
Building Query Optimizers for Information Extraction:
The SQoUT Project

Alpa Jain1, Panagiotis Ipeirotis2, Luis Gravano1

1Columbia University, 2New York University

ABSTRACT
Text documents often embed data that is structured in
nature. This structured data is increasingly exposed
using information extraction systems, which generate
structured relations from documents, introducing an
opportunity to process expressive, structured queries
over text databases. This paper discusses our SQoUT1

project, which focuses on processing structured queries
over relations extracted from text databases. We show
how, in our extraction-based scenario, query process-
ing can be decomposed into a sequence of basic steps:
retrieving relevant text documents, extracting relations
from the documents, and joining extracted relations for
queries involving multiple relations. Each of these steps
presents different alternatives and together they form a
rich space of possible query execution strategies. We
identify execution efficiency and output quality as the
two critical properties of a query execution, and argue
that an optimization approach needs to consider both
properties. To this end, we take into account the user-
specified requirements for execution efficiency and out-
put quality, and choose an execution strategy for each
query based on a principled, cost-based comparison of
the alternative execution strategies.

1. INTRODUCTION
Real-world applications frequently rely on the infor-

mation in large collections of text documents. A fi-
nancial analyst is interested in tracking business trans-
actions regarding a specific sector from news articles;
a company wants to trace the general sentiment to-
wards a recently launched product from blog articles;
a biomedical research group needs to identify disease
outbreaks from recent health-related reports; an intel-
ligence agency needs to study alliances between groups
of people and their past professions by analyzing web
pages or email messages. In general, users in the above
scenarios are interested in accessing intrinsically struc-
tured information embedded in unstructured text da-
tabases. To uncover this structured data in text docu-
ments, we can use information extraction systems. In-
1SQoUT stands for “Structured Queries over Unstructured
Text Databases.”

.

formation extraction systems automatically extract struc-
tured relations from text documents, enabling the ef-
fective querying of the extracted data in more powerful
and expressive ways than possible over the unstructured
text. In this paper, we will discuss fundamental issues
in defining and efficiently processing structured queries
over relations extracted from text databases, in the con-
text of our SQoUT project [10, 11, 12, 13, 14]. To
understand the family of structured queries on which
we focus in this paper, consider the following example.

Example 1. Consider an archive of newspaper arti-
cles (such as the New York Times (NYT), as shown in
Figure 1) along with an appropriately trained extraction
system to extract a Communications(Person, MetWith)
relation, where a tuple 〈α, β〉 indicates that the person α
communicated (e.g., via a meeting or a phone call) with
person β. Consider now an intelligence agent who is in-
terested in recent communications reported in the NYT
news articles involving a specific person, named Nabil
Shaath. So an appropriate query could be expressed us-
ing SQL as SELECT C.Person FROM Communications
C WHERE C.MetWith = ‘Nabil Shaath’. In principle,
such a query can be answered using the data embedded
in the news articles. Specifically, to address this query
we can extract information on communications using
the extraction system over appropriate documents re-
trieved from the news archive, to generate tuples such
as 〈Qaftan Majali, Nabil Shaath〉 and then project only
the necessary columns, as shown in Figure 1.

Query processing in an extraction-based scenario can
be decomposed into a sequence of basic steps: retrieving
relevant text documents, extracting relations from the
documents, and joining extracted relations for queries
involving multiple relations. During query processing,
there are generally various alternatives for each of these
steps, for multiple reasons. First, information extrac-
tion systems are often far from perfect, and might out-
put erroneous information or miss information that they
should capture. As extraction systems may vary in their
output quality, we may consider more than one extrac-
tion system to extract a relation. Second, information
extraction is a time-consuming task, so query process-
ing strategies may focus on minimizing the number of
documents that they process. For instance, to process
the query in Example 1, we can follow an “exhaustive”
execution that sequentially processes and extracts in-

Minister of Interior Qaftan Majali and Foreign Minister
Nabil Shaath met on Tuesday to discuss procedures

taken by the government to facilitate ...

Carter met with
Khaled Mashaal, the
group's exiled leader.

Qaftan Majali Nabil Shaath
Carter Khaled Mashaal

Person MetWith

Communications tuples
extracted from the Web

... ...

NYT

Figure 1: Processing a selection query on the relation Communications(Person, MetWith) from The
New York Times news articles on the Web.

formation from every document in the New York Times
archive. Alternatively, we can also follow a query-based
execution that retrieves documents likely to contain the
target information, or we can use a classifier-based ap-
proach that determines which New York Times articles
are useful for the task at hand. Additionally, we may
have multiple join algorithms to join relations extracted
from text documents. By composing the various options
for the query processing steps we can form a rich space
of possible query execution strategies.

The candidate execution strategies for a query may
differ substantially in their efficiency and output. The
choice of extraction systems, as well as of the documents
to be processed, affects not only the execution efficiency,
but also the output quality. In the above example, the
exhaustive execution can generate results that are more
complete than those from a query- or classifier-based ex-
ecution; however, the exhaustive execution is likely to
be substantially slower than the (potentially less com-
plete) alternatives. Thus, efficiency-related decisions
meant to avoid processing useless documents may also
compromise the output completeness.

As a natural consequence of this efficiency-quality
trade-off, and depending on the nature of the infor-
mation need, users may have varying preferences re-
garding the execution efficiency and output quality ex-
pected from the querying process: sometimes users may
be after exhaustive, quality-oriented query answers, for
which users may be willing to wait a relatively long
time. Some other times, users may tolerate “quick and
dirty”results, which should be returned fast. Therefore,
a query execution strategy must be selected following a
principled, cost-based comparison of the available can-
didate strategies, and taking user preferences into con-
sideration.

We pose this problem of selecting an appropriate ex-
ecution strategy for a query as a query optimization
problem. To guide the query optimization task, we
characterize query execution strategies by their execu-
tion efficiency and output quality. Selecting a desirable
query execution strategy among all the candidates re-
quires that we effectively estimate execution time and
output quality for the candidate query execution strate-
gies at query optimization time. Just as in the relational

world, we need to decide which execution plan is best for
a given query. Unlike in the relational world, though,
we often lack direct access to detailed statistics (e.g.,
histograms) about the (not-yet-extracted) contents of
the underlying database. So, the task of an optimizer
is non-trivial, because a principled, cost-based plan se-
lection requires addressing multiple challenges:

• How can we account for the imprecise and incom-
plete nature of the information extraction output?

• How do we accurately predict the efficiency and
output quality for an execution strategy? What
database-specific information should we collect?

The rest of the paper is structured as follows: Section 2
further motivates the need for a query optimizer by re-
viewing a broad family of information extraction sys-
tems, various document retrieval strategies, and join
processing algorithms, which together serve as alterna-
tives for critical operations in our query processing ap-
proach. To guide the task of query optimization, Sec-
tion 3 shows how we can estimate important execution
characteristics that allow us to compare query process-
ing strategies and pick a strategy that closely meets
user-specified preferences. Finally, Section 4 discusses
some interesting future directions for research, and we
conclude the discussion in Section 5.

2. THE NEED FOR A QUERY OPTIMIZER
For each of the important query processing steps in

our extraction-based scenario, we generally have sev-
eral options available. To understand this space of can-
didate execution strategies for a query, we discuss the
choice of information extraction systems (Section 2.1),
of methods to retrieve database documents to be pro-
cessed during the extraction process (Section 2.2), and
of algorithms to join the output from multiple extrac-
tion systems (Section 2.3). Given these alternatives, we
show how we can pick a query execution strategy and
discuss the underlying query optimization problem that
needs to be addressed (Section 2.4).

2.1 Extracting Structured Data from Text
Information extraction automatically identifies struc-

tured data from inherently unstructured natural-language

The U.N. reported recently of an <DISEASE>Ebola</DISEASE>
outbreak in <LOCATION>Sudan</LOCATION>.

Figure 2: Extracting DiseaseOutbreaks from
text.

text documents. In general, extraction systems are trained
for a specific task. An extraction system typically be-
gins by preprocessing a given document using lexical
analysis tools (e.g., to identify nouns, verbs, and ad-
jectives), and named-entity taggers (e.g., to identify in-
stances of organizations, locations, and dates). An ex-
traction system then applies extraction patterns, which
are extraction task-specific rules, to the tagged docu-
ment to identify the structured information of interest.

Example 2. Consider the task of extracting a Dis-
easeOutbreaks(Disease, Location) relation from a text
database, where a tuple 〈d, `〉 indicates that an outbreak
of disease d occurred in location `. Figure 2 illustrates
how an instance of the DiseaseOutbreaks relation can
be identified, after annotating the input, using the pat-
tern “〈DISEASE〉 outbreak in 〈LOCATION〉.”

The extraction patterns used by an extraction system
often consist of “connector” phrases or words that cap-
ture the textual context generally associated with the
target information in natural language, but other mod-
els have been proposed [5]. These extraction patterns
may be constructed manually, as in KnowitAll [8], or au-
tomatically, notably by using bootstrapping as in DIPRE
[3], Rapier [4], Snowball [1], or in the work of Pasca et
al. [17].

Information extraction is generally a time-consuming
process, as it can involve a series of expensive text pro-
cessing operations (e.g., part-of-speech or named-entity
tagging). As a result, several approaches have been pro-
posed recently to improve the efficiency of an extraction
task [6, 9, 19, 16, 20]. We revisit one important aspect
of this issue in Section 2.2.

Information extraction is also a noisy process and the
extracted relations are neither perfect nor complete [7,
12, 13, 14]. An extraction system may generate erro-
neous tuples due to various problems (e.g., erroneous
named-entity recognition or imprecise extraction pat-
terns). Additionally, the extraction system may not ex-
tract all the valid tuples from a document (e.g., because
the language in the document does not match any of the
extraction patterns). To examine the quality of the out-
put generated by an extraction system, we can measure
the number of good and bad tuples in the output and, in
turn, the precision and recall of the extraction output.
Intuitively, precision measures the fraction of tuples ex-
tracted by the system from a text database that are
good, while recall measures the fraction of good tuples
that the system manages to extract from the database.
There is a natural trade-off between precision and recall,
and extraction systems may be trained to favor one or
the other. For instance, a precision-oriented extraction
system might be preferable for critical data in the med-
ical domain. In contrast, a recall-oriented extraction

system might be appropriate for an analyst interested
in tracking all company mergers as reported in news-
paper articles. In some scenarios, we might have more
than one extraction system for a relation and the choice
of extraction system for the final execution depends on
the characteristics (e.g., precision, recall, or efficiency)
of these systems. Furthermore, in some cases, informa-
tion extraction systems may export a tuning“knob”that
affects the proportion of good and bad tuples observed
in the extracted relation, and the choice of the knob
setting used for the final execution depends on the char-
acteristics associated with each of these settings [13].

2.2 Retrieving Documents for Extraction
We now discuss various document retrieval methods

and how they impact the execution efficiency and out-
put quality [10, 12].

Scan: Scan sequentially retrieves and processes each
document in the database. While this strategy guar-
antees that we process all the database documents, it
may be unnecessarily wasteful in that many useless doc-
uments will be processed by the information extrac-
tion systems. For instance, to extract the Disease-
Outbreaks relation (see Example 2) from a newspaper
archive, Scan processes all articles in the archive, in-
cluding those that are likely not to produce any tuples,
such as the articles in the Sports section of the newspa-
per.

Filtered Scan: Filtered Scan uses a document classi-
fier to decide whether a database document retrieved
is relevant to an extraction task. Thus, Filtered Scan
avoids processing useless documents not relevant to the
task and tends to be more efficient than Scan. How-
ever, this gain in efficiency might result in a loss of
recall, because classifiers are not perfect and might dis-
card documents that are indeed useful for an extraction
task.

PromD: PromD is a query-based document retrieval
technique that also focuses on promising documents rel-
evant to an extraction task, while avoiding useless doc-
uments not relevant to the task. Specifically, PromD
exploits the search interface of the text database and,
for a given extraction task, sends appropriate queries
derived using machine learning techniques [2]. For ex-
ample, we may derive the query [outbreaks AND fa-
tality] to retrieve documents for the DiseaseOutbreaks
relation. Just as Filtered Scan, PromD might be sub-
stantially more efficient than Scan, but at the expense
of a potential loss of recall.

Const: Const is a query-based technique based on
“pushing down selections” from the user query. Const
finds constants (if any) in a user query to retrieve only
documents that contain those constants. For the query
SELECT * FROM DiseaseOutbreaks WHERE Location =
Sudan, Const uses [Sudan] as a keyword query to fo-
cus only on documents that contain this word, because
documents without it could not contribute useful tu-
ples. Const thus avoids processing all documents, and

Email Messages The New York Times

Communications Political

Carter Khaled Mashaal
Bill Clinton Jeremiah Wright

Person MetWith

... ...

Carter Former U.S. President
Chen Shui-bian Taiwan’s President

Person Position

... ...

Carter Khaled Mashaal
Person MetWith

... ...
Former U.S. President

...

Position

Figure 3: Joining information derived using two
extraction systems.

its efficiency is determined by the selectivity of the con-
stants in the query. Finally, we can naturally combine
the Const queries with the PromD queries to generate
keyword queries such as [outbreaks AND fatality AND
Sudan] to generate results for the above query.

2.3 Joining the Extracted Data
Earlier, in Section 1, we discussed a single-relation

query. By composing the output from multiple extrac-
tion systems, perhaps deployed over multiple text da-
tabases, we can also answer more complex, multiple-
relation structured queries, as illustrated by the follow-
ing example.

Example 3. Consider two text databases, a collec-
tion of email messages (EM), and the archive of The
New York Times (NYT) newspaper (see Figure 3). These
databases embed information that can be used to answer
an intelligence analyst’s query asking for all recent com-
munications between two people, including information
regarding their political role. To answer such a query,
we can use information extraction systems to extract the
Communications relation of Example 1 from EM and a
Political(Person, Position) relation from NYT. So the
analyst’s query can be expressed in SQL as SELECT *
FROM Communications C, Political P WHERE
C.Person = P.Person. For Communications, we ex-
tract tuples such as 〈Carter, Khaled Mashaal〉, indi-
cating that Carter met with Khaled Mashaal; for Po-
litical, we extract tuples such as 〈Carter, Former U.S.
President〉, indicating that Carter has been a U.S. Presi-
dent. After joining all the extracted tuples, we can con-
struct the information sought by the analyst.

To process multiple-relation queries, we identify a va-
riety of join execution algorithms that are adaptations
of their relational world counterparts. Specifically, we
explored three join algorithms that are naturally avail-
able in the context of text databases [14].

Independent Join: Our first algorithm joins two rela-
tions by first independently extracting their tuples and
then joining them to produce the final join result. This
algorithm does not exploit any knowledge from the ex-
traction of one relation to influence the extraction of the
other relation. For example, in Figure 3 we extract and
join the Communications and Political relations follow-

ing an independent join algorithm.

Outer/Inner Join: An alternate join execution al-
gorithm resembles an index nested-loops join [18] and
uses extracted tuples from the “outer” relation (e.g., tu-
ple 〈Carter, Khaled Mashaal〉 for Communications) to
build keyword queries to retrieve documents and guide
the extraction of the “inner” relation (e.g., this algo-
rithm may build query [Carter] to retrieve documents
from which to extract Political tuples that will join with
the Communications tuple).

Zig-Zag Join: Yet another alternate join execution
algorithm that we consider follows a “zig-zag” execu-
tion. Specifically, this algorithm fully interleaves the
extraction of the two relations in a binary join: starting
with one tuple extracted for one relation (e.g., 〈Carter,
Khaled Mashaal〉 for Communications), this algorithm
retrieves documents—via keyword querying on the join
attribute values—for extracting the second relation. In
turn, the tuples from the second relation are used to
build keyword queries to retrieve documents for the first
relation, and the process iterates, effectively alternating
the role of the outer relation of a nested loops execution
over the two relations.

2.4 Selecting a Query Execution Strategy
Query processing, as discussed above, involves analyz-

ing a rich space of candidate execution plans by seam-
lessly combining extraction systems along with appro-
priately chosen document retrieval strategies and join
algorithms. A critical observation is that the choices
of information extraction systems, document retrieval
methods, and join algorithms influence the two main
properties of a query execution discussed above, namely,
execution efficiency and output quality. Thus, candi-
date execution strategies may differ in their efficiency
and output quality, and no single query execution strat-
egy may strictly dominate; in fact, which execution
strategy among all candidates is the best option de-
pends on user-specific requirements.

Following relational query optimization, we built a
query optimizer that explores a space of candidate ex-
ecution strategies for a query and selects a final exe-
cution strategy in a principled, cost-based manner. To
compare candidate execution strategies, we character-
ize each execution strategy in terms of its execution
efficiency and output quality. The execution efficiency
of an execution strategy is naturally a function of the
total time to run the strategy. The output quality of an
execution strategy can be characterized using different
metrics, such as precision and recall (see Section 2.1);
alternatively, we can measure quality simply in terms of
the output composition, namely, in terms of the num-
ber of good and bad tuples among the extracted tuples,
or based on any other metric that uses these values.
We explored such quality metrics in [12, 13, 14] and
presented techniques to predict them, which we briefly
review next in Section 3. Upon estimating the char-
acteristics of the candidate execution strategies, which
execution strategy is appropriate for a query depends

on user-specific needs. As an important feature of our
query processing approach, we explore a variety of query
paradigms to capture user-specific requirements, which
we discuss later in Section 4.

3. ESTIMATING QUERY EXECUTION
CHARACTERISTICS: AN OVERVIEW

The candidate execution strategies for a query may
differ substantially in their execution efficiency and out-
put quality. The choice of execution strategy for a query
heavily depends on the nature of the underlying text
database. For instance, text databases that are dense
in the information to be extracted may be good can-
didates for using Scan for document retrieval; on the
other hand, text databases with sparse coverage of the
information to be extracted may be better candidates
for using PromD or Filtered Scan. Thus, to estimate
the characteristics of an execution strategy, we need
to identify key database-specific factors. An important
challenge is that, unlike in the relational world, where
we have histograms or statistics to estimate the neces-
sary query execution properties, here we do not know
a priori the database characteristics. Naturally, pro-
cessing an entire text collection with all available infor-
mation extraction systems in order to gather necessary
database-specific statistics is not feasible or desirable for
large text databases (e.g., for the Web at large), and so
we need to build effective alternative methods to gather
these statistics.

Estimating the execution time of a query execution
strategy is relatively simple, using statistics such as the
average time to retrieve, filter, and process a document,
along with the total number of documents expected to
be retrieved and processed [12, 13, 14]. These statis-
tics vary depending on both the information extraction
systems of choice (e.g., an extraction system that con-
structs a complete syntactic parse tree of the input doc-
uments is likely to be slower than an extraction system
that returns tuples based on, say, the frequency of entity
co-occurrences) and the document retrieval strategies
(e.g., the time to retrieve and filter a document using
Filtered Scan is likely to be higher than the time to re-
trieve a document using Scan). So, we must consider
both these factors when deriving the database-specific
statistics.

Estimating the output quality of a query execution
strategy, on the other hand, is a more challenging task.
We designed a sampling-based estimation method that
considers an execution strategy “as a whole” and iden-
tifies various database-specific statistics for the entire
strategy [12]. Specifically, for each information extrac-
tion system and each document retrieval strategy, we
derive statistics on the average number of tuples and
of good tuples that the extraction system generates af-
ter processing a document retrieved using the docu-
ment retrieval strategy of choice. During estimation,
these statistics can be extrapolated to the number of
documents that the strategy will process and we can
then estimate the expected output quality of the execu-
tion strategy. To derive these salient database-specific

statistics, a critical observation is that document re-
trieval strategies conceptually divide a text database
into disjoint sets of documents: the (tuple-rich) docu-
ments that match the PromD queries, and the rest of
the documents, which are less likely to result in useful
extracted tuples. Using stratified sampling, we can de-
rive the necessary statistics from each set [12]. Given
an appropriately constructed document sample, most
of the database statistics can be automatically derived.
However, a key new challenge arises when gathering
statistics on the average number of good tuples. We
will discuss this challenge later in Section 4.

The notion of output quality of an execution strategy
is novel to this query optimization problem. Building an
effective query optimization approach requires not only
an understanding of how query execution strategies—
as a single unit—differ, but also an in-depth under-
standing of the impact of each component of an ex-
ecution strategy on the overall execution. With this
in mind, we performed an in-depth study of query ex-
ecutions in an extraction-based scenario. As argued
earlier, query optimization involves making choices for
three important components, namely, information ex-
traction systems, document retrieval strategies, and join
algorithms. Therefore, knowing how these components
work, both stand-alone and together, is crucial to query
processing design and comprehension. In particular,
when studying each component of the strategy our goal
is to capture the impact of a component (and the pa-
rameters thereof) on the overall execution character-
istics. Towards this goal, we built analytical models
for each component that provide a concise view of its
behavior. Specifically, we derived models for the out-
put quality as a function of the information extraction
systems and their parameters (e.g., knob settings), the
document retrieval strategies, as well as the join algo-
rithms. By understanding the impact on the execu-
tion time and output quality of a query execution strat-
egy’s components, we can also understand—and thus,
predict—the characteristics of the overall query execu-
tion strategy [13, 14].

To summarize, given a structured query we explore
the space of candidate execution strategies as discussed
in Section 2. We estimate the key characteristics of
each of the candidate strategies using the techniques
reviewed above. Finally, to guide the choice of appro-
priate query execution strategies, we consider the user-
specified preferences for execution efficiency and output
quality.

4. DISCUSSION
Traditional relational optimizers focus on minimiz-

ing the time to execute a given query. In contrast, a
query optimizer for processing structured queries over
text databases must consider both execution efficiency
and output quality. Thus, designing key components for
a query optimizer in the context of text databases in-
troduces interesting research directions, some of which
we discuss next.

4.1 Automated Quality Evaluation
At the heart of the estimation processes discussed

above lies the critical task of determining whether an
observed tuple is correct or not. This task is impor-
tant for two purposes: (a) to evaluate the output of
the extraction systems and, in turn, the performance of
the query optimizer during evaluation, and (b) to de-
rive database-specific statistics used during query pro-
cessing. To carry out this task, manually inspecting
each tuple is, of course, tedious and prohibitively time-
consuming.

As one possible automated verification approach, we
can resort to using external gold sets to identify all the
good tuples among a set of extracted tuples; tuples that
are present in the gold set are good tuples, and the rest
are bad tuples. However, in many real-life applications
the extraction system needs to extract previously un-
seen tuples that simply do not appear in any gold set.

Earlier work has looked into the problem of verifying
a tuple by gathering evidence from a given text data-
base. In general, these approaches assign a confidence
score to a tuple based on this evidence [1, 7, 17] and,
using an appropriate threshold for the confidence score,
we can determine whether a tuple is good or bad. In
our earlier work [12, 13, 14], we also resorted to a par-
tially automated verification approach. Specifically, we
first manually define a small number of “high-precision”
natural-language patterns for each relation. Then, to
decide whether an extracted tuple is good or not, we
instantiate the high-precision patterns for the relation
with the attribute values for the tuple, and search for
instances of the instantiated patterns using the data-
base’s search interface. We consider the presence of an
instantiated pattern in a database as strong evidence of
tuple correctness.

Example 4. Consider the task of extracting a Head-
quarters(Company, Location) relation from a text data-
base, where a tuple 〈c, `〉 indicates that c is a company
whose headquarters are located in `. To verify tuples of
the Headquarters relation, one possible template we can
define is “〈LOCATION〉-based 〈ORGANIZATION〉. Thus,
the tuple 〈Microsoft Corp., Redmond〉, results in an
instantiated pattern “Redmond-based Microsoft Corp.,”
which we issue as a query to the database’s search in-
terface.

While this template-based verification task allows for
some automation in the tuple-verification process, gen-
erating enough high-precision patterns for each relation
is tedious and may be difficult to achieve. And using a
restricted set of patterns is undesirable as it may result
in few or no tuples being marked as correct and, in turn,
may introduce some bias in the derived output quality.

Automated verification at a large scale is therefore a
hard problem. Ideally, we would like to automatically
verify a tuple based on the evidence gathered from the
underlying database in a reliable manner. Approaches
that leverage small-scale manual annotation (e.g., using
on-demand services like Amazon’s Mechanical Turk2) to
2http://www.mturk.com

improve scalable automatic verification techniques [21]
are promising directions for improving the current state
of the art.

4.2 Query Formulation: Capturing User Needs
As argued earlier, candidate execution strategies for

a given query may differ substantially in their execu-
tion efficiency and their output quality. Furthermore,
different users may have different preferences regarding
the desired execution efficiency and output quality of a
query execution. Based on this observation, we can de-
sign query paradigms that reflect whether users are af-
ter output quality, efficiency, or an appropriate balance
between these two query-execution characteristics. We
briefly review some query processing paradigms that we
have considered.

Threshold-based Model: Sometimes users may be
after some minimum output quality, for which they de-
sire a query execution that is as fast as possible. In [13,
14], we presented a query paradigm where users spec-
ify their preferences in terms of the minimum num-
ber of good tuples desired, as well as the maximum
number of bad tuples that they are willing to toler-
ate. These thresholds then guide the query optimiza-
tion process, which identifies query execution strategies
that meet these user requirements and then picks the
fastest among these candidate strategies. This rela-
tively“low-level”query paradigm can be used as a build-
ing block for higher-level paradigms (e.g., users might
request some minimum precision or recall, under some
constraint on execution time, or some minimum value
for a combination of precision and recall).

Efficiency-Quality “Mixture” Model: In [12], we
presented a query paradigm where users can specify the
desired balance between execution efficiency and out-
put quality. Such “high-level” user preferences can al-
low users to explore a database without having to know
the exact output quality thresholds as is required in the
Threshold-based Model discussed above.

Score-based Model: Sometimes extraction system re-
port each extracted tuple together with an extraction
“score” that reflects the extraction system’s confidence
in the correctness of the extracted tuple. Given such
score-based setting, users may be after a relatively small
number of high-ranking tuples, where the tuple rank-
ing is determined by the tuple confidence scores as ex-
ported by the extraction systems; furthermore, these
tuples should be produced as fast as possible. In [15],
we presented a query paradigm where users can specify
the desired number of high-ranking tuples. This score-
based model allows users to quickly receive a few de-
sirable tuples, while avoiding uninteresting tuples that
have low confidence scores.

The alternative query paradigms discussed above have
relative strengths and weaknesses, particularly in terms
of how natural and useful they are from a user’s per-
spective. An important direction for future work is to
conduct user studies to understand the relative merits
of these paradigms, and also to help define additional

ones that have not yet been explored.

5. CONCLUSION
In this paper, we presented an overview of our on-

going SQoUT project, with the general goal of process-
ing structured queries over relations extracted from text
databases. We identified and tackled a variety of prob-
lems that occur in our query optimization setting for
information extraction. Specifically, we identified a rich
space of query execution strategies and critical query
execution characteristics, namely, efficiency and output
quality. We also discussed methods to estimate these
query execution characteristics, to build, in turn, a ro-
bust query optimizer for our text-based scenario. Our
query optimizer takes into account user-specific require-
ments for execution efficiency and output quality, and
chooses an execution strategy for each query in a prin-
cipled, cost-based manner.

6. ACKNOWLEDGMENTS
This work has been performed in collaboration with

AnHai Doan. This material is based upon work sup-
ported by a generous gift from Microsoft Research, as
well as by the National Science Foundation under Grants
No. IIS-0811038 and IIS-0643846. Any opinions, find-
ings, and conclusions or recommendations expressed in
this material are those of the authors and do not nec-
essarily reflect the views of Microsoft Research or the
National Science Foundation.

7. REFERENCES
[1] E. Agichtein and L. Gravano. Snowball:

Extracting relations from large plain-text
collections. In DL, 2000.

[2] E. Agichtein and L. Gravano. Querying text
databases for efficient information extraction. In
ICDE, 2003.

[3] S. Brin. Extracting patterns and relations from
the world wide web. In WebDB, 1998.

[4] M. E. Califf and R. J. Mooney. Relational
learning of pattern-match rules for information
extraction. In IAAI, 1999.

[5] W. Cohen and A. McCallum. Information
extraction from the World Wide Web (tutorial).
In KDD, 2003.

[6] H. Cunningham, D. Maynard, K. Bontcheva, and
V. Tablan. GATE: An architecture for
development of robust HLT applications. In ACL,
2002.

[7] D. Downey, O. Etzioni, and S. Soderland. A
probabilistic model of redundancy in information
extraction. In IJCAI, 2005.

[8] O. Etzioni, M. J. Cafarella, D. Downey, S. Kok,
A.-M. Popescu, T. Shaked, S. Soderland, D. S.
Weld, and A. Yates. Web-scale information
extraction in KnowItAll (preliminary results). In
WWW, 2004.

[9] D. Ferrucci and A. Lally. UIMA: An architectural
approach to unstructured information processing

in the corporate research environment. In Natural
Language Engineering, 2004.

[10] P. G. Ipeirotis, E. Agichtein, P. Jain, and
L. Gravano. To search or to crawl? Towards a
query optimizer for text-centric tasks. In
SIGMOD, 2006.

[11] P. G. Ipeirotis, E. Agichtein, P. Jain, and
L. Gravano. Towards a query optimizer for
text-centric tasks. ACM Transactions on
Database Systems, 32(4), Dec. 2007.

[12] A. Jain, A. Doan, and L. Gravano. Optimizing
SQL queries over text databases. In ICDE, 2008.

[13] A. Jain and P. G. Ipeirotis. A quality-aware
optimizer for information extraction. ACM
Transactions on Database Systems, 2009. To
appear.

[14] A. Jain, P. G. Ipeirotis, A. Doan, and L. Gravano.
Join optimization of information extraction
output: Quality matters! In ICDE, 2009. To
appear.

[15] A. Jain and D. Srivastava. Exploring a few good
tuples from text databases. In ICDE, 2009. To
appear.

[16] I. Mansuri and S. Sarawagi. A system for
integrating unstructured data into relational
databases. In ICDE, 2006.

[17] M. Paşca, D. Lin, J. Bigham, A. Lifchits, and
A. Jain. Organizing and searching the world wide
web of facts - step one: The one-million fact
extraction challenge. In WWW, 2007.

[18] R. Ramakrishnan and J. Gehrke. Database
Management Systems. McGraw-Hill, 2002.

[19] F. Reiss, S. Raghavan, R. Krishnamurthy, H. Zhu,
and S. Vaithyanathan. An algebraic approach to
rule-based information extraction. In ICDE, 2008.

[20] W. Shen, A. Doan, J. Naughton, and
R. Ramakrishnan. Declarative information
extraction using Datalog with embedded
extraction predicates. In VLDB, 2007.

[21] V. Sheng, F. Provost, and P. G. Ipeirotis. Get
another label? Improving data quality and data
mining using multiple, noisy labelers. In KDD,
2008.

