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Abstract

Large amounts of (often valuable) information are stored
in web-accessible text databases. “Metasearchers” pro-
vide unified interfaces to query multiple such databases at
once. For efficiency, metasearchers rely on succinct statisti-
cal summaries of the database contents to select the best da-
tabases for each query. So far, database selection research
has largely assumed that databases are static, so the associ-
ated statistical summaries do not need to change over time.
However, databases are rarely static and the statistical sum-
maries that describe their contents need to be updated pe-
riodically to reflect content changes. In this paper, we first
report the results of a study showing how the content sum-
maries of 152 real web databases evolved over a period of
52 weeks. Then, we show how to use “survival analysis”
techniques in general, and Cox’s proportional hazards re-
gression in particular, to model database changes over time
and predict when we should update each content summary.
Finally, we exploit our change model to devise update sched-
ules that keep the summaries up to date by contacting data-
bases only when needed, and then we evaluate the quality of
our schedules experimentally over real web databases.

1. Introduction

A substantial amount of information on the web is stored
in databases and is not indexed by search engines such as
Google. One way to provide one-stop access to the informa-
tion in text databases is through metasearchers, which can
be used to query multiple databases simultaneously. The da-
tabase selection step of the metasearching process, in which
the best databases to search for a given query are identified,
is critical for efficiency, since a metasearcher typically pro-
vides access to a large number of databases. The state-of-
the-art database selection algorithms rely on aggregate sta-
tistics that characterize the database contents. These statis-
tics, which are known as content summaries [15] (or, alter-
natively, as resource descriptions [3]), usually include the
frequency of the words that appear in the database, plus per-
haps other simple statistics such as the number of documents
in the database. These summaries, which provide sufficient

information to decide which databases are the most promis-
ing for evaluating a given query, are the focus of this paper.

So far, database selection research has largely assumed
that databases are static. However, databases are rarely sta-
tic and the statistical summaries that describe their contents
need to be updated periodically to reflect content changes.
Defining schedules for updating database content summaries
is a challenging task, because the rate of change of the data-
base contents might vary drastically from database to data-
base. Furthermore, finding appropriate schedules is impor-
tant so that content summaries are kept up to date but with-
out overloading databases unnecessarily to regenerate sum-
maries that are already (at least close to) up to date.

In this paper, we start by presenting an extensive study
on how the content of 152 real web databases evolved over
a period of 52 weeks. Given that small changes in the da-
tabases might not necessarily be reflected in the (relatively
coarse) content summaries, we examined how these sum-
maries change over time. Our study shows that summaries
indeed change and that old summaries eventually become
obsolete, which then calls for a content summary update
strategy. To model content changes, we resort to the field of
statistics named “survival analysis.” Using the Cox propor-
tional hazards regression model [10], we show that database
characteristics can be used to predict the pattern of change of
the summaries. Finally, we exploit our change model to de-
velop summary update strategies that work well even under
a resource-constrained environment. Our strategies attempt
to contact the databases only when needed, thus minimiz-
ing the communication with the databases. To conclude the
discussion, we report the results of an extensive experimen-
tal evaluation over our 152 real web databases, showing the
effectiveness of our update strategies.

In brief, the contributions of this paper are as follows:

• In Section 3, we report the results of our extensive ex-
perimental study on how the content summaries of 152
real web databases evolved over a period of 52 weeks.

• In Section 4, we use survival analysis techniques to dis-
cover database properties that help predict the rate of
change of database content summaries.

• In Section 5, we show how to update content summaries
by exploiting our change model. The resulting strate-



D1, with |D1|=51,500
w f(w, D1)
algorithm 7,210
cassini 5
saturn 2

D2, with |D2|=5,730
w f(w, D2)
algorithm 2
cassini 3,260
saturn 3,730

Table 1. A fragment of the content summaries
of two databases.

gies attempt to contact the databases only when strictly
needed, thus avoiding wasting resources unnecessarily.

Finally, Section 6 discusses related work, while Section 7
provides further discussion and concludes the paper.

2. Background

This section introduces the notation and necessary back-
ground for this paper. We first define the notion of a “con-
tent summary” for a text database and briefly summarize
how database selection algorithms exploit these summaries
(see [18] for an expanded version of this discussion). Then,
we review how to obtain database content summaries via
querying.

Definition 1: The content summary C(D) of a database D
consists of:

• The actual number of documents in D, |D|, and

• For each word w, the number of D documents f(w, D)
that include w.

For efficiency, a metasearcher should evaluate a query
only on a relatively small number of databases that are rel-
evant to the query. The database selection component of a
metasearcher typically makes the selection decisions using
the information in the content summaries, as the following
example illustrates:

Example 1: Consider the query [cassini saturn] and two
databases D1 and D2. Based on the content summaries of
these databases (Table 1), a database selection algorithm
may infer that D2 is a promising database for the query,
since each query word appears in many D2 documents. In
contrast, D1 will probably be deemed not as relevant, since
it contains only up to a handful of documents with each query
word.

Database selection algorithms work best when the con-
tent summaries are accurate and up to date. The most desir-
able scenario is when each database either (1) is crawlable,
so that we can (periodically) download its contents and gen-
erate content summaries, or (2) exports these content sum-
maries directly and reliably (e.g., using a protocol such as
STARTS [14]). Unfortunately, the so-called hidden-web da-
tabases [16], which abound on the web, are not crawlable

and only provide access to their documents via querying; fur-
thermore, no protocol is widely adopted for web-accessible
databases to export metadata about their contents. Hence,
other solutions have been proposed to automate the construc-
tion of content summaries from hidden-web databases that
do not export such information.

Callan and Connell [4] presented an algorithm for build-
ing (approximate) content summaries of hidden-web text da-
tabases via document sampling. This algorithm first extracts
a document sample (of about 300 documents) from a given
database D via single-word queries. The document sample
is then treated as a small database whose content summary
is used to approximate that of D’s. (Alternative query-based
techniques [17] use different querying strategies.) In this pa-
per, we use the document sampling and content summary
approximation strategy from [4], and we use the “hat” nota-
tion to refer to an approximate content summary:

Definition 2: An approximate, sample-based content sum-
mary Ĉ(D) of a database D consists of:

• An estimate ˆ|D| of the number of documents in D, and

• For each word w, an estimate f̂(w, D) of f(w, D).

The Ĉ(D) estimates are computed from a sample of the doc-
uments in D as described in [4].

Next, we present the results of our study that examined
how content summaries of 152 text databases changed over
a period of 52 weeks.

3. Studying Content Changes of Real Text Da-
tabases

One of the goals of this paper is to study how text database
changes are reflected over time in the database content sum-
maries. First, we discuss our dataset in detail (Section 3.1).
Then, we report our study of the effect of database changes
on the content summaries (Section 3.2). The conclusions of
this study will be critical later in the paper, when we discuss
how to model content summary change patterns.

3.1. Data for our Study

Our study and experiments involved 152 searchable data-
bases, whose contents were downloaded weekly from Octo-
ber 2002 through October 2003. These databases have previ-
ously been used in a study of the evolution of web pages [23].
The databases were –roughly– the five top-ranked web sites
in a subset of the topical categories of the Google Directory,
which, in turn, reuses the hierarchical classification of web
sites from the Open Directory Project. (Please refer to [23]
for more details on the rationale behind the choice of these
web sites.) From these web sites, we picked only those sites
that provided a search interface over their contents, which



Domain com edu gov misc org
% 47.3% 13.1% 17.1% 6.8% 15.7%

Table 2. Domain distribution in our dataset.

Category % Category %
computers 22.5% reference 7.3%

science 17.2% sports 5.3%
health 9.9% news 4.0%
arts 8.6% business 4.0%

regional 7.9% recreation 2.0%
society 7.3% misc 4.0%

Table 3. Category distribution in our dataset.

are needed to generate sample-based content summaries.
Also, since we wanted to study content changes, we only se-
lected databases with crawlable content, so that every week
we can retrieve the full database contents using a crawler.
A complete list of the sites included in our experiments
is available at http://webarchive.cs.ucla.edu/. Ta-
ble 2 shows the breakdown of web sites in the set by high-
level DNS domain, where the misc category represents a va-
riety of relatively small domains (e.g., mil, uk, dk, and jp).
Similarly, Table 3 shows the breakdown of web sites by top-
ical category, as assigned by the Google Directory. In this
case, the misc category represents various small topical cat-
egories (e.g., world, shopping, and games).

We downloaded the contents of the 152 web sites every
week over one year, up to a maximum of 200,000 pages per
site at a time.1 Each weekly snapshot consisted of three to
five million pages, or around 65 GB before compression, for
a total over one year of almost 3.3 TB of history data.

We treat each web site as a database, and created –each
week– the complete content summary C(D) of each data-
base D by downloading and processing all of its documents.
This data allowed us to study how the complete content sum-
maries of the databases evolved over time. In addition, we
also studied the evolution over time of approximate content
summaries. For this, we used query-based sampling (see
Section 2) to create every week an approximate content sum-
mary Ĉ(D) of each database D.2

3.2. Measuring Content Summary Change

We now turn to measuring how the database content sum-
maries –both the complete and approximate versions– evolve
over time. For this, we resort to a number of metrics of con-
tent summary similarity from the literature. We discuss these

1Only four web sites were affected by this efficiency-motivated page-
download limitation: hti.umich.edu, eonline.com, pbs.org, and
intelihealth.com.

2To reduce the effect of sampling randomness in our experiments, we
create five approximate content summaries of each database each week, in
turn derived from five document samples, and report the various metrics in
our study as averages over these five summaries.
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Figure 1. The recall of content summary
O(D, t) with respect to the “current” content
summary C(D), as a function of time t and av-
eraged over each database D in the dataset.

metrics and the results for the 152 web databases next.
For our discussion, we refer to the “current” and complete

content summary of a database D as C(D), while O(D, t) is
the complete summary of D as of t weeks into the past. The
O(D, t) summary can be considered as an (old) approxima-
tion of the (current) C(D) summary, simulating the realistic
scenario where we extract a summary for a database D and
keep it unchanged for t weeks. In the following definitions,
Wo is the set of words that appear in O(D, t), while Wc

is the set of words that appear in C(D). Values fo(w, D)
and fc(w, D) denote the document frequency of word w in
O(D, t) and C(D), respectively.
Recall: An important property of the content summary of
a database is its coverage of the current database vocabu-
lary. An up-to-date and complete content summary always
has perfect recall, but an old summary might not, since it
might not include, for example, words that appear only in
new database documents. The unweighted recall (ur) of
O(D, t) with respect to C(D) is the fraction of words in the
current summary that are also present in the old summary:
ur = |Wo∩Wc|

|Wc| . This metric gives equal weight to all words
and takes values from 0 to 1, with a value of 1 meaning that
the old content summary contains all the words that appear
in the current content summary, and a value of 0 denoting no
overlap between the summaries. An alternative recall met-
ric, which gives higher weight to more frequent terms, is
the weighted recall (wr) of O(D, t) with respect to C(D):
wr =

�
w∈Wo∩Wc

fc(w,D)
�

w∈Wc
fc(w,D) . We will use analogous definitions

of unweighted and weighted recall for a sample-based con-
tent summary Ô(D, t) of database D obtained t weeks into
the past with respect to the current content summary C(D)
for the same database.

Figure 1 focuses on complete content summaries and
shows the weighted and unweighted recall of t-week-old
summaries with respect to the “current” summary, as a func-
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Figure 2. The weighted recall of “old” sample-
based content summaries with respect to the
“current” ones, as a function of the time T be-
tween updates and averaged over each data-
base D in the dataset, for different scheduling
policies (τ = 0.5).

tion of t and averaged over every possible choice of “current”
summary. In Figure 1 (as well as in all subsequent figures),
we report our results with a 95% confidence interval. Pre-
dictably, both the weighted and unweighted recall values de-
crease as t increases. For example, on average, 1-week-old
summaries have unweighted recall of 91%, while older, 25-
week-old summaries have unweighted recall of about 80%.
The weighted recall figures are higher, as expected, but still
significantly less than 1: this indicates that the newly intro-
duced words have low frequencies, but constitute a substan-
tial fraction of the database vocabulary as well.

The curves labeled “Naive” in Figures 2 and 3 show the
corresponding results for approximate, sample-based con-
tent summaries. (Please ignore the other curves for now; we
will explain their meaning in Section 5.) As expected, the re-
call values for the sample-based summaries are substantially
smaller than the ones for the complete summaries. Also, the
recall values of the sample-based summaries do not change
much over time, because the sample-based summaries are
not too accurate to start with, and do not suffer a significant
drop in recall over time. This shows that the inherent incom-
pleteness of the sample-based summaries “prevails” over the
incompleteness introduced by time.

Another interesting observation is that recall figures ini-
tially decrease (slightly) for approximately 20 weeks, then
remain stable, and then, surprisingly, increase, so that a 50-
week old content summary has higher recall than a 20-week
old one, for example. This unexpected result is due to an in-
teresting periodicity: some events (e.g., “Christmas,” “Hal-
loween”) appear at the same time every year, allowing sum-
maries that are close to being one year old to have higher re-
call than their younger counterparts. This effect is only visi-
ble in the sample-based summaries that cover only a fraction
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Figure 3. The unweighted recall of “old”
sample-based content summaries with re-
spect to the “current” ones, as a function of
the time T between updates and averaged over
each database D in the dataset, for different
scheduling policies (τ = 0.5).

of the database vocabulary, and is not observed in the com-
plete summaries, perhaps because they are larger and are not
substantially affected by a relatively small number of words.
Precision: Another important property of the content sum-
mary of a database is the precision of the summary vocab-
ulary. Up-to-date content summaries contain only words
that appear in the database, while older summaries might
include obsolete words that appeared only in deleted doc-
uments. The unweighted precision (up) of O(D, t) with re-
spect to C(D) is the fraction of words in the old content
summary that still appear in the current summary C(D):
up = |Wo∩Wc|

|Wo| . This metric, like unweighted recall, gives
equal weight to all words and takes values from 0 to 1, with
a value of 1 meaning that the old content summary only con-
tains words that are still in the current content summary, and
a value of 0 denoting no overlap between the summaries.
An alternative precision metric, which –just as weighted re-
call does– gives higher weight to more frequent terms, is the
weighted precision (wp) of O(D, t) with respect to C(D):
wp =

�
w∈Wo∩Wc

fo(w,D)
�

w∈Wo
fo(w,D) . We use analogous definitions of

unweighted and weighted precision for a sample-based con-
tent summary Ô(D, t) of a database D with respect to the
correct content summary C(D).

Figure 4 focuses on complete content summaries and
shows the weighted and unweighted precision of t-week-old
summaries with respect to the “current” summary, as a func-
tion of t and averaged over every possible choice of “current”
summary. Predictably, both the weighted and unweighted
precision values decrease as t increases. For example, on
average, a 48-week-old summary has unweighted precision
of 70%, showing that 30% of the words in the old content
summary do not appear in the database anymore.

The curves labeled “Naive” in Figures 5 and 6 show the
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Figure 4. The precision of content summary
O(D, t) with respect to the “current” content
summary C(D), as a function of time t and
averaged over each database D in the dataset.

corresponding results for approximate, sample-based con-
tent summaries. (Again, please ignore the other curves for
now; we will explain their meaning in Section 5.) As ex-
pected, the precision values decrease over time, and do so
much faster than their corresponding recall values (Figures 2
and 3). For example, almost 20% of the words in a 15-week-
old sample-based content summary are absent from the data-
base. For the precision results, the periodicity that appeared
in the recall figures is not visible: the sample-based content
summaries contain many more “obsolete” words that do not
appear in the database anymore. Hence, a small number of
words that appear periodically cannot improve the results.

Kullback-Leibler Divergence: Precision and recall mea-
sure the accuracy and completeness of the content sum-
maries based only on the presence of words in the sum-
maries. However, these metrics do not capture the accu-
racy of the frequency of each word as reported in the con-
tent summary. For this, the Kullback-Leibler divergence [19]
of O(D, t) with respect to C(D) (KL for short) calculates
the “similarity” of the word frequencies in the old content
summary O(D, t) against the “current” word frequencies in
C(D): KL =

∑
w∈Wo∩Wc

pc(w|D) · log pc(w|D)
po(w|D) , where

pc(w|D) = fc(w,D)�
w′∈Wo∩Wc

fc(w′,D) is the probability of ob-

serving w in C(D), and po(w|D) = fo(w,D)�
w′∈Wo∩Wc

fo(w′,D)

is the probability of observing w in O(D, t). The KL di-
vergence metric takes values from 0 to infinity, with 0 indi-
cating that the two content summaries being compared are
equal. Intuitively, KL divergence measures how many bits
are necessary to encode the difference between the two dis-
tributions.

Figure 7 focuses on complete content summaries and
shows that the KL divergence of old content summaries
O(D, t) increases as t increases. This confirms the previ-
ously observed results and shows that the word frequency
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Figure 5. The weighted precision of “old”
sample-based content summaries with re-
spect to the “current” ones, as a function of
the time T between updates and averaged over
each database D in the dataset, for different
scheduling policies (τ = 0.5).

distribution changes substantially over time. The curve la-
beled “Naive” in Figure 8 shows the KL divergence for
sample-based content summaries of increasing age. (Again,
please ignore the other curves for now; we will explain their
meaning in Section 5.) The KL divergence of the old sum-
maries increases with time, indicating that approximate con-
tent summaries become obsolete just as their complete coun-
terparts do.
Conclusion: We studied how content summaries of text da-
tabases evolve over time. We observed that the quality of
content summaries (both complete and sample-based) de-
teriorates as they become increasingly older. Therefore, it
is imperative to have a policy for periodically updating the
summaries to reflect the current contents of the databases.
We turn now to this important issue and show how we can
use “survival analysis” for this purpose.

4. Predicting Content Summary Change Fre-
quency

In the previous section, we established the need for up-
dating database content summaries as the underlying text
databases change. Unfortunately, updating a content sum-
mary involves a non-trivial overhead: as discussed, the con-
tent summaries of hidden-web text databases are constructed
by querying the databases, while the summaries of crawlable
databases are constructed by downloading and processing all
the database documents. Therefore, in order to avoid over-
loading the databases unnecessarily, it is important to sched-
ule updates carefully. In this section, we present our “sur-
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Figure 6. The unweighted precision of “old”
sample-based content summaries with re-
spect to the “current” ones, as a function of
the time T between updates and averaged over
each database D in the dataset, for different
scheduling policies (τ = 0.5).

vival analysis” modeling approach for deciding when to up-
date content summaries. First, Sections 4.1 and 4.2 review
the necessary background on survival analysis and the Cox
regression model from the literature [21]. Then, Section 4.3
shows how we can use this material for our own scenario, to
model content summary changes.

4.1. Survival Analysis

Survival analysis is a collection of statistical techniques
that help predict the time until an event occurs [21]. These
methods were initially used to predict the time of survival
for patients under different treatments, hence the name “sur-
vival analysis.” For the same reason the “time until an event
occurs” is also called survival time. For our purposes, the
survival time is the number of weeks t such that an old da-
tabase content summary O(D, t) is “sufficiently different”
from the current summary C(D). (We define formally the
survival time of a database in Section 4.3.)

Survival times can be modeled through a survival func-
tion S(t) that captures the probability that the survival time
of an object is greater than or equal to t. In the survival
analysis literature, the distribution of S(t) is also described
in terms of a hazard function h(t), which is the “rate of fail-
ure” at time t, conditional on survival until time t: h(t) =

−
dS(t)

dt

S(t) . A common modeling choice for S(t) is the expo-

nential distribution, where S(t) = e−λt, and so the hazard
function is constant over time (h(t) = λ). A generalization
of the exponential distribution is the Weibull distribution,
where S(t) = e−λtγ

, and so the hazard function varies over
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Figure 7. The KL divergence of content sum-
mary O(D, t) with respect to the “current” con-
tent summary C(D), as a function of time t and
averaged over each database D in the dataset.

time (h(t) = λγtγ−1). We could use the exponential func-
tion to model the database survival time. This choice is re-
inforced by recent findings that indicate that the exponential
function is a good model to describe changes in web docu-
ments [1, 6]. However, we will see in Section 4.3 that the ex-
ponential distribution does not accurately describe changes
for database summaries, and we will use the Weibull distri-
bution instead.

As described so far, the survival function S(t) and the
hazard function h(t) are used to describe a single database,
and are not “instantiated” since we do not know the values
of their configuring parameters. Of course, it is important
to estimate the parameters of the survival function S(t) for
each database, to have a concrete, database-specific change
model. Even more imperative is to discover predictor vari-
ables that influence the survival times. For example, when
analyzing the survival times of patients with heart disease,
the weight of a patient is a predictor variable and influences
the survival time of the patient. Analogously, we want to pre-
dict survival times individually for each database, according
to its characteristics. Next, we describe the Cox proportional
hazards regression model that we use for this purpose.

4.2. Cox Proportional Hazards Regression Model

The Cox proportional hazards regression model [10] is a
technique widely used in statistics for discovering important
variables that influence survival times. It is a non-parametric
model, because it makes no assumptions about the nature or
shape of the hazard function. The only assumption is that the
logarithm of the underlying hazard rate is a linear 3 function
of the predictor variables.

3The “linearity” or “proportionality” requirement is essentially a
monotonicity requirement (e.g., the higher the weight of a patient, the higher
the risk of heart attack). If a variable monotonically affects the hazard rate,
then an appropriate transformation (e.g., log(·)) can make its effect linear.
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Let x be a predictor variable, and xA and xB be the val-
ues of that variable for two databases A and B, respectively.
Under the Cox model, the hazard functions hA(t) and hB(t)
can be expressed for databases A and B as:

hA(t) = eβxAh0(t) ⇒ ln hA(t) = ln h0(t) + βxA (1a)
hB(t) = eβxBh0(t) ⇒ ln hB(t) = ln h0(t) + βxB (1b)

where h0(t) is a baseline hazard function, common for all
the members of the population. The Cox model can be gen-
eralized for n predictor variables: log h(t) = log h0(t) +∑n

i=1 βixi, where the xi’s are the predictor variables, and
the βi’s are the model coefficients. The algorithm presented
by Cox [10] shows how to compute the β i values.

The Cox model, as presented so far, seems to solve the
same problem addressed by multiple regression. However,
the dependent variable (survival time) in our case is not nor-
mally distributed, but usually follows the exponential or the
Weibull distribution –a serious violation for ordinary mul-
tiple regression. Another important distinction is the fact
that the Cox model effectively exploits incomplete or “cen-
sored” data, from cases that “survived” the whole study pe-
riod. Excluding these cases from the study would seriously
affect the result, introducing a strong bias in the resulting
model. Those observations are called censored observations
and contain only partial information, indicating that there
was no failure during the time of observation. The Cox
model effectively uses the information provided from cen-
sored cases. (For more information, see [10].)

The Cox proportional hazards model is one of the most
general models for working with survival data, since it does
not assume any specific baseline hazard function. This
model allows the extraction of a “normalized” hazard func-
tion h0(t) that is not influenced by predictor variables. This

allows for easier generalization of the results, since h0(t) is
not dependent on the distribution of the predictor variables in
the dataset used to extract h0(t). The only requirement for
the applicability of Cox’s model is that the predictor vari-
ables follow the “proportional hazard” (PH, or linearity) as-
sumption, which means that for two individual groups A and
B the hazard ratio hA(t)

hB(t) is constant over time.
An interesting variation of the Cox model that overcomes

the PH assumption is the stratified Cox model [26], which
is used to account for variables that do not satisfy the pro-
portionality assumption. In this case, the variables that do
not satisfy the proportionality assumption are used to split
the dataset into different “strata.” The βi Cox coefficients
remain the same across the different strata, but each stratum
now has different baseline functions h0(t).

Next, we describe how we use the Cox regression model
to represent changes in text database content summaries.

4.3. Using Cox Regression to Model Content Sum-
mary Changes

Before using any survival analysis technique for our prob-
lem, we need to define “change.” A straightforward defini-
tion is that two content summaries C(D) and O(D, t) are
“different” when they are not identical. However, even a
small change in a single document in a database will prob-
ably result in a change in its content summary, but such
change is unlikely to be of importance for database selec-
tion. Therefore, we relax this definition and say that two
content summaries are different when KL > τ (see Sec-
tion 3.2 for the definition of KL divergence), where τ is a
“change sensitivity” threshold.4 Higher values of τ result in
longer survival times and the exact value of τ should be se-
lected based on the characteristics of the database selection
algorithm of choice. We will see how we can effectively use
the Cox model to incorporate τ in our change model. Later,
in Section 5, we show that we can define update schedules
that adapt to the chosen value of τ .

Definition 3: Given a value of the change sensitivity thresh-
old τ > 0, the survival time of a database D at a point in
time –with associated “current” content summary C(D)– is
the smallest time t for which the KL divergence of O(D, t)
with respect to C(D) is greater than τ .

Computing Survival Times: Using the study of Section 3
as well as Definition 3, we computed the survival time of
each content summary for different values of threshold τ .
For some databases, we did not detect a change within the

4We use KL divergence for our change definition (as opposed to pre-
cision or recall) because KL depends on the whole word-frequency distri-
bution. As our later experiments show, an update policy derived from the
KL-based change definition improves not only the KL divergence but also
precision and recall.



period of the study. As explained in Section 4.2, these “cen-
sored” cases are still useful since they provide evidence that
the content summary of a database with the given character-
istics did not change within the allotted time period and for
the threshold τ of choice. The result of our study is a set
of survival times, some marked as censored, that we use as
input to the Cox regression model.

Feature Selection: After extracting the survival times, we
select the database features that we pass as parameters to the
Cox model. We use two sets of features: a set of “current”
features and a set of “evolution” features. The current fea-
tures are characteristics of the database at a given point in
time. For example, the topic of the database and its DNS do-
main are current features of a database. On the other hand,
we extract the evolution features by observing how the data-
base changes over a (training) time period. For the remainder
of the discussion, we focus on the features for the impor-
tant case of approximate, sample-based content summaries.
Analogous features can be defined for crawlable databases,
for which we can extract complete summaries.

The initial set of current features that we used was:

• The threshold τ .

• The logarithm of the estimated size of the database,
where we estimate the size of the database using the
“sample-resample” method from [25].

• The number of words in the current sample Ĉ(D).

• The topic of each database, defined as the top level cat-
egory under which the database is classified in the Open
Directory. This is a categorical variable with 16 distinct
values (e.g., “Arts,” “Sports,” and so on). We encoded
this variable as a set of dummy binary variables: each
variable has the value 1 if the database is classified un-
der the corresponding category, and 0 otherwise.

• The domain of the database, which is a categorical vari-
able with five distinct values (com, org, edu, gov, misc).
We encoded this variable as a set of 5 binary variables.

To extract the set of evolution features, we retrieved
sample-based content summaries from each database every
week over a period of 10 weeks. Then, for each database
we compared every pair of approximate summaries that were
extracted exactly k weeks apart (i.e., on weeks t and t+k) us-
ing the precision, recall, and KL divergence metrics. Specif-
ically, the features that we computed were:

• The average KL divergence κ1, . . . , κ9 between sum-
maries extracted with time difference of 1, . . . , 9 weeks.

• The average weighted and unweighted precision of
summaries extracted with time difference of 1, . . . , 9
weeks.

• The average weighted and unweighted recall of sum-
maries extracted with time difference of 1, . . . , 9 weeks.

Features βs βκ βτ

size, τ 0.179 - -1.313
κ1, τ - 8.3 -1.308

κ1, size, τ 0.094 6.762 -1.305

Table 4. The coefficients of the Cox model,
when trained for various sets of features.

After selecting the initial set of features, we trained the
Cox model using the variables indicated above. We vali-
dated the results using leave-one-out cross validation. 5 The
results of the initial run indicated that, from the current fea-
tures, the number of words and the topic of the database are
not good predictor variables, while from the evolution fea-
tures precision and recall are not good predictor variables;
the KL features are good predictors, and strongly and posi-
tively correlated with each other.

Given these results, we decided to drop the number of
words and the topic variables from the current set, keep-
ing only the threshold τ , the database size, and the domain.
From the evolution set we dropped the recall and precision
features. Also, from the KL features we kept only the κ1 fea-
ture: given its presence, features κ2 through κ9 were largely
redundant. Furthermore, we reduced the training time from
10 to three weeks. To examine whether any of the selected
features –other than threshold τ , which we always keep– are
redundant, we trained Cox using (a) size and τ ; (b) κ1 and
τ ; and (c) κ1, size, and τ . We describe our findings next.

Training the Cox Model: After the initial feature selec-
tion, we trained the Cox model again. The results indicated
that all the features that we had selected are good predictor
variables6 and strongly influence the survival time of the ex-
tracted summaries. However, the domain variable did not
satisfy the proportionality assumption, which is required by
the Cox model (see Section 4.2): the hazard ratio between
two domains was not constant over time. Hence, we resorted
to the stratified Cox model, stratifying on domain.7

The result of the training was a set of coefficients βs, βκ,
and βτ for features size, κ1, and τ , respectively. We show
the Cox coefficients that we obtained in Table 4. The pos-
itive values of βs and βκ indicate that larger databases are
more likely to change than smaller ones and that databases
that changed during training are more likely to change in the
future than those that did not change. In contrast, the nega-
tive value for βτ shows that –not surprisingly– higher values
of τ result in longer survival times for content summaries.

Given the results of the analysis, for two databases D1

5Since each database generates multiple survival times, we leave out one
database at a time for the cross-validation.

6For all models, the statistical significance is at the 0.001% level accord-
ing to the Wald statistic [21].

7This meant that we had to compute separate baseline hazard functions
for each domain.



Features Domain λdom γdom

com 0.0211 0.844
edu 0.0392 0.578

size, τ gov 0.0193 0.701
misc 0.0163 1.072
org 0.0239 0.723
com 0.0320 0.886
edu 0.0774 0.576

κ1, τ gov 0.0245 0.795
misc 0.0500 1.014
org 0.0542 0.715
com 0.0180 0.901
edu 0.0205 0.585

κ1, size, τ gov 0.0393 0.780
misc 0.0236 1.050
org 0.0274 0.724

Table 5. The parameters for the baseline sur-
vival functions for five domains. The baseline
survival functions describe the survival time
of a database D in each domain with |D| = 1
(ln(|D|) = 0) and κ1 = 0, and for τ = 0.

and D2 from the same domain, we have:

ln S1(t) = exp(βs ln(|D1|) + βκκ11 + βτ τ1) · ln S0(t)
ln S2(t) = exp(βs ln(|D2|) + βκκ12 + βτ τ2) · ln S0(t)

where S0(t) is the baseline survival function for the respec-
tive domain. The baseline survival function corresponds to a
“baseline” database D with size |D| = 1 (i.e., ln(|D|) = 0),
κ1 = 0, and τ = 0.

Under the Cox model, the returned baseline survival func-
tions remain unspecified and are defined only by a set of val-
ues S0(t1), S0(t2), . . . , S0(tn). In our experiments, we had
five baseline survival functions, one for each domain (i.e.,
com, edu, org, gov, misc). To fit the baseline survival func-
tions, we assumed that they follow the Weibull distribution
(see Section 4.1), which has the general form S(t) = e−λtγ

.
We applied curve fitting using a least-squares method (in
particular the Levenberg-Marquardt method [22]) to esti-
mate the parameters of the Weibull distribution for each do-
main. For all estimates, the statistical significance was at the
0.001% level. Table 5 summarizes the results.

An interesting result is that the survival functions do not
follow the exponential distribution (γ = 1). Previous stud-
ies [6] indicated that individual web documents have life-
times that follow the exponential distribution. Our results,
though, indicate that content summaries, with aggregate sta-
tistics about sets of documents, change more slowly.

Modeling Conclusions: We have presented a statistical
analysis of the survival times of database content summaries.
We used Cox regression analysis to examine the effect of
different variables in the survival time of content summaries
and showed that the survival times of content summaries fol-
low the Weibull distribution, in most cases with γ < 1 (i.e.,
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Figure 9. The survival function S(t) for differ-
ent domains (|D| = 1, 000, τ = 0.5, κ1 = 0.1).

they tend to remain unchanged for longer time periods as
their age increases). We summarize our results in the fol-
lowing definition:

Definition 4: The function Si(t) that gives the survival
function for a database Di is:

Si(t) = exp (−λit
γdom) , with (2a)

λi = λdom

(|Di|βs · exp (βκκ1i) · exp (βττi)
)

(2b)

where |Di| is the size of the database, κ1i is the KL diver-
gence of the samples obtained during the training period, β s,
βκ, and βτ are the Cox coefficients from Table 4, λdom and
γdom are the domain-specific constants from Table 5, and τ i

is the value of the change threshold for Di (Definition 3).

Definition 4 provides a concrete change model for a data-
base D that is specific to the database characteristics and to
the change sensitivity, as controlled by the threshold τ . An
interesting result is that summaries of large databases change
more often than those of small databases, as indicated by the
positive value of βs, which corresponds to the database size.
Figure 9 shows the shape of S(t) for different domains, for
a hypothetical database D with |D| = 1000 and κ1 = 0.1,
and for τ = 0.5. This figure shows that content summaries
tend to vary substantially across domains (e.g., compare the
“misc” curve against the “gov” curve).

5. Scheduling Updates

So far, we have described how to compute the survival
function S(t) for a text database. In this section, we de-
scribe how we can exploit S(t) to schedule database content
summary updates and contact each database only when nec-
essary. Specifically, we first describe the theory behind our
scheduling policy (Section 5.1). Then, we present the exper-
imental evaluation of our policy (Section 5.2), which shows



that sophisticated update scheduling can improve the quality
of the extracted content summaries in a resource-restricted
environment.

5.1. Deriving an Update Policy

A metasearcher may provide access to hundreds or thou-
sands of databases and operate under limited network and
computational resources. To optimize the overall quality of
the content summaries, the metasearcher has to carefully de-
cide when to update each of the summaries, so that they are
acceptably up to date during query processing.

To model the constraint on the workload that a meta-
searcher might handle, we define F as the average number of
content summary updates that the metasearcher can perform
in a week. Then, under a Naive strategy that allocates up-
dates to databases uniformly, T = n

F represents the average
number of weeks between two updates of a database, where
n is the total number of databases. For example, T = 2
weeks means that the metasearcher can update the summary
of each database every two weeks, on average.

As we have seen in Section 4.3, the rate of change of
the database contents may vary drastically from database to
database, so the Naive strategy above is bound to allocate
updates to databases suboptimally. Thus, the goal of our
update scheduling is to determine the update frequency f i

for each database Di individually, in such a way that the
function

∑n
i=1 Si(t) is maximized, while at the same time

not exceeding the number of updates allowed. In this case,
we maximize the average probability that the content sum-
maries are up to date. One complication is that the sur-
vival function Si(t) changes its value over time, so differ-
ent update scheduling policies may be considered “optimal”
depending on when Si(t) is measured. To address this is-
sue, we assume that the metasearcher wants to maximize
the time-averaged value of the survival function, given as:
S̄ = limt→∞ 1

t

∫ t

0

∑n
i=1 Si(t)dt. This formulation of the

scheduling problem is similar to that in [7] for the problem
of keeping the index of a search engine up to date. We for-
mulate our goal as the following optimization problem.

Problem 1: Find the optimal update frequency f i for each
database Di such that S̄ is maximized under the constraint∑n

i=1 fi = n
T .

Given the analytical forms of the Si(t) functions in the pre-
vious sections, we can solve this optimization problem us-
ing the Lagrange-multiplier method (as shown for example
in [7, 24]). Cho et al. [7] investigated a special case of this
optimization problem when γ = 1 (i.e., when the rate of
change is constant over time), and observed the following:

1. When λi (which can be interpreted as denoting “how
often the content summary changes”) is small relative to
the resource constraint F , the optimal revisit frequency
fi becomes larger as λi grows larger.

Di λi T = 40 T = 10
tomshardware.com 0.088 46 weeks 5 weeks
usps.com 0.023 34 weeks 12 weeks

Table 6. Optimal content-summary update fre-
quencies for two databases.

2. When λi is large compared to the resource constraint
F , the optimal revisit frequency fi becomes smaller as
λi grows larger.

In our solution to the above generalized optimiza-
tion problem, we also observed similar trends even when
γ �= 1 (i.e., when the rate of change varies over time).
As an example, in Table 6 we show the optimal up-
date frequencies for the content summaries of two da-
tabases, tomshardware.com and usps.com. We
can see that, when T is small (T = 10), we up-
date tomshardware.com more often than usps.com,
since λi is larger for tomshardware.com. However,
when T is large (T = 40) the optimal update frequen-
cies are reversed. The scheduling algorithm decides that
tomshardware.com changes “too frequently” and is not
beneficial to allocate more resources to try to keep it up to
date. Therefore, the algorithm decides to update the content
summary from tomshardware.com less frequently, and
instead focus on databases like usps.com that can be kept
up to date. This trend holds across domains and across val-
ues of γ.

5.2. Experimental Results

In Section 4.3, we showed how to compute the form and
parameters of the survival function S i(t), which measures
the probability that the summary of a database D i is up to
date t weeks after it was computed. Based on Cox’s model,
we derived a variety of models that compute S i(t) based on
three different sets of features (see Tables 4 and 5). Now, we
use these models to devise three update policies, using the
approach from Section 5.1 and the following feature sets:

• κ1, size, τ : We use all the available features.

• size and τ : We do not use the history of the database,
i.e., we ignore the evolution feature κ1 and we use only
the database size and the change sensitivity threshold τ .

• κ1 and τ : We use only the history of the database and
the threshold τ . We consider this policy to examine
whether we can work without size estimation.8

We also consider the Naive policy, discussed above, where
we uniformly update all summaries every T weeks.9

8The size estimation method that we use [25] relies on the database re-
turning the number of matches for each query. This method becomes prob-
lematic for databases that do not report such numbers with the query results.

9The results presented in this paper focus on sample-based content sum-
maries. We also ran analogous experiments for the complete content sum-
maries, and the results were similar.
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Figure 10. The precision of the updates per-
formed by the different scheduling algorithms,
as a function of the average time between up-
dates T and for τ = 0.5.

Quality of Content Summaries under Different Policies:
We examine the performance of each updating policy, by
measuring the average (weighted and unweighted) precision
and recall, and the average KL divergence of the generated
approximate summaries. We consider different values of T ,
where T is the average number of weeks between updates.

Figures 2 and 3 show the average weighted and un-
weighted precision of the approximate summaries, obtained
under the scheduling policies that we consider. The results
indicate that, by using any of our policies, we can keep the
recall metrics almost stable, independently of the resource
constraints. Figures 5 and 6 show the average weighted and
unweighted precision of the approximate summaries. Again,
our three scheduling policies demonstrate similar perfor-
mance, and they are all significantly better than the Naive
policy. The difference with the Naive policy is statistically
significant, even when the summaries are updated relatively
frequently (i.e., even for small values of T ). Finally, Figure 8
shows that our updating policies keep the average KL diver-
gence of the approximate summaries almost constant even
for a large number of weeks T between updates.

Interestingly, the three policies that we propose demon-
strate minimal differences in performance, and these differ-
ences are not statistically significant. Additionally, all tech-
niques are significantly better than the Naive policy. This
indicates that it is possible to work with a smaller set of
features, without decreasing performance. For example, we
may ignore the evolution feature κ1 and avoid computing
the history of a database, which involves frequent sampling
of the database for a (small) period of time.

Precision of Update Operations: To measure how “pre-
cise” the updates scheduled by our policies are, we define an
update as “precise” if it contacts a database when the new
summary of the database is different from the existing sum-
mary according to the definition of change in Section 4.3.

We measured the precision of the update operations as the
ratio of the precise updates over the total number of updates
performed. Figure 10 shows the precision results as a func-
tion of T and for τ = 0.5. For this value of τ and for the
databases in our dataset, very low values of T (i.e., T < 10)
are unnecessary, since then the databases are contacted too
often and before they have changed sufficiently. A decrease
in the value of τ cause the curves to “move” towards the
left: the summaries change more frequently and then the up-
dates become more precise. For example, for τ = 0.25 and
T = 10, precision is approximately 40%, while for T = 25
it is approximately 80%.

Interestingly, the update precision can be predicted ana-
lytically, using the target function S̄ described in Section 5.1.
The average probability of survival (our target function) cor-
responds in principle to the percentage of non-precise up-
dates. This result is intuitive, since our target function es-
sentially encodes the probability that the summary of the da-
tabase has changed. Therefore, during scheduling, it is pos-
sible to select a value of T that achieves (approximately) the
desired update precision.

Conclusion: As a general conclusion, we have observed
that our scheduling policies result in high-quality content
summaries, even under strict constraints on the allowable up-
date frequency. Also, our modeling approach helps predict
the precision of the update operations, in turn allowing the
metasearcher to tune the update frequency to efficiently keep
the content summaries up to date.

6. Related Work

We are not aware of prior work to experimentally mea-
sure database content summary evolution over time or to
schedule updates to the content summaries to maintain their
freshness. However, several previous studies have focused
on various aspects of the evolution of the web and of the re-
lated problem of web crawling. Ntoulas et al. [23] studied
the changes of individual web pages, using the same dataset
as we did in this paper. Ntoulas et al. concluded that 5%
of new content (measured in “shingles”) is introduced in an
average week in all pages as a whole. Additionally, [23] ob-
served a strong correlation between the past and the future
degrees of the changes of a web page and showed that this
correlation might be used to predict the future changes of a
page. In this paper (Section 3), we investigated this high-
level idea more formally through survival analysis and mod-
eled the change behavior of web databases using the Cox
proportional hazard model. This model was then used for
designing the optimal scheduling algorithm for summary up-
dates. Lim et al. [20] and Fetterly et al. [13] presented pio-
neer measurements of the degree of change of web pages
over time, where change was measured using the edit dis-
tance [20] or the number of changed “shingles” [13] over



successive versions of the web pages. Other studies of web
evolution include [1, 5, 27, 11, 2], and focus on issues that
are largely orthogonal to our work, such as page modifica-
tion rates and times, estimation of the change frequencies
for the web pages, and so on.

Web crawling has attracted a substantial amount of work
over the last few years. In particular, references [7, 9, 12, 8]
study how a crawler should download pages to maintain
its local copy of the web up to date. Assuming that the
crawler knows the exact change frequencies of pages, ref-
erences [7, 9] present optimal page downloading algorithms,
while [12] proposes an algorithm based on linear program-
ming. Cho and Ntoulas [8] employ sampling to detect
changed pages. All this work on web crawling mainly fo-
cuses on maintaining a local copy of the web as up to date as
possible, which requires maximizing the fraction of remote
pages whose local copy is up to date. Our goal is different:
we want to maximize the freshness of the content summaries
that describe the various web sites, so that we produce more
accurate database selection decisions.

Olston et al. [24] proposed a new algorithm for cache syn-
chronization in which data sources notify caches of impor-
tant changes. The definition of “divergence” or “change”
in [24] is quite general and can be applied to our context.
However, the proposed push model is not applicable when
data sources are “uncooperative” and do not inform others
of their changes as is the case on the web.

7. Conclusions

We presented a study –over 152 real web databases– of
the effect of time on the database content summaries on
which metasearchers rely to select appropriate databases
where to evaluate keyword queries. Predictably, the quality
of the content summaries deteriorates over time as the under-
lying databases change, which highlights the importance of
update strategies for refreshing the content summaries. We
described how to use survival analysis techniques, in partic-
ular how to exploit the Cox proportional hazards regression
model, for this update problem. We showed that the change
history of a database can be used to predict the rate of change
of its content summary in the future, and that summaries
of larger databases tend to change faster than summaries
of smaller databases. Finally, based on the results of our
analysis, we suggested update strategies that work well in a
resource-constrained environment. Our techniques adapt to
the change sensitivity desired for each database, and contact
databases selectively –as needed– to keep the summaries up
to date while not exceeding the resource constraints.
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