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Abstract

Keyword search is a familiar and potentially effective

way to find information of interest that is “locked” inside

relational databases. Current work has generally assumed

that answers for a keyword query reside within a single

database. Many practical settings, however, require that

we combine tuples from multiple databases to obtain the

desired answers. Such databases are often autonomous and

heterogeneous in their schemas and data. This paper de-

scribes Kite, a solution to the keyword-search problem over

heterogeneous relational databases. Kite combines schema

matching and structure discovery techniques to find approx-

imate foreign-key joins across heterogeneous databases.

Such joins are critical for producing query results that span

multiple databases and relations. Kite then exploits the

joins – discovered automatically across the databases – to

enable fast and effective querying over the distributed data.

Our extensive experiments over real-world data sets show

that (1) our query processing algorithms are efficient and

(2) our approach manages to produce high-quality query

results spanning multiple heterogeneous databases, with no

need for human reconciliation of the different databases.

1 Introduction

A vast amount of current data resides in relational

databases at enterprises, government agencies, research or-

ganizations, and on the PCs of home users. As such, the

data is often “locked away,” reachable only via SQL query

interfaces. To facilitate access to this data, recent work

has studied the problem of keyword search over relational

databases (e.g., [4, 1, 11, 10, 13, 14, 3]). Such keyword

search facilities allow users to query the databases quickly,

with no need to know SQL or the database schemas. In

addition, keyword search can help discover unexpected an-

swers that are often difficult to obtain via rigid-format SQL

queries. The following example illustrates these issues.

Example 1.1 Consider the simplified database in Figure 1,

which belongs to the Service department of a company, with two

tables, Customers and Complaints, listing customer informa-

tion and their complaints about services, respectively. Suppose

a department manager wants to know about the past interaction

SERVICE  DEPARTMENT  DATABASE

tuple-id   id     service-id  emp-name       comments

u1 c124   020401      Michael Smith   Line repair didn’t work …

u2 c355   130402      Bruce Mayer     Appeared impolite ...

u3 c124   070401       John                  Late, deferred work to Michael Smith …

u4 c124   120403       Smith                Overcharged for service …

Complaints

tuple-id cust-id    name     contact               address

t1 c124        Cisco     Michael Jones    1014 W. Main St, Baltimore, MD

t2 c533        IBM       David Long        503 Lincoln Ave, Paris, Texas

Customers

Figure 1. Sample database with textual relation attributes

between an employee named Michael Smith and Cisco. For this,

the manager can quickly issue the keyword query [Michael Smith

Cisco] to obtain a ranked list of answers. An answer would show

that the two tuples t1 and u1 contain the query keywords and re-

late via foreign-key join cust-id = id, suggesting that Cisco has

made a complaint about a Michael Smith. Another answer would

show two tuples t1 and u3 (again related via the same join), sug-

gesting that Michael Smith is also involved in another complaint

made by Cisco (against John). It would be challenging to write a

SQL query to uncover all such potentially interesting connections

between Michael Smith and Cisco, because this query would need

to check for the occurrence of such keywords in all attributes, and

combine these occurrences in all possible meaningful ways. 2

Keyword search over relational databases thus provides an

attractive querying platform, and has consequently gener-

ated substantial research interest. So far, current work on

this topic has focused on how to search over a single rela-

tional database. In practice, however, we often must query

multiple databases to obtain the desired information.

Example 1.2 Consider again the service company mentioned

earlier. Suppose a manager wants to send an employee named

Jack Lucas to Cisco to negotiate a long-term service contract. To

ensure a smooth negotiation, the manager wants to know if Jack

Lucas has been related in any way to Cisco. To do so, the manager

pulls in the database of the Service department (Figure 2.a) and

that of the Human Resource department (Figure 2.b), then issues

the keyword query [Jack Lucas Cisco] over the collection of the

two databases. This query produces an answer (Figure 2.c) that

reveals that Jack Lucas manages Michael Smith in a group, and

that Cisco has made complaints about a Michael Smith. This in-

formation can help the manager decide if Jack Lucas is the right

choice, or as preparation for the negotiation. Notice that this in-

formation cannot be obtained from each database in isolation. 2



HUMAN  RESOURCE  DEPARTMENT  DATABASE

(b)

c124   Cisco   Michael Jones    1014 W. Main St …

c124        020401         Michael Smith      Line repair didn’t work … e23        Mike D. Smith          54 Lincoln Ave. ...

e23     e37   … e37    Jack Lucas    114 Farewell St. ...v3x1

v1u1

t1

(c)

tuple-id eid     report-to   duration

x1 e23     e37            Feb 15, 2004  – May 15, 2004

x2 e14     e37            May 15, 2003  – Dec 15, 2003

tuple-id    id           name                       address

v1 e23         Mike D. Smith        54 Lincoln Ave. ...

v2 e14         John Brown             67 Main St. ...

v3 e37         Jack Lucas              114 Farewell St. ...

(a)

SERVICE DEPARTMENT DATABASE

tuple-id cust-id         name           contact                      address

t1 c124            Cisco           Michael Jones     1014 W. Main St, Baltimore, MD

t2 c533            IBM             David Long        503 Lincoln Ave, Paris, Texas

Customers

tuple-id     id              service-id      emp-name          comments

u1 c124          020401          Michael Smith     Line repair didn’t work …

u2 c355          130402          Bruce Mayer       Appeared impolite ...

u3 c124          070401          John                  Late, deferred work to Michael Smith …

u4 c124          120403          Smith                 Overcharged for service …

Complaints

Groups

Emps

Figure 2. A keyword search across multiple databases

Other examples of the need for keyword search over multi-

ple databases arise naturally. As these examples show, the

ability to perform keyword searches over multiple databases

is important in many practical settings, and will become in-

creasingly so as the number of such databases grows.

In this paper, we describe Kite, a solution to the

keyword-search problem over heterogeneous relational

databases. As a key challenge to develop Kite, databases for

the potentially dynamic scenarios that we consider have of-

ten not been integrated and exhibit semantic heterogeneity,

at both schema and data levels (e.g., employee names can

be referred to as emp-name and name, and Michael Smith

can be referred to as “Michael Smith” and “Mike D. Smith”

in different databases) [22]. Manually integrating such

heterogeneous databases is well known to be difficult and

might take weeks or months to accomplish [22, 6]. Further-

more, many keyword queries express ad-hoc, short-term

information needs, and hence they require only a tempo-

rary assembling of several databases. To address this prob-

lem, Kite automatically discovers approximate foreign-key

joins across heterogeneous databases, since such joins are

critical for producing query results that span multiple re-

lations. Kite employs a combination of structure discovery

and schema matching methods that empirically outperforms

current join discovery algorithms.

After database integration, Kite faces the challenge of

searching an often large space of potential query results, to

quickly find the top few results for a user query. Searching

this space in a multi-database setting is fundamentally much

harder than in a single-database setting, for the following

reasons. First, the search space grows exponentially with

the number of databases and their associated (automatically

discovered) foreign-key joins. To address this problem, Kite
“condenses” the search space and operates at a higher level

of abstraction than do single-database keyword search so-

lutions. Second, answering queries in this multi-database

scenario often requires executing foreign-key joins across

databases, a much more expensive proposition than over a

single database because of communication costs. This in-

creased cost renders single-database exploration strategies

ineffective in multi-database settings, thus requiring Kite

to develop better exploration strategies that consider the

high cost of cross-database joins. Finally, current single-

database solutions rely on certain statistics (e.g., the esti-

mated result size of a SQL query [10]) to choose an explo-

ration strategy effectively. Unfortunately, it is often diffi-

cult to estimate such statistics accurately in multi-database

settings. To address this limitation, Kite develops a novel

adaptive solution for selecting strategies, which monitors

and changes exploration strategies on-the-fly, whenever the

current strategy no longer appears effective.

In the rest of the paper, we define the problem of key-

word search across heterogeneous relational databases and

describe our solution, Kite, in detail. We report extensive

experimental results over real-world data sets, suggesting

that Kite is efficient and produces high-quality query results

spanning multiple databases, with no need for manual rec-

onciliation of the different databases.

2 Related Work

Many research efforts have studied the problem of key-

word search over a single relational database. Examples in-

clude BANKS [4], DBXplorer [1], Discover [11] and more

[10, 14, 3, 23, 16] (see also Section 3). Beyond the rela-

tional context, keyword search over XML data has attracted

attention (e.g., [17, 2, 9]), but these efforts do not consider

search scenarios with multiple XML databases.

Numerous solutions on data instance matching, as well

as many semi-automatic tools for schema matching, have

also been proposed (see [22, 6] for surveys). Once such

a tool has predicted matches, users typically must manually

verify and correct these matches before querying can be car-

ried out [22]. In this paper, we focus on practical settings

where it is not realistic to assume that the users will have

the time or expertise to manually verify the matches. As we

will see, we show that automatic schema matching is still

useful, and that the ranking of query results helps circum-

vent the inherent imperfection of automatic matching.

Keyword search in peer-to-peer contexts has also re-

ceived attention recently (e.g., [21, 20, 26, 15]). Such set-



tings commonly involve hundreds or thousands of databases

that can leave or join the network at will. Hence these ef-

forts have focused on database selection and distributed in-

dexing [15]. In contrast, we focus on automatically rec-

onciling database heterogeneity and on efficiently finding

query results that span multiple databases.

The problem of processing “top-k” queries has attracted

recent attention in a number of different scenarios. The de-

sign of the top-k searcher that we propose in this paper faces

challenges that are related to other top-k query processing

work (e.g., [7, 18, 24]). Reference [10] also applies some of

the top-k query processing ideas to the problem of keyword

search, but for single-database settings.

3 Problem Definition

We now define the problem of keyword search over mul-

tiple databases. We consider common settings with a rela-

tively small number of databases (up to the tens), such as

the examples discussed in the Introduction. Such settings

are pervasive in enterprises and government agencies, and

for scientific collaboration and home usage. In contrast, we

do not consider (e.g., peer-to-peer) settings with hundreds

or thousands of databases. These settings raise additional

challenges, including database selection and distributed in-

dexing, and are the subject of interesting future research.

We focus on the realistic scenario where the databases

are physically disparate, can be frequently modified, and

are often assembled for keyword search in unforeseen ways.

Hence, we assume that the database contents cannot be re-

trieved and “warehoused” in a single central location. How-

ever, we do assume that (1) the databases can be queried

using standard information retrieval (IR) indexes on the

textual attributes [25], and (2) the databases fully cooper-

ate and participate in the execution of our keyword search

strategies (e.g., allowing for the creation of the indexes and

auxiliary relations, see Section 5).

Single-database search: Before defining the problem of

searching over multiple databases, we briefly review the

single-database scenario to introduce some necessary con-

cepts. Given a keyword query Q over a relational database

D, most keyword-search solutions (e.g., [4, 1, 11, 10]) de-

fine an answer to Q (also called tuple trees in [11, 10]) to

be a set of tuples from D connected via foreign-key joins

(henceforth FK joins, for short). Under Boolean-AND se-

mantics [4, 1, 11], the tuples in an answer to Q are required

to include all keywords in Q. For example, given query Q =

[Michael Smith Cisco] over the database in Figure 1, a pos-

sible answer is t1 → u1, which contains “Cisco” in t1 and

“Michael Smith” in u1, and t1 and u1 are combined via FK

join cust-id = id. Under Boolean-OR semantics [10], an an-

swer may cover only a subset of the query keywords. Thus

answer t1 → u1 is acceptable, and so is t1 → u4, with only

two words, “Smith” and “Cisco”. The result to query Q is

usually a ranked list of answers, where the score for an an-

swer is inversely proportional to the number of joins in the

answer. Early “binary” scoring strategies focused on just

the presence or absence of keywords [11]. Subsequently,

IR-style TF-IDF scoring was introduced for this problem

[10, 16] (see also [4, 3]). Finally, since users often exam-

ine only a few answers, recent work [10] has focused on

returning the top-k answers for Q, for moderate values of

k.

The ideal scenario for multi-database search: We

now define what it means to search multiple databases

with a keyword query Q. We define the ideal top-k re-

sult for Q in a two-step process. First, we manually

integrate the databases, by identifying FK joins across

the databases and resolving data instance discrepancies.

For example, for the “Service” and “Human Resource”

databases in Figures 2.a-b, we may discover that attribute

Complaints.emp-name of database “Service” and at-

tribute Emps.name of database “Human Resource” form

a FK join, and that “Michael Smith” of Complaints.emp-
name matches “Mike D. Smith” of Emps.name. In the

second step, we then process query Q over the integrated

database to produce the top-k results (e.g., following the

IR-style algorithms in [10]). The results of a query may

then span multiple databases and involve both “native” FK

joins, defined as part of the schema of a database, as well as

“derived” FK joins, identified during database integration

and involving multiple databases.

Approximating the ideal scenario: Manually integrating

databases is labor intensive [22], and thus is prohibitively

expensive for our dynamic keyword search settings. Hence,

we approximate the ideal scenario by employing automatic

solutions to discover FK joins and to match data instances

across databases (see Sections 4 and 5).

Once we have automatically identified a set of FK joins

across databases, we can generate answers to a keyword

query Q just like in the ideal scenario. However, observe

that automatic solutions to identify FK joins and to match

data instances are inherently imperfect and often produce

results only with some confidence score [22]. Hence, we

must factor such scores into the answer score. Specifi-

cally, let T be an answer to Q, joining tuples from one or

more databases. Let a1, . . . , an be the attributes in T , and

j1, . . . , jm be the FK joins used to build T . Furthermore, let

d1, . . . , dm be the attribute value pairs “matched” in joins

j1, . . . , jm, respectively. Then we define the score of T for

Q, score(T, Q), as:

αw · scorew(T, Q) + αj · scorej(T ) + αd · scored(T )

size(T )
(1)

where αw, αj , and αd are coefficients, and size(T ) is the

number of joins in T . Furthermore, (1) scorew(T, Q) =∑
ai

score(ai, Q), where score(ai, Q) quantifies how well



Q

…

Distributed

D1 Dn

Index Builder

Foreign key joins

IR index1 IR indexn
…

…
D1 Dn

Refinement

SQL queries

rules

instance
matcher

(a) Offline preprocessing (b) Online querying

Condensed 

CN Generator

Top-k

Searcher

Data
Foreign-Key Join Finder

Data-based               Schema

Join Finder               Matcher

Figure 3. The Kite architecture

attribute ai in T matches keywords in Q; this score is com-

puted using a TF-IDF formula as shown in Equation 1 of

[10]. (2) scorej(T ) =
∑

ji
score(ji), where score(ji)

measures the confidence in join ji of T . If ji is a FK join

within a single database, then this confidence is 1; other-

wise the confidence is computed as detailed in Section 4.

(3) scored(T ) =
∑

di
score(di), where score(di) mea-

sures the “confidence” with which the attribute value pair

associated with FK join ji matched.

In the absence of any further knowledge, we can weight

the three terms in (1) equally, as we currently do in Kite.

Section 6 shows that this setting works well on the evaluated

real-world data sets. More sophisticated schemes could set

the coefficients using user-provided relevance feedback.

Problem definition: We can now define the keyword

search problem considered in this paper. Given databases

D1, . . . , Dn, a keyword query Q, and a scoring function as

defined above, effectively produce the top-k answers for Q

from D1, . . . , Dn, such that these answers closely approxi-

mate the ideal top-k result for Q, as defined above.

The rest of the paper describes the Kite solution to this

problem. Kite operates in two phases: offline preprocess-

ing and online querying. In the offline preprocessing phase

(Figure 3.a), the index builder constructs standard inverted

IR indexes on the text attributes of the databases. Then,

the FK join finder leverages data-based join discovery and

schema matching methods to identify FK joins across the

databases. In the online querying phase, given a top-k key-

word query Q, the condensed candidate network (CN) gen-

erator employs the FK joins and the IR indexes to quickly

identify a space of possible answers to Q. The searcher

then explores this space (via SQL queries issued to the

databases) to find the top-k answers. In doing so, the

searcher employs a set of refinement rules, encoding dif-

ferent exploration strategies, and a data instance matcher.

The next section describes the FK join finder. Section 5

then describes the index builder, the condensed CN genera-

tor, and the top-k searcher.

4 Joins Across Multiple Databases

As discussed earlier, a key challenge to process keyword

queries over multiple databases is to discover FK joins.

Kite employs data-based key and join discovery algorithms

[12, 5] to find FK joins. Then, Kite prunes the set of discov-

ered FK joins using a schema matching method [19]. We

found that adding the pruning step with schema matching

can greatly improve the accuracy of FK join discovery (by

15-49% in our experiments), which is significant because

incorrect FK joins can substantially increase the size of the

search space for the top-k searcher, as well as decrease the

quality of the answers produced.

To explain Kite’s join discovery module, consider two ta-

bles U and V that belong to different databases. Our goal is

to find all FK joins in V that reference a key of table U . For

this, we first find all keys in U , since they will participate in

any FK joins that we discover. Then, we consider each key

of U individually, and identify any attribute sets in V that

could be meaningfully joined with the key. Next, we gen-

erate candidate FK joins. Finally, we only keep candidates

that are “semantically correct,” as we discuss below:

1. Finding keys in table U : We cannot just rely on

the schema-defined keys of table U , because some of these

keys may not be helpful for participating in FK joins across

databases. For example, an id attribute of U might be mean-

ingless to join with a table V in some other database, be-

cause databases may not share the same id space. Rather

than discovering or exploring true keys such as id above,

we focus on finding “approximate” keys in U that help in

defining appropriate FK joins. For this, we employ an ap-

proximate key discovery algorithm developed in [12].

2. Finding joinable attributes in V : Once we have found

the approximate keys of U , we find attributes in V that can

be joined with these keys. Specifically, for each attribute

a in an approximate key of U , we find all attributes b in

V such that a and b are joinable, in that they share many

similar values. To execute this step efficiently, we employ

Bellman [5], a state-of-the-art join discovery algorithm that

computes statistical synopses for attributes to quickly find

“joinable” attributes in large databases.

3. Generating FK join candidates: Next, we identify

candidate FKs by exhaustively listing all possible align-

ments of the key attributes in U with their joinable coun-

terparts in V . As an example, consider a key {a1, a2} in

U and suppose that attribute a1 is joinable with attribute

b1 of V , while attribute a2 is joinable with both attributes

c1 and c2 of V . Then we list two candidate FK joins, J1:

(b1, c1)− (a1, a2), meaning that attributes (b1, c1) of V ref-

erence attributes (a1, a2) of U , and J2: (b1, c2)− (a1, a2).

4. Removing semantically incorrect candidates: Not all

candidate FK joins are meaningful, since current join dis-

covery algorithms (e.g., [5, 12]) examine only the similarity
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Figure 4. (a) Tuple sets, (b) a tuple set graph, (c) CNs, (d) answers, (e) a condensed tuple set graph, and (f) CCNs in a multi-

database

of data values to produce join candidates such as J1 and J2

in our example above. In fact, attributes may share similar

values and yet not be semantically joinable, as is the case

for last-name and city-name (both with string values).

To remove spurious candidate foreign keys, we introduce

a schema matching step that examines the database schemas

to find semantically related attributes. We then keep only

join candidates with semantically related attributes. For ex-

ample, consider join candidate J1: (b1, c1) − (a1, a2). We

discard J1 if either b1 is found not to match a1 or c1 is found

not to match a2 by a schema matching algorithm. Virtually

any effective schema matching algorithm [22] can be used

in this step. Currently, we employ the publicly available

Simflood algorithm [19], which matches attributes based

on the similarity of their names and neighboring attributes.

We return all the surviving FK joins among all relation pairs

across the databases. Note that we focus on discovering

“full” FK joins and ignore partial matches where only some

but not all of the key attributes of a relation are joinable with

attributes of another relation.

5 Scalable Search Across Multiple Databases
We have described how Kite discovers FK joins across

the databases D1, . . . , Dn. Conceptually, D1, . . . , Dn to-

gether with the discovered joins can be viewed as a sin-

gle “integrated” database D, whose tables are the tables of

D1, . . . , Dn, and whose FK joins are the native FK joins

of these databases as well as the discovered FK joins. We

now describe how Kite applies the condensed CN generator

and the top-k searcher to D, to produce top-k answers to

user queries. We then discuss why current keyword search

algorithms over a single database do not scale well over D,

thereby highlighting the key innovations of Kite.

5.1 Generating Condensed Candidate Networks
Given a keyword query Q over the integrated database

D, Kite starts by creating a set of so-called candidate net-

works (CNs), each of which specifies a set of answers to Q.

CNs have been used extensively for keyword search over a

single database [1, 11, 10]. Kite however modifies the def-

inition and generation of CNs, to cope with the exploding

search space in multi-database settings. We will first re-

view a current CN generation algorithm (e.g., as employed

in [1, 11, 10]), and then we will highlight its limitations,

which motivate Kite’s solution.

Creating tuple sets: Given a query Q, the CN genera-

tion algorithm first searches each table R inD (using appro-

priate inverted indexes) to find all tuples that contain some

keywords in Q. These tuples form a tuple set, denoted as

RQ. For example, let D consist of the “Service” and “Hu-

man Resource” databases in Figures 2.a-b, and Q = [Smith

Cisco]. Then, the algorithm generates the three tuples sets

shown in Figure 4.a. The first set, ComplaintsQ, consists

of tuples u1, u3, and u4 of table Complaints, because these

tuples contain keyword “Smith” (see Figure 2.a).

Creating a tuple set graph: Next, the CN gen-

eration algorithm uses the tuple sets, the schemas of

the individual databases, and the discovered FK joins

to construct a tuple set graph (Figure 4.b), which com-

pactly specifies all the possible ways that tuples in tuple

sets can be linked to each other via FK join paths, ei-

ther within or across databases. For example, the path

CustomersQ→Complaints{}←EmpsQ in this graph (see

Figure 4.b) specifies that a tuple in CustomersQ may

be linked to a tuple in EmpsQ via some tuple in Com-

plaints. The notation Complaints{} signifies that Com-
plaints serves as a “bridging” relation in this case.

Creating CNs: Finally, the CN generation algorithm

searches the tuple set graph to create trees with certain

properties, such as not exceeding a prespecified size (see

[1, 11, 10]). Figure 4.c shows examples of trees of var-

ious sizes. Each tree, together with the associated tu-

ple sets, forms a CN, which specifies a set of answers

to Q that can be viewed as conforming to a tree tem-

plate. This set of answers can be obtained by executing

a SQL query that “materializes” the CN. For instance, the

CN CustomersQ J1→ComplaintsQ specifies answers such

that each links a tuple in CustomersQ with a tuple in

ComplaintsQ via join J1; the SQL query for these answers

is:



SELECT *

FROM Customers C, Complaints P

WHERE C.cust-id = P.id AND C.tuple-id = t1 AND

(P.tuple-id = u1 OR P.tuple-id = u3 OR P.tuple-id = u4)

Such SQL queries are frequently executed by the top-k

searcher during query processing.

Creating “condensed” CNs in Kite: In multi-database

settings, the above CN generation algorithm often gener-

ates an unmanageable number of CNs, which makes both

CN generation and the subsequent search for top-k answers

extremely inefficient. The main reason behind this prob-

lem is that, as the number of databases grows, the tuple set

graph size grows significantly, and the number of candidate

subgraphs that must be considered for CN generation grows

exponentially in the number of edges, i.e., FK joins, in the

tuple set graph.

Thus, the current CN generation algorithm [1, 11, 10]

does not scale well to multi-database settings. To address

this limitation, we observe that many CNs often share the

same tuple sets and differ only in the associated joins. Kite’s

solution, then, is to group such CN candidates and treat

them as a single “condensed” CN. Specifically, Kite first

condenses the tuple set graph by collapsing all joins that

combine the same two tuple sets into a single composite

join. Figure 4.e shows the condensed version of the tuple

set graph in Figure 4.b, where the two edges J2 and J3 be-

tween Emps{} and Groups{} have now been condensed

into a single edge. Kite then searches for CNs on the sim-

pler condensed tuple set graph. Figure 4.f lists some CNs

generated from the condensed tuple set graph of Figure 4.e.

We refer to both condensed CNs and “regular” CNs as Con-

densed CNs (CCNs). By condensing tuple set graphs and

generating CCNs, Kite drastically reduces query execution

time without compromising result quality, as we will see in

Section 6.2.

5.2 Iterative Refinement Search

We have described how Kite generates the CCNs for a

query Q, which together encode a typically large space of

answers to Q. Kite then performs an iterative refinement

search in this space to find the top-k answers. Specifically,

Kite views each answer to Q as a concrete state. A set of

concrete states, described in a compact way, forms an ab-

stract state. For example, a CCN is an abstract state. Kite
associates with each state a score interval. The score in-

terval of an abstract state S tightly covers the scores of all

concrete states of S, while the score interval of a concrete

state is just a single value, namely the state score.

Kite starts with the set of CCNs generated in the pre-

vious step (Section 5.1), treating each CCN as an abstract

state. Kite then iteratively refines the abstract states into

less-abstract or concrete states, computes the state scores,

and eliminates suboptimal states, until the algorithm finds

the top-k concrete states. Kite thus achieves computational
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.

. .

. ..

P1 [0.6, 0.8]

Q [0.5, 0.7]

P2 0.9

. P3 0.7

. .. . P [0.6, 1]

R [0.4, 0.9]

.. R1 [0.4, 0.6]

. R2 0.85
..R [0.4, 0.9]

K = {P2, R2}

min score = 0.85

K = {P2, P3},  min score = 0.7

..

(a) (b) (c) (d)

Figure 5. Iterative refinement search in Kite

savings by avoiding an exhaustive search of the entire space

of answers. An example illustrates the search process:

Example 5.1 Consider the execution of a top-2 query in Fig-

ure 5.a, where P, Q, and R are abstract states. State P consists of

four concrete states (denoted with dots) and has a score interval

[0.6,1], meaning that the scores of the four concrete states of P

lie in this range. To continue processing the query, Kite selects P

to refine into states P1, P2, and P3 (we will discuss how to select

and refine states shortly). Next, Kite computes the scores of the

new states and eliminates suboptimal states. Figure 5.b shows the

remaining states. Note that P2 and P3 are concrete states, and

hence are also listed in an “accumulator” K that maintains the

list of top-2 concrete states found so far. Note also that Q has

been eliminated: no concrete state in Q can be among the top-2

states, since K already contains two concrete states, P2 and P3,

whose minimum score (0.7) is greater than or equal to the upper

bound (0.7) on the score interval of Q. Next, suppose that Kite

selects R and refines it into states R1 and R2, shown in Figure 5.c

with recomputed scores. R2 is a concrete state with score 0.85.

This score is higher than the score of P3 (0.7), which is kept in

accumulator K. Hence, Kite updates accumulator K to contain

P2 and R2, with a revised minimum score of 0.85. Next, Kite elim-

inates all other states because their score upper bounds are lower

than 0.85. Kite then returns P2 and R2 as the top-2 answers.2

As described, Kite relies on a small set of crucial decisions:

Which state should it choose to refine in each iteration?

What is the set of refinement rules that it can use? And

which refinement rules should it apply under what condi-

tions? We now elaborate on these decisions.

(a) Selecting a state for refinement: In each iteration,

Kite selects for refinement the abstract state S with the

highest score upper bound. Intuitively, it is not possible to

eliminate S without refinement and reach a solution for the

query, hence we must refine S. This state selection strat-

egy minimizes the number of states that must be refined,

which is desirable because state refinement usually is the

most time-consuming operation of the search process and

requires executing SQL queries that often span multiple dis-

tributed databases.

(b) Defining refinement rules: Kite employs three refine-

ment rules, Full, Partial, and Deep, to refine an abstract

state S. Rules Full and Partial are an adaptation of ex-

isting single-database strategies [10] to our multi-database
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Figure 6. (a) Rule Partial, (b) a “promising” state Sp,

and (c)-(d) applying Partial to pull out two concrete states

from Sp

scenario with condensed CNs.

Rule Full refines S into all constituent concrete states, by

executing an appropriate SQL query, as discussed earlier.

Full completely materializes all concrete states represented

by S. In contrast, Rule Partial, whose pseudocode is in

Figure 6.a, refines S only partially, by focusing on a CCN,

Sp, with the most “promising” score. Specifically, Partial

starts by building Sp from S using the confidence score (see

Section 4) of the FK joins in S; for each composite edge in

S representing multiple joins, Partial builds Sp from S by

just keeping the highest-confidence join. Partial also builds

a CCN Sr encoding all remaining states in S − Sp, and

returns Sp and Sr as the output of the refinement step for

S. For example, consider a CCN S = T Q {J1,J2,J3}
−→ UQ,

where tuple sets T Q and UQ are linked by a composite edge

that represents joins J1, J2, and J3. Furthermore, suppose

that the confidence scores for these FK joins are 0.8, 0.6,

and 0.5, respectively. Then Partial builds Sp by choosing

the highest-confidence join, J1, so Sp = T Q J1→ UQ; corre-

spondingly, Sr represents the “residual” states from S not

covered by Sp, so Sr = T Q {J2,J3}
−→ UQ.

After exploiting the FK join confidence scores to define

Sp, Partial refines Sp further by prioritizing the tuples in

the Sp tuple sets by their score, and evaluating only a small

“prefix” of these ordered tuple lists; the contributing tuples

are marked accordingly. The following example illustrates

the process (see Figure 6.a for the pseudocode for Partial):

Example 5.2 To refine the state Sp = T Q J1

→ UQ mentioned

earlier, Partial first sorts the tuples in T Q and UQ in decreasing

order of their score, as shown in Figure 6.b. Partial then selects

the top two tuples t1 and u1 (i.e., those with highest scores) from

T Q and UQ, respectively, to form a concrete state. If these two

tuples join, then Partial creates the concrete state t1 → u1. In-

tuitively, Partial “pulls out” the most promising concrete state.

Partial then creates a new abstract state S′

p that is identical to Sp,

except that the two selected tuples are “marked” in S′

p by setting a

tuple flag (Figure 6.c). This is to indicate that S′

p does not encode

any concrete states that only include marked tuples, because those

concrete states have been pulled out. The resulting concrete state

and S′

p are shown in Figure 6.c. Now suppose Partial wants to pull

out one more concrete state by refining S′

p. Then Partial selects

t2, the tuple with the highest score among unmarked tuples in T Q

(Figure 6.c) as the next tuple to be marked. Partial joins t2 with

all other marked tuples in UQ, which is only u1 in this case, to

create concrete state t2 → u1. Partial also creates a new abstract

state S′′

p as shown in Figure 6.d, where t2 has been marked.2

In general, given an abstract state S, Rule Partial selects

the most promising unmarked tuple t, joins it with all other

marked tuples to create concrete states, and then creates a

new abstract state where the selected tuple is marked. Note

that t may not join with any other marked tuples, thereby

creating no concrete state.

Rule Full is “radical” in that it exhaustively refines an

abstract state S, generating many concrete states and incur-

ring significant run-time costs. In contrast, Rule Partial is

often “timid” in that it can pull out too few concrete states.

To strike a middle ground, we develop a new rule, called

Deep. Recall that when refining a state Sp using Partial,

the selected tuple is joined only with marked tuples (i.e.,

those that have been selected before, see Example 5.2). Ini-

tially, the set of marked tuples is small, hence the joins may

produce no concrete state. Consequently, Partial does not

make progress, and still incurs a cost of executing the joins.

This cost can be significant in our context, when we must

join across multiple disparate databases. To address this

problem, when a tuple t is selected from a tuple set, Rule

Deep will join t with all tuples – not just the marked ones

– in all other tuple sets. Deep still creates abstract states in

a manner similar to Partial.

(c) Adaptively applying refinement rules: In each search

iteration, once an abstract state S has been selected, Kite

must decide which refinement rule, namely, Full, Partial, or

Deep, should be applied to S. Kite does so in an adaptive

fashion. Intuitively, if a rule has been applied for a while

but does not lead to sufficient query processing progress,

which is characterized by pruning unneeded portions of the

search space, then other rules should be considered. To im-

plement this strategy, we introduce a goodness score for a

rule R as: gscore(R, S) = benefit(R, S)−α ·cost(R, S).
The term cost(R, S) represents the (estimated) cost of re-

fining state S with rule R. Since this refinement ultimately

translates into executing one or several SQL queries, we set

cost(R, S) to be the cost of executing these SQL queries,

and estimate it using the relational query optimizers of the

databases touched by the queries. The term benefit(R,S )
represents the relative “benefit” associated with using rule

R for S. The estimation of benefit(R,S ) deserves some

attention. Initially, all rules are assigned the same default
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Figure 7. Schema of (a) two DBLP databases and (b) an

Inventory database; cross-database FK joins are denoted

with dotted lines

“benefit” for all states. As query execution progresses, Kite
reduces the benefit associated with some rules and states,

as follows. If a rule R has been applied to at least h states

derived from an abstract state S without producing any re-

sult, then intuitively this indicates that rule R might not be

good for state S, so Kite reduces benefit(R,S ) by a penalty

factor c. In each iteration of the search, Kite then adaptively

decides how to refine a state S by picking rule R∗ with the

highest goodness score: R∗ = argmaxR gscore(R,S ).

5.3 Summary of Kite Contributions

We have described how Kite operates on an “integrated”

database D to produce top-k answers for a query. In prin-

ciple, current top-k algorithms designed for querying a sin-

gle database can also be adapted to work over D. Unfortu-

nately, these algorithms do not scale well to multi-database

scenarios. First, current CN generation algorithms often

generate an unmanageable number of CNs, which makes

both the CN generation and the subsequent top-k search ex-

tremely inefficient. Kite addresses this problem by lifting

the level of abstraction, introducing condensed CNs. Sec-

ond, to explore the search space encoded by the CNs, cur-

rent top-k algorithms can be viewed as just applying Rules

Full and Partial, both of which can lead to expensive exe-

cutions in a multi-database context where distributed SQL

query execution is needed. Kite addresses this problem

with Rule Deep, a new exploration strategy that consid-

ers the high cost of cross-database joins. Finally, current

algorithms use database statistics to decide on a refinement

rule, a decision that is never revisited; this is problematic

because it is often difficult to estimate statistics accurately

in multi-database settings. Kite addresses this problem by

adaptively selecting rules, for which Kite closely monitors

their effectiveness over time.

6 Empirical Evaluation

We now describe experiments that (a) examine the run

time and answer quality of Kite, (b) compare Kite with an

adaptation of a state-of-the-art keyword search algorithm

for a single-database scenario, and (c) measure the relative

contributions of the various Kite components.

6.1 Evaluation Settings

We use two real-world data sets: DBLP consists of two

databases with publication records; Inventory consists of

eight databases with inventories of books, CDs, etc. (Ta-

ble 1). Figure 7 show the schemas of the two databases

in DBLP and the schema of a sample database in Inven-
tory. We searched over both DBLP databases, or over two

to eight Inventory databases.

We implemented Kite in Java, and ran our experiments

on Oracle 10g RDBMSs over 2.8 GHz PCs with 2 GB

of RAM. We implemented IR indexes with the Oracle

10g “Text Extension,” and used the distributed SQL query

processing facilities that Oracle provides. Similar dis-

tributed processing facilities are provided by other commer-

cial RDBMSs (e.g., IBM DB2 and Microsoft SQL Server).

Each data point in our graphs was obtained by execut-

ing each of 10 keyword queries three times. The queries

are (1) five queries whose keywords were chosen randomly

from the databases and (2) five queries chosen randomly

from a pool of 20 queries created by volunteers. We did not

use only queries of randomly chosen keywords because we

found that the chance of such keywords having any interest-

ing association is very low (e.g., 1/20000 for two-keyword

queries in an experiment), due to the large database vocab-

ularies. Thus we asked the volunteers to create keyword

queries that can possibly return meaningful associations.

Query execution time is measured starting from when the

query is issued until when the top-k answers have been pro-

duced, without counting offline preprocessing time, which

is shared by all algorithms.

Approximate data instance matching: When applying a re-

finement rule, Kite executes SQL queries that frequently

join tuples from different databases. As discussed in Sec-

tion 3, such joins must often approximately match data in-

stances (e.g., “M. Smith” and “Mike Smith”) because of

data-level heterogeneity. Many matching algorithms have

been developed [6]. For the current Kite implementation,

we employ the approximate string matching algorithm of

[8], which exploits the query processing engines of the

databases to perform matching efficiently.

6.2 Run-Time Performance

Our experiments include a baseline technique, mHybrid,

which is an adaptation to our multi-database context of Hy-

brid, an efficient state-of-the-art top-k algorithm for key-

word search over a single database [10]. Our experiments

study several Kite variations, designed to identify the ef-

fect of various Kite components: Kite is the full-fledged

algorithm in Section 5; k-d is Kite without Rule Deep; k-

ad is Kite without Rule Deep and the ability to adaptively
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change refinement rules on-the-fly; k-c is Kite where the

top-k searcher operates over CNs instead of CCNs. We

examine the algorithms as we vary the maximum allowed

CCN size and the number of answers requested, query key-

words, and databases.

Maximum allowed CCN size: Figure 8.a plots the aver-

age run time versus the maximum allowed CCN size. The

results show that mHybrid does not scale well (e.g., taking

more than 180 seconds on Inventory to handle CCNs of

size 5). In contrast, Kite performed well on both data sets,

producing answers in reasonable amounts of time (e.g., un-

der 6 seconds for CCNs of size 8 in DBLP and CCNs of

size 5 in Inventory). Kite, k-ad, and k-d significantly out-

perform k-c and mHybrid, suggesting that using condensed

CNs (Section 5.1) is crucial to obtain good performance.

Kite also outperforms k-d, which in turn outperforms k-ad.

This result demonstrates the utility of Rule Deep and of the

adaptive search process.

Number of query keywords: Figure 8.b plots the aver-

age run time versus the number of keywords in the queries.

Given the suboptimal performance of mHybrid and k-c,

henceforth we show results for only Kite, k-ad, and k-d, for

simplicity. As expected, the query length significantly af-

fects run time. Longer queries result in larger search spaces,

and in more tables touched across the databases. Our results

show that Kite scales well to a moderate query size (e.g.,

under 10 seconds for queries of size 5). Also, Kite outper-

forms k-d, which in turn outperforms k-ad, demonstrating

again the utility of Rule Deep and the adaptive search pro-

cess.

Number of desired answers: Figure 8.c plots the average

run time versus the number of answers requested, k. Kite
performs well even for relatively large k values (e.g., under

15 seconds at k = 30 for both data sets).
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Number of databases: Figure 8.d plots the average run

time as we vary the number of databases between one and

eight in Inventory. Kite scales well up to a moderate num-

ber of databases. The algorithms with adaptive search scale

much better than the non-adaptive ones: the refinement

rules across databases incur a non-negligible cost of invok-

ing the databases for SQL query execution. So rules that

repeatedly fail significantly increase the run time. The adap-

tive algorithms detect such rules and replace them.1

FK join accuracy: We also measured the accuracy of

the FK joins that are produced by the the join finder (Sec-

tion 4). For this, we manually identified all correct FK joins

across the databases and used this data to compute the pre-

cision, recall, and F1 scores for our join finders. We found

that the data-based join finder achieved 26-64% F1, and that

the schema matcher significantly improves accuracy, to 80-

96% F1. The results thus demonstrate the utility of adding

schema matching to the current join discovery process.

6.3 Query Result Quality

We also assess the quality of the answers returned by

Kite, compared to the hypothetical “ideal” results defined

in Section 3, which involved manually integrating the mul-

tiple databases. Given a query Q, we computed its ideal re-

sult R∗ as follows. First, we provided Kite with the correct

1We have also carried out experiments for a single-database scenario

(not reported here due to space limitations) that show that Kite significantly

outperforms Hybrid, the most efficient keyword search algorithm in the

single-database literature [10], reducing run time by as much as 74%.



FK joins across the databases, which we identified manu-

ally. Next, we issued Q to Kite and obtained a ranked list of

answers. We manually filtered this list to eliminate any spu-

rious results originating from incorrect data-level matching

of tuples. We then returned the top-20 surviving answers

as the ideal result R∗ for Q. This process approximates the

scenario where the keyword search algorithm makes all cor-

rect join discovery and data instance matching decisions.

We then issued Q to Kite again, letting the algorithm

proceed fully automatically to discover the FK joins itself

and obtain a ranked list R of answers for the query. Let

Rk be the top-k answers in R. For different values of k,

we compute the precision at k of the Kite answer, P@k, as

P@k = |Rk∩R∗|
|Rk|

, which measures the fraction of answers in

Rk that also appear in the “ideal” list. Figure 9 plots P@k

versus k. Each data point is averaged over 20 queries (10

queries for each data set), which were selected as described

in Section 6.1. We issued the queries with Boolean-AND

semantics and then repeated the experiment by issuing the

queries with Boolean-OR semantics. Kite managed to pro-

duce high-quality results, with high values of P@k for k

ranging from 1 through 20, suggesting that it can produce

good approximations of the “ideal” query results.

7 Conclusions and Future Work

The problem of keyword search over multiple hetero-

geneous relational databases is important in many practi-

cal settings, and will become increasingly so as the num-

ber of such databases grows. We showed that a multi-

database setting raises several novel challenges, and ren-

ders current single-database algorithms ineffective. To ad-

dress these challenges, we introduced our Kite algorithm.

Our experimental evaluation suggests that Kite scales well

to multiple databases, significantly outperforms our base-

line adaptation of single-database algorithms, and produces

high-quality results with no need for human reconciliation

of the different databases.

As future research, we will explore how to fine-tune

Kite’s answer scoring function (Section 3) using user feed-

back. For our implementation and experiments, we as-

signed equal weights to the three terms of this function,

which capture the degree of match between queries and tu-

ple attributes, as well as the confidence with which poten-

tially heterogeneous attributes and data values are matched.

We have conducted exploratory experiments where a hu-

man was asked to provide input on the Kite query answers

by flagging incorrectly joined answers. We then used this

feedback to adjust the weights of the score function, which

resulted in improvements in the precision of the query an-

swers. This anecdotal evidence leads us to believe that

(moderate) human feedback can be helpful to tune the scor-

ing function. We also plan to extend the Kite algorithm to

account for communication and data-transfer costs across

the databases, which should also have a positive impact on

query execution efficiency, especially for widely distributed

query processing scenarios.
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