methods), or by transforming the sequences into “flat”
data so that they can be directly used in classic algorithms
(feature- and model-based methods) [67]. Raw-based ap-
proaches can easily leverage the vast literature on distance
measures (see Section 2.2), which has shown that invari-
ances offered by certain measures, such as DTW, are gen-
eral and, hence, suitable for almost every domain [15]. In
contrast, feature- and model-based approaches are usually
domain-dependent and applications on different domains re-
quire that we modify the features or models. Because of
these drawbacks of feature- and model-based methods, in
this paper we follow a raw-based approach.
The three most popular raw-based methods are agglomer-

ative hierarchical, spectral, and partitional clustering [6]. For
hierarchical clustering, the most widely used “linkage” cri-
teria are the single, average, and complete linkage vari-
ants [33]. Spectral clustering [49] has recently started re-
ceiving attention [6] due to its success over other types of
data [17]. Among partitional methods, k-means [42] and k-
medoids [33] are the most representative examples. When
partitional methods use distance measures that offer invari-
ances to scaling, translation, and shifting, we consider them
as shape-based approaches. From these methods, k-medoids
is usually preferred [67]: unlike k-means, k-medoids com-
putes the dissimilarity matrix of all data sequences and
uses actual sequences as cluster centroids; in contrast, k-
means requires the computation of artificial sequences as
centroids, which hinders the easy adaptation of distance
measures other than ED. However, from all these methods,
only the k-means class of algorithms can scale linearly with
the size of the datasets. Recently, k-means was modified to
work with (i) DTW [54] and (ii) a distance measure that
offers pairwise scaling and shifting of time-series sequences
[69]. Both of these modifications rely on new methods to
compute cluster centroids that we will review next.

2.4 Time-Series Averaging Techniques
The computation of an average sequence or, in the con-

text of clustering, a centroid, is a difficult task that critically
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depends on the distance measure used to compare time se-
ries. We now review the state-of-the-art methods for the
computation of an average sequence.
With Euclidean distance, the arithmetic mean is used to

compute an average sequence (e.g., as is the case in the cen-
troid computation of the k-means algorithm). However, as
DTW is more appropriate for many time-series tasks [37,
55], several methods have been proposed to average time-
series sequences under DTW. Nonlinear alignment and av-
eraging filters (NLAAF) [26] uses a simple pairwise method
where each coordinate of the average sequence is calculated
as the center of the mapping produced by DTW. This method
is applied sequentially to pairs of sequences until only one
pair is left. Prioritized shape averaging (PSA) [50] uses a
hierarchical method to average sequences. The coordinates
of an average sequence are computed as the weighted cen-
ter of the coordinates of two time-series sequences that were
coupled by DTW. Initially, all sequences have weight one,
and each average sequence produced in the nodes of the tree
has a weight that corresponds to the number of sequences it
averages. To avoid the high computation cost of previous ap-
proaches, Ranking Shape-based Template Matching Frame-
work (RSTMF) [44] approximates an ordering of the time-
series sequences by looking at the distances of sequences
to all other cluster centroids, instead of computing the dis-
tances of all pairs of sequences.
Several drawbacks of these methods have led to the cre-

ation of a more robust technique called Dynamic TimeWarp-
ing Barycenter Averaging (DBA) [54], which iteratively re-
fines the coordinates of a sequence initially picked from the
data. Each coordinate of the average sequence is updated
with the use of barycenter of one or more coordinates of the
other sequences that were associated with the use of DTW.
Among all these methods, DBA seems to be the most effi-
cient and accurate averaging approach when DTW is used
[54]. Another averaging technique that is based on matrix
decomposition was proposed as part of K-Spectral Centroid
Clustering (KSC) [69], to compute the centroid of a cluster
when a distance measure for pairwise scaling and shifting is
used. In our approach, which we will present in Section 3,
we also rely on matrix decomposition to compute centroids.

2.5 Problem Definition
We address the problem of domain-independent, accurate,

and scalable clustering of time series into k clusters, for a
given value of the target number of clusters k.1 Even though
different domains might require different invariances to data
distortions (see Section 2.1), we focus on distance measures
that offer invariances to scaling and shifting, which are gen-
erally sufficient (see Section 2.2) [15]. Furthermore, to easily
adopt such distance measures, we focus our analysis on raw-
based clustering approaches, as we argued in Section 2.3.
Next, we describe our k-Shape clustering algorithm.

3. K-SHAPE CLUSTERING ALGORITHM
Our objective is to develop a domain-independent, accu-

rate, and scalable algorithm for time-series clustering that
is invariant to scaling and shifting. We propose k-Shape, a
clustering algorithm built on (i) a distance measure and (ii)

1Although the exact estimation of k is difficult without a gold stan-
dard, we can do so by varying k and evaluating clustering quality
with criteria that capture information intrinsic to the data alone [33].

a centroid computation method that can preserve the shapes
of time series. We first discuss our distance measure, which is
based on the cross-correlation measure (Section 3.1). Based
on this distance measure, we propose a method to compute
centroids of time-series clusters (Section 3.2). Finally, we
describe k-Shape, our centroid-based clustering algorithm,
which relies on an iterative refinement procedure that scales
linearly in the number of sequences and generates homoge-
neous and well-separated clusters (Section 3.3).

3.1 Time-Series Shape Similarity
As discussed earlier, capturing shape-based similarity re-

quires distance measures that can handle distortions in am-
plitude and phase. Unfortunately, the best performing dis-
tance measures offering invariances to these distortions, such
as DTW, are computationally expensive (see Section 2.2).
To circumvent this efficiency limitation, we adopt a normal-
ized version of the cross-correlation measure.
Cross-correlation is a measure of similarity for time-lagged

signals that is widely used for signal and image process-
ing. However, cross-correlation, a measure that compares
one-to-one points between signals, has largely been ignored
in experimental evaluations for the problem of time-series
comparison. Instead, starting with the application of DTW
decades ago [7], research on that problem has focused on
elastic distance measures that compare one-to-many or one-
to-none points [9, 10, 37, 46, 64]. In particular, recent
comprehensive and independent experimental evaluations of
state-of-the-art distance measures for time-series compar-
ison — 9 measures and their variants in [15, 66] and 48
measures in [22] — did not consider cross-correlation. Dif-
ferent needs from one domain or application to another hin-
der the process of finding appropriate normalizations for the
data and the cross-correlation measure. Moreover, ineffi-
cient implementations of cross-correlation can make it ap-
pear as slow as DTW. As a consequence of these drawbacks,
cross-correlation has not been widely adopted as a time-
series distance measure. In the rest of this section, we show
how to address these drawbacks. Specifically, we will show
how to choose normalizations that are domain-independent
and efficient, and lead to a shape-based distance measure
for comparing time series efficiently and effectively.
Cross-correlation measure: Cross-correlation is a statis-
tical measure with which we can determine the similarity of
two sequences ~x= (x1, . . . ,xm) and ~y = (y1, . . . ,ym), even if
they are not properly aligned.2 To achieve shift-invariance,
cross-correlation keeps ~y static and slides ~x over ~y to com-
pute their inner product for each shift s of ~x. We denote a
shift of a sequence as follows:

~x(s) =





(
|s|︷ ︸︸ ︷

0, . . . ,0,x1,x2, . . . ,xm−s), s≥ 0
(x1−s, . . . ,xm−1,xm,0, . . . ,0︸ ︷︷ ︸

|s|

), s < 0 (3)

When all possible shifts ~x(s) are considered, with s∈ [−m,m],
we produce CCw(~x,~y) = (c1, . . . , cw), the cross-correlation
sequence with length 2m−1, defined as follows:

CCw(~x,~y) =Rw−m(~x,~y), w ∈ {1,2, . . . ,2m−1} (4)
where Rw−m(~x,~y) is computed, in turn, as:

2For simplicity, we consider sequences of equal length even though
cross-correlation can be computed on sequences of different length.
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Rk(~x,~y) =





m−k∑
l=1

xl+k ·yl, k ≥ 0

R−k(~y,~x), k < 0
(5)

Our goal is to compute the position w at which CCw(~x,~y)
is maximized. Based on this value of w, the optimal shift of
~x with respect to ~y is then ~x(s), where s= w−m.
Depending on the domain or the application, different

normalizations for CCw(~x,~y) might be required. The most
common normalizations are the biased estimator, NCCb,
the unbiased estimator, NCCu, and the coefficient normal-
ization, NCCc, which are defined as follows:

NCCq(~x,~y) =





CCw(~x,~y)
m , q = “b” (NCCb)

CCw(~x,~y)
m−|w−m| , q = “u” (NCCu)

CCw(~x,~y)√
R0(~x,~x)·R0(~y,~y)

, q = “c” (NCCc)
(6)

Beyond the cross-correlation normalizations, time series
might also require normalization to remove inherent distor-
tions. Figure 3 illustrates how the cross-correlation normal-
izations for two sequences ~x and ~y of length m = 1024 are
affected by time-series normalizations. Independently of the
normalization applied to CCw(~x,~y), the produced sequence
will have length 2047. Initially, in Figure 3a, we remove
differences in amplitude by z-normalizing ~x and ~y in order
to show that they are aligned and, hence, no shifting is re-
quired. If CCw(~x,~y) is maximized for w ∈ [1025,2047] (or
w ∈ [1,1023]), one of ~x or ~y should be shifted by i−1024 to
the right (or 1024− i to the left). Otherwise, if w = 1024, ~x
and ~y are properly aligned, which is what we expect in our
example. Figure 3b shows that if we do not z-normalize ~x
and ~y, and we use the biased estimator, then NCCb is max-
imized at w = 1797, which indicates a shifting of a sequence
to the left 1797−1024 = 773 times. If we z-normalize ~x and
~y, and use the unbiased estimator, then NCCu is maximized
at w = 1694, which indicates a shifting of a sequence to the
right 1694− 1024 = 670 times (Figure 3c). Finally, if we
z-normalize ~x and ~y, and use the coefficient normalization,
then NCCc is maximized at w = 1024, which indicates that
no shifting is required (Figure 3d).
As illustrated by the example, normalizations of the data

and the cross-correlation measure can have a significant im-
pact on the cross-correlation sequence produced, which makes
the creation of a distance measure a non-trivial task. Fur-
thermore, as in Figure 3, cross-correlation sequences pro-
duced by pairwise comparisons of multiple time series will
differ in amplitude based on the normalizations. Thus, a
normalization that produces values within a specified range
should be used to meaningfully compare such sequences.
Shape-based distance (SBD): To devise a shape-based
distance measure, and based on the previous discussion, we
use the coefficient normalization that gives values between
−1 and 1, regardless of the data normalization. Coeffi-
cient normalization divides the cross-correlation sequence by
the geometric mean of autocorrelations of the individual se-
quences. After normalization of the sequence, we detect the
position w where NCCc(~x,~y) is maximized and we derive
the following distance measure:

SBD(~x,~y) = 1−max
w

(
CCw(~x,~y)√

R0(~x,~x) ·R0(~y,~y)

)
(7)

which takes values between 0 to 2, with 0 indicating perfect
similarity for time-series sequences.
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Figure 3: Time-series and cross-correlation normalizations.

Up to now we have addressed shift invariance. For scaling
invariance, we transform each sequence ~x into ~x′ = ~x−µ

σ , so
that its mean µ is zero and its standard deviation σ is one.
Efficient computation of SBD: From Equation 4, the
computation of CCw(~x,~y) for all values of w requires O(m2)
time, where m is the time-series length. The convolution
theorem [32] states that the convolution of two time series
can be computed as the Inverse Discrete Fourier Trans-
form (IDFT) of the product of their individual Discrete
Fourier Transforms (DFT). Cross-correlation is then com-
puted as the convolution of two time series if one sequence
is first reversed in time, ~x(t) = ~x(−t) [32], which equals taking
the complex conjugate in the frequency domain. However,
DFT and IDFT still require O(m2) time. By using a Fast
Fourier Transform (FFT) algorithm [13], the time reduces
to O(m log(m)). Data and cross-correlation normalizations
can also be efficiently computed; thus the overall time com-
plexity of SBD remains O(m log(m)). Moreover, recursive
algorithms compute an FFT by dividing it into pieces of
power-of-two size [20]. Therefore, to further improve the per-
formance of the FFT computation, when CC(~x,~y) is not an
exact power of two we pad ~x and ~y with zeros to reach the
next power-of-two length after 2m−1.
This section described effective cross-correlation and data

normalizations to derive a shape-based distance measure. Im-
portantly, we also discussed how the cross-correlation dis-
tance measure can be efficiently computed. Our experiments
show that SBD is highly competitive, achieving similar re-
sults to cDTW and DTW while being orders of magnitude
faster. We now turn to the critical problem of extracting a
centroid for a cluster, to represent the cluster data consis-
tently with the above shape-based distance measure.

3.2 Time-Series Shape Extraction
Many time-series tasks rely on methods that summarize

a set of time series by only one sequence, often referred to
as an average sequence or, in the context of clustering, as a
centroid. The extraction of meaningful centroids is a chal-
lenging task that critically depends on the choice of distance
measure. We now show how to determine such centroids for
time-series clustering for the SBD distance measure, to cap-
ture shared characteristics of the underlying data.
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Figure 4: Examples of centroids for each class of the ECG-
FiveDays dataset, based on the arithmetic mean property
(solid lines) and our shape extraction method (dashed lines).

The easiest way to extract an average sequence from a set
of sequences is to compute each coordinate of the average
sequence as the arithmetic mean of the corresponding coor-
dinates of all sequences. This approach is used by k-means,
the most popular clustering method. In Figure 4, the solid
lines show such centroids for each class in the ECGFive-
Days dataset of Figure 1: these centroids do not capture
effectively the class characteristics (see Figures 1 and 4).
To avoid such problems, we cast the centroid computation

as an optimization problem where the objective is to find the
minimizer of the sum of squared distances to all other time
series sequences. However, as cross-correlation intuitively
captures the similarity — rather than the dissimilarity —
of time series, we can express the computed sequence as the
maximizer of the squared similarities to all other time-series
sequences. Such similarity (Equation 6) requires the com-
putation of an optimal shift for every sequence. As this
approach is used in the context of iterative clustering, we
use the previously computed centroid as reference and align
all sequences towards this reference sequence. This is a rea-
sonable choice because the previous centroid will be very
close to the new centroid. For this alignment, we use SBD,
which identifies an optimal shift for every sequence. Subse-
quently, as sequences are already aligned towards a reference
sequence, we can reduce this maximization to a well-known
problem called maximization of the Rayleigh Quotient [25].
(See details of this reduction in [53].)
A desirable property of the above formulation is that we

can extract the most representative shape from the underly-
ing data in a few lines of code [53]. In Figure 4, the dashed
lines show the centroids of each class in the ECGFiveDays
dataset, extracted with our shape extraction method and
using randomly selected sequences as reference sequences.
This method for shape extraction can more effectively cap-
ture the characteristics of each class (Figure 1) than by using
the arithmetic mean property (solid lines in Figure 4). We
now show how our shape extraction method is used in a
time-series clustering algorithm.

3.3 Shape-based Time-Series Clustering
We now describe k-Shape, our novel algorithm for time-

series clustering. k-Shape relies on the SBD distance mea-
sure of Section 3.1 and the shape extraction method of Sec-
tion 3.2 to efficiently produce clusters of time series.
k-Shape Clustering Algorithm: k-Shape is a partitional
clustering method that is based on an iterative refinement
procedure similar to the one used in k-means. Through this
iterative procedure, k-Shape minimizes the sum of squared
distances and manages to: (i) produce homogeneous and
well-separated clusters, and (ii) scale linearly with the num-
ber of time series. Our algorithm compares sequences ef-
ficiently and computes centroids effectively under the scal-

ing, translation, and shift invariances. k-Shape is a non-
trivial instantiation of k-means and, in contrast to similar
attempts in the literature [54, 69], its distance measure and
centroid computation method make k-Shape the only scal-
able method that significantly outperforms k-means.
In every iteration, k-Shape performs two steps: (i) in the

assignment step, the algorithm updates the cluster mem-
berships by comparing each time series with all computed
centroids and by assigning each time series to the cluster
of the closest centroid; (ii) in the refinement step, the clus-
ter centroids are updated to reflect the changes in cluster
memberships in the previous step. The algorithm repeats
these two steps until either no change in cluster member-
ship occurs or the maximum number of iterations allowed is
reached. In the assignment step, k-Shape relies on the dis-
tance measure of Section 3.1, whereas in the refinement step
it relies on the centroid computation method of Section 3.2.
k-Shape expects as input the time series set and the num-

ber of clusters that we want to produce. (Please refer to
[53] for the full algorithm.) Initially, we randomly assign
the time series in to clusters. Then, we compute each cluster
centroid with the shape extraction method (see Section 3.2).
Once the centroids are computed, we refine the memberships
of the clusters by using the SBD distance measure. We re-
peat this procedure until the algorithm converges or reaches
the maximum number of iterations (usually a small number,
such as 100). The output of the algorithm is the assignment
of sequences to clusters and the centroids for each cluster.
We now turn to the experimental evaluation of k-Shape

against the state-of-the-art time-series clustering approaches.

4. EXPERIMENTAL SETTINGS
In this section, we describe the experimental settings for

the evaluation of both SBD and our k-Shape algorithm.
Datasets: We use 48 class-labeled time-series datasets, both
synthetic and real, which span several different domains [1].
Platform: We ran our experiments on a cluster of 10 servers
with identical configuration: Dual Intel Xeon X5550 proces-
sor with clock speed at 2.67 GHz and 24 GB RAM. Each
server runs Ubuntu 12.04 and Matlab R2012b.
Implementation: We implemented our approach and all
state-of-the-art approaches that we compare against under
the same framework, in Matlab, for a consistent evaluation
in terms of both accuracy and efficiency. For repeatability
purposes, we make all datasets and source code available.3
Baselines: We compare SBD against the strongest state-of-
the-art distance measures for time series (see Section 2.2 for
a detailed discussion), namely, ED, DTW, and cDTW. Only
cDTW requires setting a parameter, to constrain its warp-
ing window. We consider two cases from the literature: (i)
cDTWopt: we compute the optimal window by performing a
leave-one-out classification step over the training set of each
dataset; (ii) cDTWw: we use as window 5%, for cDTW5, of
the length of the time series of each dataset. We compare
k-Shape against the three strongest types of scalable and
non-scalable clustering methods, namely, partitional, hierar-
chical, and spectral methods (see Section 2.3 for a detailed
discussion), combined with the most competitive distance
measures discussed previously (we denote them as Dist).
As scalable methods, we consider the classic k-means algo-
rithm with ED (k-AVG+ED) [42], and the following vari-
3http://www.cs.columbia.edu/~jopa/kshape.html
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Figure 5: Ranking of distance measures based on the aver-
age of their ranks across datasets. The wiggly line connects
all measures that do not perform statistically differently ac-
cording to the Nemenyi test.

ants: (i) k-means with DTW as distance measure and the
DBAmethod for centroid computation (k-DBA) [54] and (ii)
k-means with a distance measure offering pairwise scaling
and shifting of time series and computation of the spectral
norm of a matrix for centroid computation (KSC) [69]. As
non-scalable methods, among partitional methods we con-
sider the Partitioning Around Medoids (PAM+Dist) imple-
mentation of the k-medoids algorithm [33]. Among hierar-
chical methods, we use agglomerative hierarchical cluster-
ing with single (H-S+Dist), average (H-A+Dist), and com-
plete (H-C+Dist) linkage criteria [33]. Finally, among spec-
tral methods, we consider the popular normalized spectral
clustering method (S+Dist) [49]. Overall, we compared k-
Shape against 20 clustering approaches.
Metrics:We compute CPU time utilization and report time
ratios for our comparisons. We use the one nearest neighbor
classification accuracy to evaluate the distance measures and
the Rand Index [57] to evaluate clustering accuracy.
Statistical analysis: We use the Friedman test [19] fol-
lowed by the post-hoc Nemenyi test [48] for comparison of
multiple algorithms over multiple datasets and we report
statistical significant results with a 95% confidence level.

5. EXPERIMENTAL RESULTS
We now provide highlights of the detailed experimental

evaluation in [53]. First, we evaluate SBD against the state-
of-the-art distance measures. Then, we compare k-Shape
against scalable and non-scalable clustering approaches.
Evaluation of SBD:All distance measures, including SBD,
outperform ED with statistical significance. The difference
in accuracy between SBD and DTW is in most cases negligi-
ble: SBD performs at least as well as DTW in 30 datasets.
Considering the constrained versions of DTW, we observe
that SBD performs similarly to or better than cDTWopt and
cDTW5in 22 and 18 datasets, respectively. To better under-
stand the performance of SBD in comparison with cDTWopt

and cDTW5, we evaluate the significance of their differences
in accuracy when considered all together. Figure 5 shows
the average rank across datasets of each distance measure.
cDTWopt is the top measure, with an average rank of 1.96,
meaning that cDTWopt performed best in the majority of
the datasets. The Friedman test rejects the null hypothesis
that all measures behave similarly, and, hence, we proceed
with a post-hoc Nemenyi test, to evaluate the significance
of the differences in the ranks. The wiggly line in the fig-
ure connects all measures that do not perform statistically
differently according to the Nemenyi test. We observe that
the ranks of cDTWopt, cDTW5, and SBD do not present a
significant difference, and ED, which is ranked last, is signif-
icantly worse than the others. In terms of efficiency, SBD is
only 4.4x slower than ED and remains one order of magni-
tude faster than cDTWopt and cDTW5. In conclusion, SBD
is a very efficient, parameter-free distance measure that sig-

1 2 3 4

k-Shape
k-AVG+ED

KSC
k-DBA

Figure 6: Ranking of k-means variants based on the average
of their ranks across datasets. The wiggly line connects
all techniques that do not perform statistically differently
according to the Nemenyi test.

nificantly outperforms ED and achieves similar results to
both constraint and unconstraint versions of DTW.
Evaluation of k-Shape Against Other Scalable Meth-
ods: Figure 6 shows the average rank across datasets of
each k-means variant. k-Shape is the top technique, with
an average rank of 1.89, meaning that k-Shape was best
in the majority of the datasets. The Friedman test rejects
that all algorithms behave similarly, so we proceed with a
post-hoc Nemenyi test, to evaluate the significance of the
differences in the ranks. We observe that the ranks of KSC,
k-DBA, and k-AVG+ED do not present a statistically sig-
nificant difference, whereas k-Shape, which is ranked first,
is significantly better than the others. Modifying k-means
with inappropriate distance measures or centroid computa-
tion methods might lead to unexpected results. In terms
of efficiency, k-Shape is one order of magnitude faster than
KSC, two orders of magnitude faster than k-DBA, and one
order of magnitude slower than k-AVG+ED.
Evaluation of k-Shape Against Non-Scalable Meth-
ods: To show the robustness of k-Shape in terms of ac-
curacy beyond scalable approaches, we now ignore scala-
bility and compare k-Shape against hierarchical, spectral,
and k-medoids methods. Among all existing state-of-the-art
methods that use ED or cDTW5 as distance measures, only
partitional methods perform similarly to or better than k-
AVG+ED. In particular, PAM+cDTW5 is the only method
that outperforms k-AVG+ED. Figure 7 shows that k-Shape,
PAM+SBD, PAM+cDTW5, and S+SBD (i.e., all methods
outperforming k-AVG+ED) do not present a significant dif-
ference in accuracy, whereas k-AVG+ED, which is ranked
last, is significantly worse than the others.
In short, our experimental evaluation suggests that SBD is

as competitive as state-of-the-art measures, such as cDTW
and DTW, but faster, and k-Shape is the only method that
is both accurate and efficient. In [53], we provide further
details on these findings and on the performance of hierar-
chical and spectral methods as well.

6. CONCLUSIONS
We presented k-Shape, a partitional clustering algorithm

that preserves the shapes of time series. k-Shape compares
time series efficiently and computes centroids effectively un-
der the scaling and shift invariances. We have identified
many interesting directions for future work. For example,
k-Shape currently operates over a single time-series repre-
sentation and cannot handle multiple representations. Con-
sidering that several transformations (e.g., smoothing) can
reduce noise and eliminate outliers in time series, an ex-
tension of k-Shape to leverage characteristics from multiple
representations can significantly improve its accuracy. An-
other future direction is to explore the usefulness of k-Shape
as a “subroutine” of other methods. For example, nearest
centroid classifiers rely on effective clustering of time series
and subsequent extraction of centroids for the clusters.
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Figure 7: Ranking of methods that outperform k-AVG+ED
based on the average of their ranks across datasets. The
wiggly line connects all techniques that do not perform sta-
tistically differently according to the Nemenyi test.
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