Popularity-Guided Top-k Extraction of Entity Attributes*

Matthew Solomon
Columbia University
solomon@cs.columbia.edu

ABSTRACT

Recent progress in information extraction technology has
enabled a vast array of applications that rely on structured
data that is embedded in natural-language text. In particu-
lar, the extraction of concepts from the Web—with their de-
sired attributes—is important to provide applications with
rich, structured access to information. In this paper, we
focus on an important family of concepts, namely, enti-
ties (e.g., people or organizations) and their attributes, and
study how to efficiently and effectively extract them from
Web-accessible text documents. Unfortunately, information
extraction over the Web is challenging for both quality and
efficiency reasons. Regarding quality, many sources on the
Web contain misleading or invalid information; furthermore,
extraction systems often return incorrect data. Regarding
efficiency, information extraction is a time-consuming pro-
cess, often involving expensive text-processing steps. We
present a top-k extraction processing approach that addresses
both the quality and efficiency challenges: for each entity
and attribute of interest, we return the top-k values of the
attribute for the entity according to a scoring function for
extracted attribute values. This scoring function weighs the
extraction confidence from individual documents, as well as
the “importance” of the documents where the information
originates. We define the document importance in terms of
entity-specific document “popularity” statistics from a ma-
jor search engine. Overall, our top-k extraction processing
approach manages to identify the top attribute values for
the entities of interest efficiently, as we demonstrate with a
large-scale experimental evaluation over real-life data.

1. INTRODUCTION

There is an unprecedented wealth of information on the
Web, and search engines are the dominant interface to ac-
cess much of this information. As the traditional Web search

*This material is based upon work supported by a Yahoo!
Faculty Research and Engagement Gift, and by the National
Science Foundation under Grant I1S-08-11038.

Permission to make digital or hard copies of all or part o thvwork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listgyuies prior specific
permission and/or a fee.

WebDB '10 Indianapolis, IN USA

Copyright 2010 ACM 978-1-4503-0186-2/10/06 ...$10.00.

Cong Yu
Yahoo! Research
congyu@yahoo-inc.com

Luis Gravano
Columbia University
gravano@cs.columbia.edu

paradigm (i.e., keyword search with 10 blue links as results)
becomes increasingly mature, identifying concepts from the
Web and extracting desired attributes about them are crit-
ical to enable rich, structured access to information. For
example, a user may be interested in compiling information
about a group of politicians, such as their party affiliations
and positions in government. Rather than directing the user
to potentially relevant documents that contain the informa-
tion, a better system should automatically present to the
user the exact values corresponding to these attributes of
interest. In this paper, we focus on an important subset of
the concepts, namely, entities (e.g., people or organizations)
and study how to efficiently and effectively extract attribute
information for them from the Web.

Research in information extraction has designed techniques
to automatically extract structured relational data from un-
structured text. For example, an information extraction sys-
tem would parse the sentence “Barack Obama is the pres-
ident of the United States,” and produce a tuple (Barack
Obama, President). Extraction management systems can
then be used to construct comprehensive lists of entities and
corresponding attribute values from large document sets.
Applying these techniques to the Web at large introduces
many research challenges, some of which we will summarize
and address in this paper.

One key challenge for extracting information from un-
structured text sources on the Web is extraction quality.
Sources on the Web include contradictory information, and
extraction systems occasionally make extraction errors. It
is, therefore, critical for the extraction management system
to consider the “importance” of the sources of information
when estimating the “value” of the potentially conflicting
extraction results. In this paper, we do not attempt to de-
termine what facts are “true,” an impossible proposition in
its general form; instead, we focus on resolving extraction
conflicts by analyzing the source importance.

Another challenge is efficiency: information extraction is
often an expensive process that uses complex text processing
methods (e.g., part-of-speech tagging, named-entity recog-
nition, segmentation) to identify the entities and attribute
values within natural-language text. Also, a large number
of domain- and application-specific extraction systems coex-
ist on the Web. (One-size-fits-all systems such as [2] might
not be appropriate for applications that require specialized
extraction systems.) Furthermore, extraction systems are
constantly being refined to improve accuracy, as well as to
handle changes in the extraction tasks and in the underlying
data sources. Therefore, a brute-force extraction approach



that processes all documents on the Web exhaustively for
every system in the evolving set of available extraction sys-
tems would be prohibitively expensive. It is then critical
to carefully choose which documents to consider for each
extraction task, for scalability and efficiency.

To address the above quality and efficiency challenges, we
adopt a top-k extraction processing approach: for each en-
tity and attribute of interest, we aim to return the top-k
values of the attribute for the entity according to a scoring
function for extracted attribute values. This scoring func-
tion will depend on a number of key factors, including ex-
traction confidence and the importance (e.g., popularity, as
determined by a search engine’s access logs) and number of
sources where the extraction originated. In turn, the scoring
function provides opportunities for algorithms to extract the
top-k values of the entity attributes efficiently, by avoiding
processing a large number of the available documents.

Several quality metrics for scoring extractions, some in-
cluding extraction redundancy as a factor (e.g., [4, 12]),
have been proposed. Our scoring function, as discussed
above, will rely on a measure of “importance” of Web sources
for the entities of interest. If most users are looking at in-
formation about certain entities in a small group of Web
sites, then these sites are likely to contain important infor-
mation about those entities. Interestingly, search engines
have access to large repositories of user data that can be
leveraged to identify important sources of information. For
example, by analyzing query click-through statistics, search
engines can identify the Web documents that people refer to
for information about politicians in general or an individual
politician specifically.

With access to such rich and dynamic data, search en-
gines could consistently prioritize extraction on the impor-
tant sites, and therefore reduce the amount of work neces-
sary to extract the best attribute values, as we will see. In
short, the contributions of this paper are as follows:

e We define a robust scoring function for entity attributes
extracted from text documents (Section 2).

e We cast and address our problem as a top-k extraction
processing task (Section 3).

e We evaluate our techniques experimentally using real-
world entities in two separate domains, and leverage
large-scale, real-world user data from a major search
engine (Section 4).

Finally, we discuss related work and summarize our find-
ings in Sections 5 and 6, respectively.

2. PROBLEM DEFINITION

We consider the problem of efficiently extracting attributes
(e.g., position or date of birth) of specific entities (e.g., ath-
letes or politicians) from a set of text documents. To score
the extracted attribute values, we could directly adopt the
extraction confidence produced by the extraction system of
choice. However, we should also consider information on
the extraction sources and their importance. We propose a
robust scoring function that combines both the extraction
confidence and the cumulative document importance to bet-
ter capture the ranking of the extracted attribute values.
In the rest of this section, we formally describe extraction
confidence and document importance in Definitions 1 and 2,
respectively, and introduce our comprehensive scoring func-
tion in Definition 3.

DEFINITION 1 (EXTRACTION CONFIDENCE). Given an

attribute A and a text document d, an information extrac-
tion system extracts zero or more pairs (e,a) from d, where
e is an entity and a is a value of A for e. Furthermore,
the extraction system returns an extraction confidence score
conf (e, a,d) associated with the (e,a) pair and document d,
indicating the expected quality of the extracted information
(0 < conf(e,a,d) <1).
As an example, consider extracting attribute position for
politicians. The OpenCalais extraction system® extracts
the pair (Barack Obama, President) from document d =
http:// news. yahoo. com t opi cs/ bar ack- obang, in-
dicating that entity “Barack Obama” has value “President”
for attribute position. Furthermore, OpenCalais associates
this extraction with conf(Barack Obama, President, d) =
0.595, indicating a relatively high confidence that this infor-
mation is correct. Another piece of extracted information
(e.g., (Barack Obama, Candidate)) may, on the other hand,
get a lower confidence score (e.g., 0.205).

DEFINITION 2 (DOCUMENT IMPORTANCE). Given an
entity e and a document d, we use Yq,. to represent the
entity-specific importance of d for e.

The document importance 74, can be instantiated in dif-
ferent ways. For example, we can consider the “authorita-
tiveness” of d for e [9]. In this paper, we leverage search
engine statistics by examining how often each document is
accessed by users when searching for information related to
an entity. The rationale is that the more frequently a doc-
ument is requested by users, the more likely it contains im-
portant information. (See Section 4 for details.) Consider
an example where we are processing two political entities,
e1 = “Barack Obama” and ex = “Sarah Palin.” The Face-
book page for Obama has v4,., = 197.053, a relatively high
score. In contrast, v4,e, = 0, which is not surprising, given
that this document is not promising for the extraction of
data about Palin.

We are now ready to define the “score” that we assign to
each extracted attribute value for an entity.

DEFINITION 3 (ATTRIBUTE VALUE SCORE). Consider
a set D of documents, an entity e, and a value a for an
attribute A of e. For a given information extraction system,
the score of attribute value a for entity e over document set
D, score(e, a, D), is defined as ZdeD Yd,e + conf(e,a,d).
Intuitively, the score of an attribute value a derived from a
document set D for an entity e will be high if the information
extraction system derives (e, a) with high confidence from a
large number of important documents for e. This definition
combines previous proposals in the literature to characterize
extraction quality (e.g., [8, 12]).

Given the scoring function, we propose a top-k entity at-
tribute extraction task, which is formally defined as follows.
Problem Statement: Consider a set E of entities of in-
terest, an entity attribute A, and an extraction system for
A, as well as a set D of documents. We assume that we are
given the entity-specific importance, v4,e, for each d € D
and e € E. We aim to retrieve the top-k values of attribute
A for each e € E, according to the score function from Def-
inition 3, while minimizing the number of documents in D
that are processed with the extraction system.

In the next section, we describe our preliminary approach
for addressing this top-k extraction processing problem.

'http: //ww. opencal ai s. cont .



3. EXTRACTING TOP-K VALUES

Our goal is to extract the top-k values of a given attribute
for a given set of entities, using an information extraction
system over a set of documents D. The algorithms that we
consider share the following general structure:

Top-k Extraction Processing Algorithm:

Input: set E of entities; information extraction system
X for attribute A; set D of documents

Output: for each e € E, the top-k values of A that can be
extracted from D using X, according to our scoring function
(see Definition 3)

Step 1: Document Selection. Select a batch of unprocessed
documents from D.

Step 2: Extraction. Process each document in batch with
extraction system X.

Step 8: Top-k Calculation. Update rank of extracted at-
tribute values for each e € E, using Definition 3.

Step 4: Stopping Condition. If top-k values for each e € E
have been identified, stop; otherwise, go to Step 1.

To define the stopping condition (Step 4), consider a point
in the execution where we have processed document set D),
and let Dy = D — Dp be the set of unprocessed documents.
For each entity e, let ai,...,ar be the top-k attribute val-
ues for e extracted up to that point in the execution, with
score(e, a;, Dp) > score(e, a;, Dp) if i < j. (If at least one
entity in E has fewer than k extracted values, then the ex-
traction must continue2.) Intuitively, the execution can stop
as long as, for every e € E, score(e, a;, D) > score(e, ay, D),
fori=1,...,k and Va, € Ve —{a1,...,ax}, where V, is the
set of all attribute values that can be extracted for e from
the full document set D. In other words, we can stop as long
as the current top-k values for each entity can be shown to
be the overall top-k values for the entity.

Interestingly, from Definition 3 it follows that score(e, a, D)
< score(e,a, Dp) +b(Du,e), where b(Du, e) = 3, p, Vd.e-
So b(Duy,e) is a (conservative) upper bound on the maxi-
mum gain in score that any attribute value a can receive for
e by processing all of the documents in Dy. (This bound
will be reached if (e,a) is extracted from every document
in Dy with perfect confidence.) We can then state the fol-
lowing proposition, which specifies when we have found the
top-k attribute values for an entity.

PROPOSITION 1. Consider a set D of documents, an en-
tity e, and an information extraction system X for an at-
tribute A of e. Let ai,...,ar be the top-k wvalues for A
and e that can be extracted from Dp C D by X, such that
score(e,a;, Dp) > score(e,a;, Dp) if i < j. Furthermore,
let Dy = D—Dp. Then a,...,ay are the overall top-k val-
ues for A and e if score(e,ar, Dp) > sy, + b(Du,e), where
Su is either (1) score(e, axt+1,Dp), where agt1 is the top-
(k+1) attribute value extracted from Dp for e, if such value
exists, or (2) 0, if only k values are extracted for e from Dp.

This proposition indicates that the top-k values for e have
been identified when no other values could possibly exceed
the current top-k values. This stopping condition is analo-
gous to that of traditional top-k query processing algorithms
(e.g., TA [5], Upper [10]).

2Note that we can define an alternative formulation of the
problem where some entities might receive fewer than k ex-
tracted values (e.g., if no such values can be extracted with
a “sufficiently high” score); see Section 6.

—‘7 min(Dp,D,;.e)

a T |
8 TH T
* 3y 1
attribute value scort * b(Dy.e)
3 3
0 |

aﬁ aunseen

score

Figure 1: A snapshot of a top-3 processing scenario.

Figure 1 shows a snapshot of a top-3 execution for an
entity. Six attribute values, namely, a; through as, have
been extracted. The dark dots represent the current score
of each value, while the segment above each dot represents
the (uniform) b(Duy, e) value. (a@unseen represents values not
yet extracted, with a current score of zero.) The execution
cannot stop at this point because a4, for example, might
become a top-3 value as we process more documents, since
its score upper bound exceeds the current score of as.

We now turn to the critical document selection step (Step
1). Ideally this step should select a set of documents that is
as small as possible among the sets that result in the extrac-
tion of the top-k values for every entity. We will consider a
single-entity scenario first. After processing a document set
Dp, we have a set of extractions (e, a;) with corresponding
scores score(e,a;, Dp). We want to select the next docu-
ment d € Dy to process that will bring us closer to the
stopping condition than any other document (see Proposi-
tion 1). The document with the largest 74, in Dy is nat-
urally the best candidate: it will decrease b(Dy,e) by the
largest amount, and its extractions have the highest poten-
tial score of any d € Dy (see Definition 3). Then, in absence
of additional information about the unprocessed documents,
the optimal document selection strategy is to select the un-
processed document with the largest v4,. until we can stop.

Interestingly, checking the stopping condition (Step 4) in
this one-entity scenario does not need to be done after pro-
cessing each document. Instead, at any point in the execu-
tion, we can calculate the minimum cumulative v4 . value
that the next batch of documents to process must have be-
fore the stopping condition can be reached. Specifically, if we
have processed the documents in Dp and, correspondingly,
we have not yet processed the documents in Dy = D — Dp,
such minimum cumulative value is min(Dp, Dy, €) = (su +
b(Dy,e) — score(e, ar, Dp))/2, where s, is defined as in
Proposition 1 and aj is the current k-th value of A ex-
tracted from Dp. (If fewer than k values have been ex-
tracted, then s, and score(e, ax, Dp) are both assigned val-
ues of 0.) To understand why we need to process documents
whose cumulative 74, value is at least min(Dp, Dy, e) be-
fore stopping, consider once again the top-3 example in Fig-
ure 1. The figure shows that, in this case, min(Dp, Dy, e) =
(score(e, ay, Dp) 4+ b(Du,e) — score(e, as, Dp))/2, which is
marked in the figure with a dashed line. To reach the stop-
ping condition, there are two cases: (1) If ag is indeed
among the top-3 values, then we need to prove it by re-
ducing a4’s upper bound so that it does not exceed as’s
score. The current difference between these two scores is 2 -
min(Dp, Dy, e): in the most efficient scenario, after process-



ing documents with a cumulative vq4,. value of min(Dp, Dy, e),

as’s score and a4’s upper bound coincide in “the middle
point.” (2) If a3 is not among the top-3 values, then we need
to lower its current score upper bound (i.e., score(e, as, Dp)+
b(Duy,e)) so that it does not exceed the score of one value
outside the current top-3 values. So we must lower as’s score
by at least (score(e, as, Dp)+b(Dy,e)—score(e, a;, Dp))/2 >
min(Dp, Dy, e).

Overall, note that processing a batch of documents with
a cumulative 4. of min(Dp,Dy,e) does not guarantee
that the stopping condition will be met; however, without
processing such a batch of documents, the execution can-
not complete. After processing a batch of documents, the
min(Dp, Dy, e) value is recalculated, and the next batch of
unprocessed documents can be selected accordingly.

Now we can address the general, multiple-entity scenario.
Intuitively, the algorithm should identify documents that
have high importance values (Definition 2) for as many en-
tities as possible: we process each of these documents just
once with the information extraction system, and the result
contributes to multiple entities. Unfortunately, we can show
that the problem of picking the smallest set of documents
Dg such that 37, va,. > min(Dp, Dy, e) Ve € E is NP-
Complete, by reducing the minimum set cover problem to
our scenario [6]. So our algorithms will necessarily produce
approximations to this optimal document set.

We now introduce four techniques that differ in how they
select the batch of documents in Step 1 of the algorithm.
The descriptions below assume that we have processed doc-
ument set Dp, and Dy = D — Dp is, as usual, the set of
unprocessed documents.

Ind-Highest-n: Continue to add the document d with
the highest 74, value for each individual entity e, until the
batch contains n documents for every uncompleted entity
(i.e., for each entity for which we have not yet identified the
top-k values).

All-Highest-n: Continue to add the document d with
the highest value of ZeeEU Yd,e, where Ey is the set of un-
completed entities, until the overall batch has n documents.

Ind-Gamma: For each entity e, continue to add the doc-
ument d with the highest 4 . score until the batch of doc-
uments for the entity reaches min(Dp, Dy, e).

All-Gamma: Select the document batch as follows: (1)
batch = ¢; (2) Ve € E,remaininge = min(Dp, Dy, e) —
Y dcbaten Vde; (3) If Ve € E, remaininge = 0, then stop; (4)

oose d such that Y . pmin{vae, remaining.} is maxi-
mum and add it to batch; (5) Go to Step 2.

The above techniques vary in their choice of documents
and, importantly, in the efficiency of their document selec-
tion strategy. Specifically, Ind-Highest-n and Ind-Gamma
are the most efficient strategies because they focus on each
entity in isolation. In contrast, All-Highest-n and All-Gamma
are less efficient since the document set must be reordered
multiple times as entities complete and, for All-Gamma, as
the min(Dp, Dy, e) and remaining. values change.

4. EXPERIMENTAL RESULTS

We evaluate the performance of our algorithms using two
real-life entity sets and a corpus of real Web documents.
In particular, the document importance scores are derived
from the Yahoo! search logs based on the behavior of Ya-
hoo! users (see below). To foster future research, we have
made the document importance data available as part of the

Yahoo! Labs Webscope program?.
4.1 Experimental Settings

Entity sets: We use two entity sets: politicians and ath-
letes. The politicians dataset contains 547 politicians, which
include senators, representatives, state governors, and a few
prominent political figures such as Sarah Palin. The ath-
letes dataset contains 5128 athletes, extracted from both
Wikipedia and Yahoo! Sports. For our experiments, we fo-
cus on one attribute, position, as it is both multi-valued (i.e.,
each entity typically has multiple positions) and widely ap-
plicable to the entities that we consider. For politicians, this
attribute corresponds to the various posts that the entities
held over their career (e.g., author, lawyer, representative);
for athletes, in contrast, this attribute corresponds to the
various positions that each entity had on his or her team
(e.g., quarterback, attacker, coach).

Document importance: We estimate the importance
of a document (Definition 2) using the collective behavior
of search engine users. We consider documents at two lev-
els: host and pattern. Host is simply the host portion of the
URL. Pattern, on the other hand, can take several forms: (1)
an actual URL (e.g., whi t ehouse. conf contact/); (2) a
simple regular expression for dates (e.g., ww. huf fi ngt on-
post . conl ####/ ##/ ##/ , matching URLs with a prefix
such as wwv. huf fi ngt onpost. coni 2008/ 11/ 04/ ); and
(3) an expression with placeholders for an entity name or a
long sequence of terms (e.g., news. aol . coni mai n/ {1 ast _
nane} - pres-i dency/ articl e/ {description}/ match-
ing URLs with a prefix such as news. aol . conl mai n/ obama-
presi dency/articl e/ bar ack- obama- heal t h- care/).

For each entity in the dataset, we compute a frequency
measure based on how many users have searched for the en-
tity and how many times pages matching a particular host
or pattern have been clicked as a result of the search. We
collect the normalized click rate for each (entity, host) and
(entity, pattern) pair over a three-month Yahoo! search log.
We also collect the click rate for each host and pattern over
each entity in the dataset to estimate their importance to
the entire domain (e.g., politicians or athletes). As men-
tioned earlier, this normalized aggregated frequency data is
made available to the general research community through
the Yahoo! Labs Webscope program.

To instantiate specific Web pages for each entity and host,
we use the entity name to form a host-restricted query and
issue it to the Yahoo! search engine through its BOSS API*.
The top-10 returned documents for each (entity, host) pair
are combined to form the full corpus of documents for that
dataset. The corpus for politicians contains 28,546 docu-
ments, and the one for athletes contains 219,873 documents.

Given an entity e and a document d in the corpus, we esti-
mate the entity-specific document importance dq,. as follows.
If d matches a pattern, then d4,c is defined as the click rate
for the (entity, pattern) pair divided by the number of docu-
ments that match the (entity, pattern) pair in the full corpus.
Otherwise, if d does not match any pattern, then it is labeled
as “miscellaneous.” Miscellaneous documents are grouped to-
gether and receive any portion of the host click rate that is
not covered by specific patterns. For example, for entity e,

3htt p: / / webscope. sandbox. yahoo. com  (data set:
ydata-ysearch-location-entity-sources-v1_0; contact: Cong
Yu).

‘htt p: // devel oper. yahoo. coml sear ch/ boss/ .



22000
L
180000
L

2 2

=4 f=

[} @

Sg] <

o 3 53

o S

a a8

— «— 84

=] S <

= o P

8¢ 2

S sy /| - All-Highest-1 €

=1 Ind-Highest-1 s |\ g | All-Highest-1

z 1/ | All-Gamma z Ind-Highest-1
S — Ind-Gamma § — Ind-Gamma
=5 o7
3 3
- T T T T T - T T T T T

2 4 6 8 10 2 4 6 8 10
k k

(a) politicians (b) athletes
Figure 2: Number of documents processed as a func-
tion of k for (a) politicians and (b) athletes.

if the click rate for en. wi ki pedi a. or g is 100, and all pat-
terns with that host (e.g., en. wi ki pedi a. org/ {first_
nane} _{| ast_nane}) collectively have a click rate of 75,
then the remaining, miscellaneous pages collected for e will
share the remaining 25.

We also compute the importance 4 of each document d
for the general entity domain (e.g., politicians or athletes)
in a similar fashion, by considering a host or pattern click
rate over the entire entity set. The entity- and domain-
specific values for an entity e and document d are combined
into the overall importance 74, (Definition 2) as follows:
Yd,e = Qe - (Ba + 0d,e) - 7(d). In this formula, a.® represents
the entity importance (e.g., clicks for entity e documents
divided by total clicks on any entity document) and r(d) is
the result of partitioning the total click rate for a host or
pattern to its corresponding pages based on the order of the
results returned by the search engine.

Extraction system and extraction confidence: Once
a document is chosen for extraction, the actual extraction is
conducted using OpenCalais, which returns extraction con-
fidence values as well.

Metrics: We evaluate the efficiency of our techniques
based on the number of documents extracted to obtain the
top-k attribute values for all entities. (The actual extraction
from the chosen documents dominates the cost of the top-k
extraction process.) We also measure the scheduling time
for our techniques, to evaluate the cost of the document
selection step (Step 1 of the algorithm in Section 3). The
four alternative techniques that we consider differ on this
document selection step. An ideal scheduling algorithm is
expected to reduce the number of documents extracted while
incurring little scheduling overhead. We implemented our
algorithms in Python, on a Linux machine with 16 GB of
RAM and two quad-core Intel Xeon 2 GHz processors.

4.2 Experimental Results

Number of documents: Figure 2(a) shows the number
of documents processed for various k values for politicians.
(For All-Highest-n and Ind-Highest-n we only report results
for n = 1, as larger values of n consistently perform worse
due to unnecessary document processing in the final batch.)
The savings from prioritization are significant: for example,
at k = 1, we only need to process 34% of the documents. As
expected, a larger k value means more documents must be

5The current definition of 4 . considers the “popularity” of
entity e in factor a.; in future work, we will investigate the
impact of this factor in the top-k extraction process.

1000
1000

o All-Highest-1 o All-Highest-1
Ind-Highest-1| Ind-Highest-1|
Sl All-Gamma Sl All-Gamma
® | — Ind-Gamma ® | — Ind-Gamma
Do Do
g8 g8
K K
) )
£ 8§ E§
[ [
o o
S S
& &
o o
2 4 6 8 10 2 4 6 8 10
k k

(a) politicians (b) athletes
Figure 3: Scheduling overhead as a function of k for
(a) politicians and (b) 11% athletes sample.

processed to ensure that the top-k attribute values for each
entity are obtained. We notice that the increase is steeper
at lower ranges. At k = 1, the four methods perform al-
most equivalently because for most entities one value dom-
inates all other candidates (e.g., senator). As k increases,
the difference between the frequency and quality of the top-
k and top-(k + 1) extractions is smaller, and lower-ranked
extractions appear less frequently in general. Therefore in-
creasingly more documents must be processed to identify
the top-(k + 1) value. Figure 2(b) shows analogous results
for athletes but without All-Gamma, which is prohibitively
expensive over large datasets such as athletes (see below).

Overall, the most complex document selection technique,
namely, All-Gamma, which considers the “global” contribu-
tion of each document across entities, is matched in perfor-
mance by the other, simpler techniques. We believe this is
mainly due to extraction sparsity, i.e., the extraction system
can only extract high-quality results from a small percentage
of documents. As a result, the fastest way to reach the stop-
ping condition is to shrink the bounds (from the top) rather
than improve the scores of already extracted attribute values
(from the bottom). Picking the documents with the largest
~a,e scores for each entity individually, therefore, becomes
the most effective way to decrease the bound. Furthermore,
in our datasets, documents with non-zero ~q4 . scores for mul-
tiple entities are uncommon (1% in the politicians corpus,
5% in the athletes corpus), and the most important docu-
ments for each entity are often specific to that entity (e.g.,
Wikipedia articles, Twitter pages), hence the good perfor-
mance of the techniques that consider individual entities in
isolation for document selection. So we can rely on the less
expensive techniques (namely, Ind-Gamma and Ind-Highest-
1) and finish the top-k extraction process with a similar
number of processed documents.

Document selection overhead: Figure 3 shows the
document selection overhead of the four techniques for both
politicians and an 11%-sample of the athletes dataset®. The
scheduling task determines which document(s) to process
for each batch, with the number of overall batches vary-
ing by method. Ind-Highest-1 produces a new batch each
time a document is processed for each uncompleted entity,
which results in significantly more batches than with Ind-
Gamma or All-Gamma (e.g., for £ = 1 on the politicians
dataset, Ind-Highest-1 needs 616 document batches, while

5The execution of All-Gamma was prohibitively expensive
over the full athletes dataset, because of its size. An 11%
sample of athletes matches the size of the politicians dataset.



Ind-Gamma needs just 16). For every batch calculation,
all algorithms must at least check the stopping condition
for each entity, to determine if execution has completed for
any or all entities. All-Gamma and Ind-Gamma addition-
ally must calculate new values of min(Dp, Dy, e) for each
entity to determine the next batch size. We measure the
total cost by the cumulative CPU time used to produce all
of the batches. As shown in Figure 3, the overall scheduling
overhead of All-Highest-1, Ind-Highest-1, and Ind-Gamma
is small, at around 10 seconds; this value is negligible rel-
ative to the actual extraction times: the time to process
a single document using OpenCalais is, on average, 5 sec-
onds, and ranges between 0.5 and 12 seconds depending on
the document length. We also explored the overhead for
increasingly larger fractions of the athletes dataset. Again,
all algorithms except All-Gamma scale up nicely with no
significant increase in scheduling overhead.

5. RELATED WORK

Our work is perhaps closest to a recent paper by Jain and
Srivastava [8]. The authors investigate efficient algorithms
for answering good(k,{) queries, which return k extracted
tuples among the top-{ fraction of all tuples ranked by their
extraction confidence. Jain and Srivastava resort to this
relaxation of the top-k extraction problem because, in the
absence of a document prioritization scheme, solving the
top-k version of the problem would require processing most
documents. In our work, we exploit real user data to define
the importance of each document for each entity, which leads
to efficient solutions for the top-k extraction task.

Scalable information extraction from a large corpus of doc-
uments has recently received significant attention [3]. One
important approach is OpenlE [2], which focuses on super-
efficient extraction from all documents. Another approach is
prioritization [7], which processes the most promising docu-
ments first in order to conserve resources. Our work adopts
the general prioritization approach but differs from [7] by
incorporating document importance into the prioritization
decisions, without examining the documents themselves.

The stopping condition adopted in our scheduling algo-
rithms is inspired by the bounding conditions for top-k query
processing by Fagin et al. [5] and used in numerous other
projects (e.g., [10]). Also, we assume that the extraction
confidence is provided by the underlying information extrac-
tion system, which is a problem tackled in several previous
studies [1, 4, 12]. Similar to our work, information from
search logs has also been leveraged to make prioritization
decisions for different tasks, such as Web crawling [11].

6. CONCLUSION AND DISCUSSION

In this paper, we addressed the problem of extracting
the top-k attribute values for a set of entities of interest.
Our approach relies on information extraction technology
to process natural-language text documents and extract en-
tity information. We proposed a scoring function for the
extracted entity attributes that considers both the extrac-
tion confidence from each individual document, as well as
the “importance” and number of the documents where the
information originates. For our experiments, over two en-
tity domains and real-life data, we relied on entity-specific
document “popularity” statistics from a major search engine
to define document importance. (The data that we used for
our experiments is available as part of Yahoo!’s Webscope

program.) Our experimental evaluation shows that our top-
k extraction processing approach is promising and manages
to produce the desired extraction results efficiently.

Many open issues and challenges remain, which will be
the subject of future work. Specifically, our work so far has
used a scoring function for extracted information that, as
discussed, is inspired in multiple proposals in the literature
to characterize extraction quality (e.g., [4, 8, 12]). The scor-
ing function is intuitively appealing, including its choice of
the specific document “importance” measure. But a careful
evaluation of the merits of this function, as well as of vari-
ants thereof, remains the subject of important future work.
As another direction of future work, we will investigate vari-
ations of the top-k£ model in this paper. Our current model
insists that we extract k attribute values for each entity of
interest. But often using a uniform value of k£ across entities
is far from ideal (e.g., for the position attribute of politicians,
consider a young politician who has held only one public po-
sition, and for whom k = 1 might be appropriate, against
a much older politician who has been in the public eye for
decades, and for whom a much larger value of k£ might be
preferable). We will consider variations of the query model
that perhaps combine the current top-k model with some
threshold-based scheme, so that we can decide to declare an
entity “completed” even if fewer than k attribute values for
it have been identified and, alternatively, return more than k
values for other entities, if appropriate. Finally, our current
model assumes a predetermined set of entities of interest.
In many domains, the entities of interest are slow-changing
(e.g., football players, diseases), so a list of popular entities
can be easily maintained. However, occasionally, a new or
previously inconspicuous entity might become prominent,
with a resulting surge in queries and relevant documents.
As future work, we will study the impact on our general ex-
traction approach of such emerging entities, which have a
short-lived but high-volume life cycle of importance.

7. REFERENCES

[1] E. Agichtein and L. Gravano. Snowball: Extracting
relations from large plain-text collections. In DL, 2000.

[2] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead,
and O. Etzioni. Open information extraction from the web.
In IJCAIL 2007.

[3] W. Cohen and A. McCallum. Information extraction from
the world wide web. In KDD, 2003.

[4] D. Downey, O. Etzioni, and S. Soderland. A probabilistic
model of redundancy in information extraction. In IJCAI,
2005.

[5] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. In PODS, 2001.

[6] M. Garey and D. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman,
1979.

[7] J. Huang and C. Yu. Prioritization of domain-specific web
information extraction. In AAAI 2010.

[8] A. Jain and D. Srivastava. Exploring a few good tuples
from text databases. In ICDE, 2009.

[9] J. M. Kleinberg. Authoritative sources in a hyperlinked
environment. J. ACM, 46(5):604-632, 1999.

[10] A. Marian, N. Bruno, and L. Gravano. Evaluating top-k
queries over web-accessible databases. ACM Trans.
Database Syst., 29(2):319-362, 2004.

[11] S. Pandey and C. Olston. Crawl ordering by search impact.
In WSDM, 2008.

[12] M. Wu and A. Marian. Corroborating answers from
multiple web sources. In WebDB, 2007.



