
Distributed Search over the Hidden Web:
Hierarchical Database Sampling and Selection

Panagiotis G. Ipeirotis Luis Gravano
Columbia University Columbia University
pirot@cs.columbia.edu gravano@cs.columbia.edu

Abstract

Many valuable text databases on the web have
non-crawlable contents that are “hidden” be-
hind search interfaces. Metasearchers are help-
ful tools for searching over many such databases
at once through a unified query interface. A
critical task for a metasearcher to process a
query efficiently and effectively is the selection
of the most promising databases for the query, a
task that typically relies on statistical summaries
of the database contents. Unfortunately, web-
accessible text databases do not generally export
content summaries. In this paper, we present an
algorithm to derive content summaries from “un-
cooperative” databases by using “focused query
probes,” which adaptively zoom in on and ex-
tract documents that are representative of the
topic coverage of the databases. Our content
summaries are the first to include absolute docu-
ment frequency estimates for the database words.
We also present a novel database selection al-
gorithm that exploits both the extracted con-
tent summaries and a hierarchical classification
of the databases, automatically derived during
probing, to compensate for potentially incom-
plete content summaries. Finally, we evalu-
ate our techniques thoroughly using a variety of
databases, including 50 real web-accessible text
databases. Our experiments indicate that our
new content-summary construction technique is
efficient and produces more accurate summaries
than those from previously proposed strategies.
Also, our hierarchical database selection algo-
rithm exhibits significantly higher precision than
its flat counterparts.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission
from the Endowment.

Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

1 Introduction

The World-Wide Web continues to grow rapidly, which
makes exploiting all useful information that is available a
standing challenge. Although general search engines like
Google crawl and index a large amount of information,
typically they ignore valuable data in text databases that
are “hidden” behind search interfaces and whose contents
are not directly available for crawling through hyperlinks.

Example 1: Consider the medical bibliographic database
CANCERLIT1. When we issue the query [lung AND
cancer], CANCERLIT returns 68,430 matches. These
matches correspond to high-quality citations to medical
articles, stored locally at the CANCERLIT site. In con-
trast, a query2 on Google for the pages in the CANCER-
LIT site with the keywords “lung” and “cancer” matches
only 23 other pages under the same domain, none of
which corresponds to the database documents. This shows
that the valuable CANCERLIT content is not indexed by
this search engine. 2

One way to provide one-stop access to the information
in text databases is through metasearchers, which can
be used to query multiple databases simultaneously. A
metasearcher performs three main tasks. After receiving
a query, it finds the best databases to evaluate the query
(database selection), it translates the query in a suit-
able form for each database (query translation), and fi-
nally it retrieves and merges the results from the different
databases (result merging) and returns them to the user.
The database selection component of a metasearcher is of
crucial importance in terms of both query processing effi-
ciency and effectiveness, and it is the focus of this paper.

Database selection algorithms are traditionally based
on statistics that characterize each database’s con-
tents [13, 24, 32, 34]. These statistics, which we will refer
to as content summaries, usually include the document
frequencies of the words that appear in the database,
plus perhaps other simple statistics. These summaries
provide sufficient information to the database selection
component of a metasearcher to decide which databases
are the most promising to evaluate a given query.

1The query interface is available at http://www.cancer.gov/se-
arch/cancer literature/.

2The query is lung cancer site:www.cancer.gov.

To obtain the content summary of a database, a
metasearcher could rely on the database to supply the
summary (e.g., by following a protocol like STARTS [12],
or possibly using Semantic Web [1] tags in the future).
Unfortunately many web-accessible text databases are
completely autonomous and do not report any detailed
metadata about their contents to facilitate metasearch-
ing. To handle such databases, a metasearcher could rely
on manually generated descriptions of the database con-
tents. Such an approach would not scale to the thousands
of text databases available on the web [2], and would
likely not produce the good-quality, fine-grained content
summaries required by database selection algorithms.

In this paper, we present a technique to automate
the extraction of content summaries from searchable text
databases. Our technique constructs these summaries
from a biased sample of the documents in a database, ex-
tracted by adaptively probing the database with topically
focused queries. These queries are derived automatically
from a document classifier over a Yahoo!-like hierarchy of
topics. Our algorithm selects what queries to issue based
in part on the results of the earlier queries, thus focusing
on the topics that are most representative of the database
in question. Our technique resembles biased sampling
over numeric databases, which focuses the sampling ef-
fort on the “densest” areas. We show that this principle
is also beneficial for the text-database world. We also
show how we can exploit the statistical properties of text
to derive absolute frequency estimations for the words in
the content summaries. As we will see, our technique ef-
ficiently produces high-quality content summaries of the
databases that are more accurate than those generated
from a related uniform probing technique proposed in
the literature. Furthermore, our technique categorizes
the databases automatically in a hierarchical classifica-
tion scheme during probing.

In this paper, we also present a novel hierarchical
database selection algorithm that exploits the database
categorization and adapts particularly well to the pres-
ence of incomplete content summaries. The algorithm
is based on the assumption that the (incomplete) con-
tent summary of one database can help to augment
the (incomplete) content summary of a topically similar
database, as determined by the database categories.

In brief, the main contributions of this paper are:
• A document sampling technique for text databases

that results in higher quality database content sum-
maries than those by the best known algorithm.

• A technique to estimate the absolute document fre-
quencies of the words in the content summaries.

• A database selection algorithm that proceeds hierar-
chically over a topical classification scheme.

• A thorough, extensive experimental evaluation of the
new algorithms using both “controlled” databases
and 50 real web-accessible databases.

The rest of the paper is organized as follows. Sec-
tion 2 gives the necessary background. Section 3 out-
lines our new technique for producing content summaries
of text databases, including accurate word-frequency in-
formation for the databases. Section 4 presents a novel

CANCERLIT
NumDocs: 148,944
Word df
breast 121,134
cancer 91,688
.

CNN.fn
NumDocs: 44,730
Word df
breast 124
cancer 44
.

Table 1: A fragment of the content summaries of two
databases.

database selection algorithm that exploits both frequency
and classification information. Section 5 describes the
setting for the experiments in Section 6, where we show
that our method extracts better content summaries than
the existing methods. We also show that our hierarchi-
cal database selection algorithm of Section 4 outperforms
its flat counterparts, especially in the presence of incom-
plete content summaries, such as those generated through
query probing. Finally, Section 8 concludes the paper.

2 Background

In this section we give the required background and re-
port related efforts. Section 2.1 briefly summarizes how
existing database selection algorithms work. Then, Sec-
tion 2.2 describes the use of uniform query probing for
extraction of content summaries from text databases and
identifies the limitations of this technique. Finally, Sec-
tion 2.3 discusses how focused query probing has been
used in the past for the classification of text databases.

2.1 Database Selection Algorithms

Database selection is a crucial task in the metasearch-
ing process, since it has a critical impact on the effi-
ciency and effectiveness of query processing over multi-
ple text databases. We now briefly outline how typical
database selection algorithms work and how they depend
on database content summaries to make decisions.

A database selection algorithm attempts to find the
best databases to evaluate a given query, based on infor-
mation about the database contents. Usually this infor-
mation includes the number of different documents that
contain each word, to which we refer as the document
frequency of the word, plus perhaps some other simple
related statistics [12, 24, 32], like the number of docu-
ments NumDocs stored in the database. Table 1 depicts
a small fraction of what the content summaries for two
real text databases might look like. For example, the
content summary for the CNN.fn database, a database
with articles about finance, indicates that 44 documents
in this database of 44,730 documents contain the word
“cancer.” Given these summaries, a database selection
algorithm estimates how relevant each database is for a
given query (e.g., in terms of the number of matches that
each database is expected to produce for the query):

Example 2: bGlOSS [13] is a simple database selection
algorithm that assumes that query words are indepen-
dently distributed over database documents to estimate
the number of documents that match a given query. So,
bGlOSS estimates that query [breast AND cancer] will

match |C|·df(breast)
|C| ·df(cancer)

|C|
∼= 74, 569 documents in

database CANCERLIT, where |C| is the number of doc-
uments in the CANCERLIT database, and df(·) is the
number of documents that contain a given word. Simi-
larly, bGlOSS estimates that a negligible number of doc-
uments will match the given query in the other database
of Table 1. 2

bGlOSS is a simple example of a large family of
database selection algorithms that rely on content sum-
maries like those in Table 1. Furthermore, database se-
lection algorithms expect such content summaries to be
accurate and up to date. The most desirable scenario is
when each database exports these content summaries di-
rectly (e.g., via a protocol such as STARTS [12]). Unfor-
tunately, no protocol is widely adopted for web-accessible
databases, and there is little hope that such a protocol
will be adopted soon. Hence, other solutions are needed
to automate the construction of content summaries from
databases that cannot or are not willing to export such
information. We review one such approach next.

2.2 Uniform Probing for Content Summary
Construction

Callan et al. [4, 3] presented pioneer work on automatic
extraction of document frequency statistics from “unco-
operative” text databases that do not export such meta-
data. Their algorithm extracts a document sample from
a given database D and computes the frequency of each
observed word w in the sample, SampleDF (w):

1. Start with an empty content summary where Sam-
pleDF (w) = 0 for each word w, and a general (i.e.,
not specific to D), comprehensive word dictionary.

2. Pick a word (see below) and send it as a query to
database D.

3. Retrieve the top-k documents returned.
4. If the number of retrieved documents exceeds a pre-

specified threshold, stop. Otherwise continue the
sampling process by returning to Step 2.

Callan et al. suggested using k = 4 for Step 3 and that
300 documents are sufficient (Step 4) to create a rep-
resentative content summary of the database. Also they
describe two main versions of this algorithm that differ in
how Step 2 is executed. The algorithm RandomSampling-
OtherResource (RS-Ord for short) picks a random word
from the dictionary for Step 2. In contrast, the al-
gorithm RandomSampling-LearnedResource (RS-Lrd for
short) selects the next query from among the words that
have been already discovered during sampling. RS-Ord
constructs better profiles, but is more expensive than RS-
Lrd [3]. Other variations of this algorithm perform worse
than RS-Ord and RS-Lrd, or have only marginal improve-
ments in effectiveness at the expense of probing cost.

These algorithms compute the sample document fre-
quencies SampleDF (w) for each word w that appeared
in a retrieved document. These frequencies range be-
tween 1 and the number of retrieved documents in the
sample. In other words, the actual document frequency

ActualDF (w) for each word w in the database is not re-
vealed by this process and the calculated document fre-
quencies only contain information about the relative or-
dering of the words in the database, not their absolute
frequencies. Hence, two databases with the same focus
(e.g., two medical databases) but differing significantly in
size might be assigned similar content summaries. Also,
RS-Ord tends to produce inefficient executions in which
it repeatedly issues queries to databases that produce no
matches. According to Zipf’s law [35], most of the words
in a collection occur very few times. Hence, a word that is
randomly picked from a dictionary (which hopefully con-
tains a superset of the words in the database), is likely
not to occur in any document of an arbitrary database.

The RS-Ord and RS-Lrd techniques extract content
summaries from uncooperative text databases that oth-
erwise could not be evaluated during a metasearcher’s
database selection step. In Section 3 we introduce a novel
technique for constructing content summaries with abso-
lute frequencies that are highly accurate and efficient to
build. Our new technique exploits earlier work on text-
database classification [18], which we review next.

2.3 Focused Probing for Database Classification

Another way to characterize the contents of a text
database is to classify it in a Yahoo!-like hierarchy of
topics according to the type of the documents that it
contains. For example, CANCERLIT can be classified
under the category “Health,” since it contains mainly
health-related documents. Ipeirotis et al. [18] presented
a method to automate the classification of web-accessible
databases, based on the principle of “focused probing.”

The rationale behind this method is that queries
closely associated with topical categories retrieve mainly
documents about that category. For example, a query
[breast AND cancer] is likely to retrieve mainly docu-
ments that are related to the “Health” category. By ob-
serving the number of matches generated for each such
query at a database, we can then place the database in a
classification scheme. For example, if one database gener-
ates a large number of matches for the queries associated
with the “Health” category, and only a few matches for
all other categories, we might conclude that it should be
under category “Health.”

To automate this classification, these queries are de-
rived automatically from a rule-based document classifier.
A rule-based classifier is a set of logical rules defining
classification decisions: the antecedents of the rules are
a conjunction of words and the consequents are the cat-
egory assignments for each document. For example, the
following rules are part of a classifier for the two cate-
gories “Sports” and “Health”:

jordan AND bulls → Sports
hepatitis → Health

Starting with a set of preclassified training documents,
a document classifier, such as RIPPER [6] from AT&T
Research Labs, learns these rules automatically. For ex-
ample, the second rule would classify previously unseen
documents (i.e., documents not in the training set) con-
taining the word “hepatitis” into the category “Health.”

Each classification rule p→ C can be easily transformed
into a simple boolean query q that is the conjunction of all
words in p. Thus, a query probe q sent to the search in-
terface of a database D will match documents that would
match rule p→ C and hence are likely in category C.

Categories can be further divided into subcategories,
hence resulting in multiple levels of classifiers, one for
each internal node of a classification hierarchy. We can
then have one classifier for coarse categories like “Health”
or “Sports,” and then use a different classifier that will
assign the “Health” documents into subcategories like
“Cancer,” “AIDS,” and so on. By applying this prin-
ciple recursively for each internal node of the classifica-
tion scheme, it is possible to create a hierarchical clas-
sifier that will recursively divide the space into succes-
sively smaller topics. The algorithm in [18] uses such a
hierarchical scheme, and automatically maps rule-based
document classifiers into queries, which are then used to
probe and classify text databases.

To classify a database, the algorithm in [18] starts
by first sending the query probes associated with the
subcategories of the top node C of the topic hierarchy,
and extracting the number of matches for each probe,
without retrieving any documents. Based on the num-
ber of matches for the probes for each subcategory Ci,
it then calculates two metrics, the Coverage(Ci) and
Specificity(Ci) for the subcategory. Coverage(Ci) is the
absolute number of documents in the database that are
estimated to belong to Ci, while Specificity(Ci) is the
fraction of documents in the database that are estimated
to belong to Ci. The algorithm decides to classify a
database into a category Ci if the values of Coverage(Ci)
and Specificity(Ci) exceed two prespecified thresholds
τc and τs, respectively. Higher levels of the specificity
threshold τs result in assignments of databases mostly to
higher levels of the hierarchy, while lower values tend to
assign the databases to nodes closer to the leaves. When
the algorithm detects that a database satisfies the speci-
ficity and coverage requirement for a subcategory Ci, it
proceeds recursively in the subtree rooted at Ci. By not
exploring other subtrees that did not satisfy the coverage
and specificity conditions, we avoid exploring portions of
the topic space that are not relevant to the database.
This results in accurate database classification using a
small number of query probes.

Interestingly, this database classification algorithm
provides a way to zoom in on the topics that are most
representative of a given database’s contents and we can
then exploit it for accurate and efficient content summary
construction.

3 Focused Probing for Content Summary
Construction

We now describe a novel algorithm to construct content
summaries for a text database. Our algorithm exploits
a topic hierarchy to adaptively send focused probes to
the database. These queries tend to efficiently produce a
document sample that is topically representative of the
database contents, which leads to highly accurate con-
tent summaries. Furthermore, our algorithm classifies

GetContentSummary(Category C, Database D)

α: 〈SampleDF ,ActualDF ,Classif〉 = 〈∅, ∅, ∅〉
if C is a leaf node

then return 〈SampleDF ,ActualDF , {C}〉
Probe database D with the query probes derived

from the classifier for the subcategories of C

β:

newdocs = ∅
foreach query probe q

newdocs = newdocs ∪
{top-k documents returned for q}

if q consists of a single word w
then ActualDF (w) = #matches returned for q

foreach word w in newdocs
SampleDF (w) = #documents in newdocs

that contain w

Calculate Coverage and Specificity
from the number of matches for the probes

foreach subcategory Ci of C
if (Specificity(Ci) > τs AND Coverage(Ci) > τc)

then

γ:

〈SampleDF ’,ActualDF ’,Classif ’〉 =
GetContentSummary(Ci, D)

Merge 〈SampleDF ’,ActualDF ’〉
into 〈SampleDF ,ActualDF 〉

Classif = Classif ∪ Classif ’
return 〈SampleDF ,ActualDF ,Classif〉

Figure 1: Generating a content summary for a database
using focused query probing.

the databases along the way. In Section 4 we will exploit
this categorization and the database content summaries
to introduce a hierarchical database selection technique
that can handle incomplete content summaries well. Our
content-summary construction algorithm consists of two
main steps:

1. Query the database using focused probing (Sec-
tion 3.1) in order to:
(a) Retrieve a document sample.
(b) Generate a preliminary content summary.
(c) Categorize the database.

2. Estimate the absolute frequencies of the words re-
trieved from the database (Section 3.2).

3.1 Building Content Summaries from Ex-
tracted Documents

The first step of our content summary construction algo-
rithm is to adaptively query a given text database using
focused probes to retrieve a document sample. The algo-
rithm is shown in Figure 1. We have enclosed in boxes the
portions directly relevant to content-summary extraction.
Specifically, for each query probe we retrieve k documents
from the database in addition to the number of matches
that the probe generates (box β in Figure 1). Also, we
record two sets of word frequencies based on the probe
results and extracted documents (boxes β and γ):

1. ActualDF (w): the actual number of documents in
the database that contain word w. The algorithm
knows this number only if [w] is a single-word query
probe that was issued to the database3.

3The number of matches reported by a database for a single-
word query [w] might differ slightly from ActualDF (w), for exam-
ple, if the database applies stemming [28] to query words so that a
query [computers] also matches documents with word “computer.”

Health

Science

metallurgy

(0)

dna

(30)

Computers

Sports

soccer

(7,530)
 cancer

(780)
baseball

(24,520)

keyboard

(32)

ram

(140)

aids

(80)

Probing Process -

Phase 1

Parent Node: Root

Basketball

Baseball

Soccer

Hockey

jordan

(1,230)

liverpool

(150)

lakers

(7,700)

yankees

(4,345)

fifa

(2,340)

Probing Process -

Phase 2

Parent Node: Sports

nhl

(4,245)

canucks

(234)

The number of matches

returned for each query is

indicated in parentheses

next to the query

Figure 2: Querying the CNN Sports Illustrated database
with focused probes.

2. SampleDF (w): the number of documents in the ex-
tracted sample that contain word w.

The basic structure of the probing algorithm is as fol-
lows: We explore (and send query probes for) only those
categories with sufficient specificity and coverage, as de-
termined by the τs and τc thresholds. As a result, this
algorithm categorizes the databases into the classification
scheme during probing. We will exploit this categoriza-
tion in our database selection algorithm of Section 4.

Figure 2 illustrates how our algorithm works for the
CNN Sports Illustrated database, a database with articles
about sports, and for a hierarchical scheme with four cat-
egories under the root node: “Sports,” “Health,” “Com-
puters,” and “Science.” We pick specificity and coverage
thresholds τs = 0.5 and τc = 100, respectively. The algo-
rithm starts by issuing the query probes associated with
each of the four categories. The “Sports” probes gener-
ate many matches (e.g., query [baseball] matches 24,520
documents). In contrast, the probes for the other sib-
ling categories (e.g., [metallurgy] for category “Science”)
generate just a few or no matches. The Coverage of cate-
gory “Sports” is the sum of the number of matches for its
probes, or 32,050. The Specificity of category “Sports”
is the fraction of matches that correspond to “Sports”
probes, or 0.967. Hence, “Sports” satisfies the Specificity
and Coverage criteria (recall that τs = 0.5 and τc = 100)
and is further explored to the next level of the hierarchy.
In contrast, “Health,” “Computers,” and “Science” are
not considered further. The benefit of this pruning of the
probe space is two-fold: First, we improve the efficiency of
the probing process by giving attention to the topical fo-
cus (or foci) of the database. (Out-of-focus probes would
tend to return few or no matches.) Second, we avoid re-
trieving spurious matches and focus on documents that
are better representatives of the database.

During probing, our algorithm retrieves the top-k doc-
uments returned by each query (box β in Figure 1). For
each word w in a retrieved document, the algorithm com-
putes SampleDF (w) by measuring the number of docu-
ments in the sample, extracted in a probing round, that

f = P
 (r+p)
-B

?

?

?

Known ActualDF

?

Unknown ActualDF

SampleDF (always known)

...
 ...

cancer
 liver
 stomach
kidneys

...
...

hepatitis
...
 ...

...

20,000 matches

140,000 matches

60,000 matches

Figure 3: Estimating unknown ActualDF values.

contain w. If a word w appears in document samples
retrieved during later phases of the algorithm for deeper
levels of the hierarchy, then all SampleDF (w) values are
added together (“merge” step in box γ). Similarly, dur-
ing probing the algorithm keeps track of the number of
matches produced by each single-word query [w]. As dis-
cussed, the number of matches for such a query is (a
close approximation to) the ActualDF (w) frequency (i.e.,
the number of documents in the database with word w).
These ActualDF (·) frequencies are crucial to estimate the
absolute document frequencies of all words that appear
in the document sample extracted, as discussed next.

3.2 Estimating Absolute Document Frequencies

No probing technique so far has been able to estimate the
absolute document frequency of words. The RS-Ord and
RS-Lrd techniques only return the SampleDF (·) of words
with no absolute frequency information. We now show
how we can exploit the ActualDF (·) and SampleDF (·)
document frequencies that we extract from a database
(Section 3.1) to build a content summary for the database
with accurate absolute document frequencies. For this,
we follow two steps:

1. Exploit the SampleDF (·) frequencies derived from
the document sample to rank all observed words
from most frequent to least frequent.

2. Exploit the ActualDF (·) frequencies derived from
one-word query probes to potentially boost the doc-
ument frequencies of “nearby” words w for which we
only know SampleDF (w) but not ActualDF (w).

Figure 3 illustrates our technique for CANCERLIT.
After probing CANCERLIT using the algorithm in Fig-
ure 1, we rank all words in the extracted documents
according to their SampleDF (·) frequency. In this fig-
ure, “cancer” has the highest SampleDF value and “hep-
atitis” the lowest such value. The SampleDF value of
each word is noted by the corresponding vertical bar.
Also, the figure shows the ActualDF (·) frequency of
those words that formed single-word queries. For exam-
ple, ActualDF (hepatitis) = 20, 000, because query probe
[hepatitis] returned 20,000 matches. Note that the Ac-
tualDF value of some words (e.g., “stomach”) is un-
known. These words appeared in documents that we re-
trieved during probing, but not as single-word probes.
From the figure, we can see that SampleDF(hepatitis) ≈
SampleDF(stomach). Then, intuitively, we will estimate

ActualDF (stomach) to be close to the (known) value of
ActualDF (hepatitis).

To specify how to “propagate” the known ActualDF
frequencies to “nearby” words with similar SampleDF
frequencies, we exploit well-known laws on the distribu-
tion of words over text documents. Zipf [35] was the
first to observe that word-frequency distributions follow
a power law, which was later refined by Mandelbrot [23].
Mandelbrot observed a relationship between the rank
r and the frequency f of a word in a text database:
f = P (r+p)−B , where P , B, and p are parameters of the
specific document collection. This formula indicates that
the most frequent word in a collection (i.e., the word with
rank r = 1) will tend to appear in P (1+p)−B documents,
while, say, the tenth most frequent word will appear in
just P (10 + p)−B documents.

Just as in Figure 3, after probing we know the rank
of all observed words in the sample documents retrieved,
as well as the actual frequencies of some of those words
in the entire database. These statistics, together with
Mandelbrot’s equation, lead to the following procedure
for estimating unknown ActualDF (·) frequencies:

1. Sort words in descending order of their SampleDF (·)
frequencies to determine the rank ri of each word wi.

2. Focus on words with known ActualDF (·) frequen-
cies. Use the SampleDF -based rank and ActualDF
frequencies to find the P , B, and p parameter values
that best fit the data.

3. Estimate ActualDF (wi) for all words wi with un-
known ActualDF (wi) as P (ri+p)−B , where ri is the
rank of word wi as computed in Step 1.

For Step 2, we use an off-the-shelf curve fitting algo-
rithm available as part of the R-Project4, an open-source
environment for statistical computing.

Example 3: Consider database CANCERLIT and Fig-
ure 3. We know that ActualDF(hepatitis) = 20, 000 and
ActualDF(liver) = 140, 000, since the respective one-word
query probes reported so many matches in each case. Ad-
ditionally, using the SampleDF frequencies, we know that
“liver” is the fifth most popular word among the extracted
documents, while “hepatitis” ranked number 25. Simi-
larly, “kidneys” is the 10th most popular word. Unfortu-
nately, we do not know the value of ActualDF(kidneys)
since [kidneys] was not a query probe. However, us-
ing the ActualDF frequency information from the other
words and their SampleDF-based rank, we estimate the
distribution parameters to be P = 8 · 105, p = 0.25, and
B = 1.15. Using the rank information with Mandelbrot’s
equation, we compute ActualDFest(kidneys) = 8·105(10+
0.25)−1.15 ∼= 55, 000. In reality, ActualDF(kidneys) =
65, 000, which is close to our estimate. 2

During sampling, we also send to the database query
probes that consist of more than one word. (Recall that
our query probes are derived from an underlying, auto-
matically learned document classifier.) We do not exploit
multi-word queries for determining ActualDF frequencies

4http://www.r-project.org/

of their words, since the number of matches returned by a
boolean-AND multi-word query is only a lower bound on
the ActualDF frequency of each intervening word. How-
ever, the average length of the query probes that we gen-
erate is small (less than 1.5 in our experiments), and their
median length is one. Hence, the majority of the query
probes provide us with ActualDF frequencies that we can
exploit. Another interesting observation is that we can
derive a gross estimate of the number of documents in
a database as the largest (perhaps estimated) ActualDF
frequency, since the most frequent words tend to appear
in a large fraction of the documents in a database.

In summary, we presented a new focused probing tech-
nique for content summary construction that (a) esti-
mates the absolute document frequency of the words in
a database, and (b) automatically classifies the database
in a hierarchical classification scheme along the way. We
show next how we can define a database selection algo-
rithm that uses the content summary and categorization
information of each available database.

4 Exploiting Topic Hierarchies for
Database Selection

Any efficient algorithm for constructing content sum-
maries through query probes is likely to produce in-
complete content summaries, which can affect the effec-
tiveness of the database selection process. Specifically,
database selection would suffer the most for queries with
one or more words not present in content summaries. We
now introduce a database selection algorithm that ex-
ploits the database categorization and content summaries
produced as in Section 3 to alleviate the negative effect of
incomplete content summaries. This algorithm consists
of two basic steps:

1. “Propagate” the database content summaries to the
categories of the hierarchical classification scheme
(Section 4.1).

2. Use the content summaries of categories and
databases to perform database selection hierarchi-
cally by zooming in on the most relevant portions of
the topic hierarchy (Section 4.2).

4.1 Creating Content Summaries for Topic Cat-
egories

Sections 2.2 and 3 showed algorithms for extracting
database content summaries. These summaries could be
used to guide existing database selection algorithms such
as CORI [5] or bGlOSS [13]. However, these algorithms
might produce inaccurate conclusions for queries with one
or more words missing from relevant content summaries.
This is particularly problematic for the short queries that
are prevalent over the web. A first step to alleviate this
problem is to associate content summaries with the cat-
egories of the topic hierarchy used by the probing algo-
rithm of Section 3. In the next section, we use these
category content summaries to select databases hierar-
chically.

The intuition behind our approach is that databases
classified under similar topics tend to have similar vocab-
ularies. (We present supporting experimental evidence

CANCERLIT - NumDocs: 148,944

Word
 NumDocs

…
 ...

breast
 121,134

…
 ...

cancer
 91,688

…
 ...

diabetes
 11,344

…
 …

metastasis
 <not found>

CancerBACUP - NumDocs: 17,328

Word
 NumDocs

…
 ...

breast
 12,546

…
 ...

cancer
 9,735

…
 ...

diabetes
 <not found>

…
 …

metastasis
 3,569

Category: Cancer

NumDBs: 2

NumDocs: 166,272

Word
 NumDocs

…
 ...

breast
 133,680

…
 ...

cancer
 101,423

…
 ...

diabetes
 11,344

…
 …

metastasis
 3,569

WebMD - NumDocs: 3,346,639

Word
 NumDocs

…
 ...

…
 ...

…
 ...

Category: Health

NumDBs: 5

NumDocs: 3,747,366

Word
 NumDocs

…
 ...

…
 ...

…
 ...

…

Figure 4: Associating content summaries with categories.

for this statement in [17].) Hence, we can view the (po-
tentially incomplete) content summaries of all databases
in a category as complementary, and exploit this view
for better database selection. For example, consider the
CANCERLIT database and its associated content sum-
mary in Figure 4. As we can see, CANCERLIT was
correctly classified under “Cancer” by the algorithm in
Section 3. Unfortunately, the word “metastasis” did not
appear in any of the documents extracted from CAN-
CERLIT during probing, so this word is missing from
the content summary. However, we see that Cancer-
BACUP5, another database classified under “Cancer”,
has a high ActualDFest(metastasis) = 3, 569. Hence,
we might conclude that the word “metastasis” did not
appear in CANCERLIT because it was not discovered
during sampling, and not because it does not occur in
the CANCERLIT database. We convey this information
by associating a content summary with category “Can-
cer” that is obtained by merging the summaries of all
databases under this category. In the merged content
summary, ActualDFest(w) is the sum of the document
frequency of w for databases under this category.

In general, the content summary of a category C with
databases db1, . . . , dbn classified (not necessary immedi-
ately) under C includes:
• NumDBs(C): The number of databases under C (n

in this case).
• NumDocs(C): The number of documents in any dbi

under C; NumDocs(C)=
∑n
i=1 NumDocs(dbi).

• ActualDFest(w): The number of documents in
any dbi under C that contain the word w;
ActualDFest(w) =

∑n
i=1(ActualDFest(w)for dbi).

By having content summaries associated with cate-
gories, we can treat each category as a large “database”
and perform database selection hierarchically; we present
a new algorithm for this task next.

4.2 Selecting Databases Hierarchically

Now that we have associated content summaries with the
categories in the topic hierarchy, we can select databases

5http://www.cancerbacup.org.uk

HierSelect(Query Q, Category C, int K)
1: Use a database selection algorithm to assign

a score for Q to each subcategory of C
2: if there is a subcategory C with a non-zero score
3: Pick the subcategory Cj with the highest score
4: if NumDBs(Cj) ≥ K //Cj has enough databases
5: return HierSelect(Q,Cj ,K)
6: else // Cj does not have enough databases
7: return DBs(Cj) ∪

FlatSelect(Q,C − Cj ,K-NumDBs(Cj))
8: else // no subcategory C has non-zero score
9: return FlatSelect(Q,C,K)

Figure 5: Selecting the K most specific databases for a
query hierarchically.

for a query hierarchically, starting from the top cate-
gory. Earlier research indicated that distributed infor-
mation retrieval systems tend to produce better results
when documents are organized in topically-cohesive clus-
ters [33, 22]. At each level, we use existing flat database
algorithms such as CORI [5] or bGlOSS [13]. These al-
gorithms assign a score to each database (or category
in our case) for a query, which specifies how promising
the database (or category) is for the query, based on its
content summary (see Example 2). We assume in our dis-
cussion that scores are greater than or equal to zero, with
a zero score indicating that a database or category should
be ignored for the query. Given the scores for the cate-
gories at one level of the hierarchy, the selection process
will continue recursively onto the most promising subcat-
egories. There are several alternative strategies that we
could follow to decide what subcategories to exploit. In
this paper, we present one such strategy, which privileges
topic-specific over broader databases.

Figure 5 summarizes our hierarchical database selec-
tion algorithm. The algorithm takes as input a query Q
and the target number of databases K that we are will-
ing to search for the query. Also, the algorithm receives
the top category C as input, and starts by invoking a flat
database selection algorithm to score all subcategories of
C for the query (Step 1), using the content summaries as-
sociated with the subcategories (Section 4.1). If at least
one “promising” subcategory has a non-zero score (Step
2), then the algorithm picks the best such subcategory
Cj (Step 3). If Cj has K or more databases under it
(Step 4) the algorithm proceeds recursively under that
branch only (Step 5). As discussed above, this strategy
privileges “topic-specific” databases over databases with
broader scope. On the other hand, if Cj does not have
sufficiently many (i.e., K or more) databases (Step 6),
then intuitively the algorithm has gone as deep in the
hierarchy as possible (exploring only category Cj would
result in fewer than K databases being returned). Then,
the algorithm returns all NumDBs(Cj) databases under
Cj , plus the best K − NumDBs(Cj) databases under C
but not in Cj , according to the “flat” database selection
algorithm of choice (Step 7). If no subcategory of C has
a non-zero score (Step 8), again this indicates that the
execution has gone as deep in the hierarchy as possible.
Therefore, we return the best K databases under C, ac-

Root

NumDBs: 136

Sports

NumDBs
: 21

(score: 0.93)

Arts

NumDBs
:35

(score: 0.0)

Computers

NumDBs
:55

(score: 0.15)

Hockey

NumDBs
:8

(score:0.08)

Baseball

NumDBs
:7

(score:0.78)

ESPN

(score:0.68)

Health

NumDBs
:25

(score: 0.10)

Soccer

NumDBs
:5

(score:0.12)

Query:
[babe AND ruth]

Figure 6: Exploiting a topic hierarchy for database selec-
tion.

cording to the flat database selection algorithm (Step 9).
Figure 6 shows an example of an execution of this al-

gorithm for query [babe AND ruth] and for a target of
K = 3 databases. The top-level categories are evaluated
by a flat database selection algorithm for the query, and
the “Sports” category is deemed best, with a score of
0.93. Since the “Sports” category has more than three
databases, the query is “pushed” into this category. The
algorithm proceeds recursively by pushing the query into
the “Baseball” category. If we had initially pickedK = 10
instead, the algorithm would have still picked “Sports”
as the first category to explore. However, “Baseball” has
only 7 databases, so the algorithm picks them all, and
chooses the best 3 databases under “Sports” to reach the
target of 10 databases for the query.

In summary, our hierarchical database selection al-
gorithm chooses the best, most-specific databases for a
query. By exploiting the database categorization, this
hierarchical algorithm manages to compensate for the
necessarily incomplete database content summaries pro-
duced by query probing. In the next sections we evaluate
the performance of this algorithm against that of “flat”
selection techniques.

5 Data and Metrics

In this section we describe the data (Section 5.1) and
techniques (Section 5.2) that we use for the experiments
reported in Section 6.

5.1 Experimental Setting

To evaluate the algorithms described in this paper, we
use two data sets: one set of “Controlled” databases that
we assembled locally with newsgroup articles, and an-
other set of “Web” databases, which we could only access
through their web search interface. (In [17],we also report
experiments involving the three databases used in [3], to
validate our comparison further.) We use a 3-level subset
of the Yahoo! topic hierarchy consisting of 72 categories,
with 54 “leaf” and 18 “internal” topics.

Controlled Database Set: We gathered 500,000
newsgroup articles from 54 newsgroups during April-May
2000. Out of these, we used 81,000 articles to train doc-
ument classifiers over the 72-node topic hierarchy. For
training we manually assigned newsgroups to categories,
and treated all documents from a newsgroup as belong-
ing to the corresponding category. We used the remaining

Web Database URL
UM Cancer Center www.cancer.med.umich.edu/search.htm
Java @ Sun.com search.java.sun.com
J.Hopkins AIDS Service hopkins-aids.edu/index search.html

Table 2: Some of the real web databases in the Web set.

419,000 articles to build the set of Controlled Databases.
This set contained 500 databases ranging in size from 25
to 25,000 documents. 350 of them were “homogeneous,”
with documents from a single category, while the remain-
ing 150 are “heterogeneous,” with a variety of category
mixes (see [18] for details). These databases were indexed
and queried by a SMART-based program [29] using the
cosine similarity function with tf.idf weighting [27].

Web Database Set: We used a set of 50 real web-
accessible databases over which we do not have any con-
trol. These databases were picked randomly from two di-
rectories of hidden-web databases, namely InvisibleWeb6

and CompletePlanet7. These databases have articles that
range from research papers to film reviews. Table 2 shows
a sample of three databases from the Web set.

5.2 Alternative Techniques

Our experiments evaluate two main sets of techniques:
content-summary construction techniques (Sections 2
and 3) and database selection techniques (Section 4):

Content Summary Construction: We test varia-
tions of our Focused Probing technique against the two
main variations of uniform probing, described in Sec-
tion 2.2, namely RS-Ord and RS-Lrd. As the initial dic-
tionary D for these two methods we used the set of all
the words that appear in the databases of the Controlled
set. For Focused Probing, we evaluate configurations with
different underlying document classifiers for query-probe
creation, and different values for the thresholds τs and
τc that define the granularity of sampling performed by
the algorithm in Figure 1. Specifically, we consider the
following variations of the Focused Probing technique:
FP-RIPPER: Focused Probing using RIPPER [6] as the
base document classifier (Section 3.1).
FP-C4.5: Focused Probing using C4.5RULES, which ex-
tracts classification rules from decision tree classifiers gen-
erated by C4.5 [26].
FP-Bayes: Focused Probing using Naive-Bayes classi-
fiers [9] in conjunction with a technique to extract rules
from numerically-based Naive-Bayes classifiers [19].
FP-SVM: Focused Probing using Support Vector Ma-
chines with linear kernels [21] in conjunction with the
same rule-extraction technique used for FP-Bayes.

We vary the specificity threshold τs to get document
samples of different granularity. All variations were
tested with threshold τs ranging between 0 and 1. Low
values of τs result in databases being “pushed” to more
categories, which in turn results in larger document sam-
ples. To keep the number of experiments manageable, we
fix the coverage threshold to τc = 10, varying only the
specificity threshold τs.

6http://www.invisibleweb.com/
7http://www.completeplanet.com/

Database Selection Effectiveness: We test vari-
ations of our database selection algorithm of Section 4
along several dimensions:
Underlying Database Selection Algorithm: The hierarchi-
cal algorithm of Section 4.2 relies on a “flat” database
selection algorithm. We consider two such algorithms:
CORI [5] and bGlOSS [13]. Our purpose is not to evalu-
ate the relative merits of these two algorithms (for this,
see [10, 25]) but rather to ensure that our techniques be-
have similarly for different flat database selection algo-
rithms. We adapted both algorithms to work with the
category content summaries described in Section 4.1.
Content Summary Construction Algorithm: We evalu-
ated how our hierarchical database selection algorithm
behaves over content summaries generated by different
techniques. In addition to the content-summary con-
struction techniques listed above, we also test QPilot, a
recent strategy that exploits HTML links to characterize
text databases [31]. Specifically, QPilot builds a content
summary for a web-accessible database D as follows:

1. Query a general search engine to retrieve pages that
link to the web page for D8.

2. Retrieve the top-m pages that point to D.
3. Extract the words in the same line as a link to D.
4. Include only words with high document frequency in

the content summary for D.
Hierarchical vs. Flat Database Selection: We compare the
effectiveness of the hierarchical algorithm of Section 4.2,
against that of the underlying “flat” database selection
strategies.

6 Experimental Results

We use the Controlled database set for experiments on
content summary quality (Section 6.1), while we use the
Web database set for experiments on database selection
effectiveness (Section 6.2). We report the results next.

6.1 Content Summary Quality

Coverage of the retrieved vocabulary: An impor-
tant property of content summaries is their coverage of
the actual database vocabulary. To measure coverage,
we use the ctf ratio metric introduced in [3]: ctf =∑

w∈Tr
ActualDF (w)∑

w∈Td
ActualDF (w)

, where Tr is the set of terms in a

content summary and Td is the complete set of words
in the corresponding database. This metric gives higher
weight to more frequent words, but is calculated after
stopwords (e.g., “a”, “the”) are removed, so this ratio is
not artificially inflated by the discovery of common words.

We report the ctf ratio for the different content sum-
mary construction algorithms in Figure 7(a). The vari-
ants of the Focused Probing technique achieve much
higher ctf ratios than RS-Ord and RS-Lrd do. Early dur-
ing probing, Focused Probing retrieves documents cover-
ing different topics, and then sends queries of increasing
specificity, retrieving documents with more specialized

8QPilot finds backlinks by querying AltaVista using queries of
the form “link:URL-of-the-database.” [31]

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0
 0.25
 0.5
 0.75
 1

Ts

ct
f r

at
io

FP-Bayes
 FP-C4.5
 FP-RIPPER

FP-SVM
 RS-Ord
 RS-Lrd

(a)

0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

0.71

0
 0.25
 0.5
 0.75
 1

Ts

SR
C

C

FP-Bayes
 FP-C4.5
 FP-RIPPER

FP-SVM
 RS-Ord
 RS-Lrd

(b)

Figure 7: The ctf ratio (a) and the Spearman Rank Cor-
relation Coefficient (b) for different methods and for dif-
ferent values of the specificity threshold τs.

words. As expected, the coverage of the Focused Prob-
ing summaries increases for lower thresholds of τs, since
the number of documents retrieved for lower thresholds
is larger (e.g., 493 documents for FP-SVM for τs = 0.25
vs. 300 documents for RS-Lrd): a sample of larger size,
everything else being the same, is better for content sum-
mary construction. (See below for a comparison of the
efficiency of the techniques.) However, even when we in-
creased the sample size for RS-Ord and RS-Lrd to re-
trieve the same number of documents as the Focused
Probing methods, we observed that the achieved cover-
age of RS-Ord and RS-Lrd was still lower than that of
the respective Focused Probing method. (Due to space
restrictions we omit the results of this particular exper-
iment; see [17] for more details.) In general, the differ-
ence between RS-Lrd and RS-Ord is small. RS-Lrd has
slightly lower ctf values, due to the bias induced from
querying only using previously discovered words.

Correlation of word rankings: The ctf ratio can
be helpful to compare the quality of different content
summaries. However, this metric alone is not enough,
since it does not capture the relative “rank” of words in
the content summary by their observed frequency. To
measure how well a content summary orders words by
frequencies with respect to the actual word frequency or-
der in the database, we use the Spearman Rank Corre-
lation Coefficient (SRCC for short), which is also used
in [3] to evaluate the quality of the content summaries.
When two rankings are identical then SRCC =1; when
they are uncorrelated, SRCC =0; and when they are in
reverse order, SRCC =-1. The results for the different
algorithms are listed in Figure 7(b). Again, the content
summaries produced by the Focused Probing techniques
have much higher SRCC values than for RS-Lrd and RS-
Ord, hinting that Focused Probing retrieves a more repre-
sentative sample of documents. This hypothesis was also
confirmed by measuring the SRCC metric when the RS

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0
 0.25
 0.5
 0.75
 1

Ts

Re
lat

ive
 e

rro
r

FP-Bayes
 FP-C4.5
 FP-RIPPER

FP-SVM
 RS-Ord
 RS-Lrd

(a) The average relative error for the ActualDF estima-
tions for words with ActualDF> 3.

0

1000

2000

3000

4000

5000

6000

7000

8000

0
 0.25
 0.5
 0.75
 1

Ts

Nu
m

be
r o

f i
nt

er
ac

tio
ns

FP-Bayes
 FP-C4.5
 FP-RIPPER

FP-SVM
 RS-Ord
 RS-Lrd

(b) The average number of interactions per database.

Figure 8: Comparison of different methods for different
values of the specificity threshold τs.

and the Focused Probing techniques retrieve the same
number of documents: the Focused Probing techniques
achieved consistently better SRCC values than RS did.
(We list the details of this particular experiment in [17].)

Accuracy of frequency estimations: In Section 3.2
we introduced a technique to estimate the actual abso-
lute frequencies of the words in a database. To evaluate
the accuracy of our predictions, we report the average
relative error for words with actual frequencies greater
than three. (Including the large tail of less-frequent words
would highly distort the relative-error computation.) Fig-
ure 8(a) reports the average relative error estimates for
our algorithms. We also applied our absolute frequency
estimation algorithm of Section 3.2 to RS-Ord and RS-
Lrd, even though this estimation is not part of the original
algorithms in [3]. As a general conclusion, our technique
provides a good ballpark estimate of the absolute fre-
quency of the words.

Efficiency: To measure the efficiency of the probing
methods, we report the sum of the number of queries
sent to a database and the number of documents re-
trieved (“number of interactions”) in Figure 8(b). The
Focused Probing techniques on average retrieve one doc-
ument per query sent, while RS-Lrd retrieves about one
document per two queries. RS-Ord unnecessarily issues
many queries that produce no document matches. The
efficiency of the other techniques is correlated with their
effectiveness. The more expensive techniques tend to
give better results. The exception is FP-SVM, which for
τs > 0 has the lowest cost (or cost close to the lowest
one) and gives results of comparable quality with respect
to the more expensive methods. The Focused Probing
probes were generally short, with a maximum of four
words and a median of one word per query.

Overall, the Focused Probing techniques produce sig-
nificantly better-quality summaries than RS-Ord and RS-

Content Summary CORI bGlOSS
Generation Technique Hier. Flat Hier. Flat
FP-SVM 0.27 0.17 0.163 0.085
RS-Ord - 0.177 - 0.085
QPilot - 0.052 - 0.008

Table 3: The average precision of different database se-
lection algorithms for topics 451-500 of TREC.

Lrd do, both in terms of vocabulary coverage and word-
ranking preservation. The cost of Focused Probing in
terms of number of interactions with the databases is
comparable to or less than that for RS-Lrd, and signif-
icantly less than that for RS-Ord. Finally, the absolute
frequency estimation technique of Section 3.2 gives good
ballpark approximations of the actual frequencies.

6.2 Database Selection Effectiveness

The Controlled set allowed us to carefully evaluate the
quality of the content summaries that we extract. We
now turn to the Web set of real web-accessible databases
to evaluate how the quality of the content summaries af-
fects the database selection task. Additionally, we evalu-
ate how the hierarchical database selection algorithm of
Section 4.2 improves the selection task.

Evaluation metrics: We used the queries 451-500
from the Web Track of TREC-9 [15]. TREC is a con-
ference for the large-scale evaluation of text retrieval
methodologies. In particular, the Web Track evaluates
methods for retrieval of web content. TREC provides
both web pages and queries as part of its Web Track. We
use the queries for our database selection experiments
over the Web database set described in Section 5.1. (We
ignored the “flat” set of TREC web pages since we are in-
terested in evaluating algorithms for choosing databases,
not individual pages or documents.)

Our evaluation proceeded as follows for each of the
50 TREC queries. Each database selection algorithm
(Section 5.2) picked three databases for the query. We
then retrieved the top-5 documents for the query from
each selected database. This procedure resulted in (at
most) 15 documents for the query for each algorithm.
The relevance [28] of these 15 documents is what ulti-
mately reveals the quality of each algorithm. We asked
human evaluators to judge the relevance of each retrieved
document for the query following the guidelines given by
TREC for each query. Then, the precision of a technique
for each query q is:

Pq =
|relevant documents in the answer|

|total number of documents in the answer|
We report the average precision achieved by each
database selection algorithm over the 50 TREC Web-
Track queries in Table 3, ignoring queries with no results.
In particular, we ignored 15 queries for which all database
selection algorithms either selected only databases that
return zero documents or failed to select any database
giving to all databases a zero score.

Our database selection algorithm of Section 4.2
chooses databases hierarchically. We evaluate the per-
formance of the algorithm using content summaries ex-

tracted from FP-SVM probing (Section 5.2) with speci-
ficity threshold τs = 0.25: FP-SVM exhibits the best
accuracy-efficiency tradeoff (Section 6.1) while τs = 0.25
leads to good database classification decisions for web
databases [18]. We compare two versions of the algo-
rithm, one using CORI [5] as the underlying flat database
selection strategy, and another using bGlOSS [13].
Note that QPilot, RS-Ord, and RS-Lrd do not classify
databases while building content summaries, hence we
did not evaluate our hierarchical database selection algo-
rithm over their content summaries. Table 3 shows the
average precision of the hierarchical algorithms against
that of flat database selection algorithms over the same
content summaries9. We discuss these results next:

Effect of different content summaries: To analyze
the effect of content summary construction algorithms on
database selection, we tested how the quality of content
summaries generated by RS-Ord, Focused Probing, and
QPilot affects the database selection process. We picked
RS-Ord over RS-Lrd because of its superior performance
in the evaluation of Section 6.1. Also, rather than us-
ing the SampleDF (·) frequencies returned by RS-Ord, we
applied our technique of Section 3.2 for ActualDF es-
timation to the RS-Ord summaries hence addressing a
potential limitation of the original RS-Ord algorithm. In
Table 3 we can see that, surprisingly, the performance of
the flat selection algorithms that use FP-SVM and RS-
Ord summaries did not reflect the gap in quality of the
corresponding content summaries (Section 6.1). All the
flat selection techniques suffer from the incomplete cov-
erage of the underlying probing-generated summaries. A
clear conclusion is that QPilot summaries do not work
well for database selection because they generally con-
tain only a few words and are hence highly incomplete.

Hierarchical vs. flat database selection: For
both types of evaluation the hierarchical versions of the
database selection algorithms gave better results than
their flat counterparts. The hierarchical algorithm us-
ing CORI as flat database selection has 50% better pre-
cision than CORI for flat selection with the same content
summaries. For bGlOSS, the improvement in precision
is even more dramatic at 92%. The reason for the im-
provement is that the topic hierarchy helps compensate
for incomplete content summaries. For example, in Fig-
ure 4 a query on [metastasis] would not be routed to
the CANCERLIT database by a database selection al-
gorithm like bGlOSS because “metastasis” is not in the
CANCERLIT content summary. In contrast, our hierar-
chical algorithm exploits the fact that “metastasis” ap-
pears in the summary for CancerBACUP, which is in the
same category as CANCERLIT, to allow CANCERLIT
to be selected when the “Cancer” category is selected (the
ActualDFest(metastasis) frequency from CancerBACUP
propagates to the content summary of the “Cancer” cat-

9Although the reported precision numbers for the distributed
search algorithms seem low, we note that the best precision score
achieved in the TREC-9 WebTrack was 0.358 [15], with the use
of centralized search algorithms. A distributed search algorithm
has lower performance given the lack of immediate access to the
documents.

egory). To quantify how frequent this phenomenon is,
we measured the fraction of times that our hierarchi-
cal database selection algorithm picked a database for
a query that both produced matches for the query and
was given a zero score by the flat database selection algo-
rithm of choice. Interestingly, this was the case for 34% of
the databases picked by the hierarchical algorithm with
bGlOSS and for 23% of the databases picked by the hi-
erarchical algorithm with CORI. These numbers support
our hypothesis that hierarchical database selection com-
pensates for content-summary incompleteness.

In additional experiments [17], not reported here for
space restrictions, we showed that databases under simi-
lar categories tend to exhibit closely related content sum-
maries, which supports the conjecture behind our hierar-
chical database selection of Section 4.2. In [17] we also
report experiments over other data sets, including the
TREC123 collection [3].

7 Related Work

A large body of work has been devoted to the task
of database selection. Many database selection algo-
rithms [13, 24, 32, 34, 5, 11] rely on content summaries of
the databases for this task. Some algorithms rely on hi-
erarchical schemes [8, 30, 13] to direct the queries to the
appropriate nodes of the hierarchy. Some approaches rely
either on access to all documents or on metadata directly
exported by the databases. Unfortunately, web-accessible
databases rarely export such metadata. Recently, Etzioni
and Sugiura [31] proposed the QPilot technique, which
uses query expansion to route queries to the appropriate
search engines (Section 5.2). Callan et al. [3, 4] suggested
using query probes to extract document samples from
databases for content summary construction. Craswell
et al. [7] compared the performance of flat database se-
lection algorithms in the presence of such content sum-
maries.

Hawking and Thistlewaite [16] used query probing
at query time to perform database selection by ranking
databases by similarity to a given query. Their algorithm
relies on non-standard query interfaces that can handle
normal queries and query probes differently, with smaller
cost for query probes than for normal queries.

In [18] Ipeirotis et al. used focused query probing to
automatically classify a database in a hierarchical taxon-
omy (see [18] for more references on database classifica-
tion). We have built on the results in [18] to create an
effective algorithm for content summary extraction that
classifies databases while extracting document samples.
This classification is used in the hierarchical database se-
lection algorithm that we proposed in Section 4.

8 Conclusions and Future Work

In this paper we presented a novel and efficient method
for the construction of content summaries of web-
accessible text databases. Our algorithm creates con-
tent summaries of higher quality than current approaches
and, additionally, categorizes databases in a classification
scheme. We also presented a hierarchical database selec-
tion algorithm that exploits the database content sum-

maries and the generated classification to produce accu-
rate results even for imperfect content summaries. Ex-
perimental results showed that our techniques improve
the state of the art in content-summary construction
and database selection. Finally, we have implemented
the content-summary construction algorithm described in
this paper as part of the SDARTS toolkit for metasearch-
ing [14]. The code with our implementation, plus some
real content summaries extracted from real web databases
are available from http://sdarts.cs.columbia.edu.

In Section 4 we used a “specificity-based” approach
to locate the most topically-specific databases for a
query. As future work, we will study alternative hier-
archy traversing techniques. For example, an algorithm
could treat databases and categories symmetrically and
perhaps “route” queries to multiple categories if appro-
priate. In contrast, the algorithm in Figure 5 performs
a depth-first search to find the most appropriate cate-
gory for a query and then picks appropriate databases.
We also plan to examine the effect of absolute frequency
estimation (Section 3) on database selection. As dis-
cussed, absolute frequencies are helpful to distinguish,
for example, between small and large databases on re-
lated topics (e.g., the word “cancer” appears in 1,416,852
documents in PubMed and in 1,291 documents in U. of
Michigan Cancer Center). In the future, we will exper-
imentally quantify the actual benefit of using absolute
document frequency estimates for both flat and hierar-
chical database selection. Finally, we plan to examine
alternative methods for creating content summaries. In
particular, we will explore smoothing [20] techniques to
combine the content summaries of all databases under a
category into the summary for the category itself.

Acknowledgements

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. IIS-98-17434.
We thank Eugene Agichtein, Marios Athineos, Xenophon
Bobos, Dimitris Bogiatzis, Pablo Duboue, Noémie El-
hadad, Elena Filatova, Katrina Gibbons, Dimitris Kalles,
Min–Yen Kan, Amélie Marian, Ani Nenkova, Alexandros
Ntoulas, Olga Papaemmanouil, Panagiotis Sebos, Ilias
Tagkopoulos, and Nikos Triandopoulos for their help in
the relevance evaluation of the query results. We also
thank Regina Barzilay for her help and comments.

References
[1] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web.

Scientific American, May 2001.

[2] The Deep Web: Surfacing hidden value. BrightPlanet.com
LLC, July 2000. Available at http://www.complete-
planet.com/Tutorials/DeepWeb/index.asp.

[3] J. Callan and M. Connell. Query-based sampling of text
databases. ACM TOIS, 19(2), 2001.

[4] J. P. Callan, M. Connell, and A. Du. Automatic discovery of
language models for text databases. In SIGMOD’99, 1999.

[5] J. P. Callan, Z. Lu, and W. Croft. Searching distributed col-
lections with inference networks. In SIGIR’95, 1995.

[6] W. W. Cohen. Learning trees and rules with set-valued fea-
tures. In AAAI-96,IAAI-96, 1996.

[7] N. Craswell, P. Bailey, and D. Hawking. Server selection on
the World Wide Web. In DL 2000, 2000.

[8] R. Dolin, D. Agrawal, and A. E. Abbadi. Scalable collection
summarization and selection. In DL’99, 1999.

[9] R. O. Duda and P. E. Hart. Pattern Classification and Scene
Analysis. Wiley, 1973.

[10] J. C. French, A. L. Powell, J. P. Callan, C. L. Viles, T. Em-
mitt, K. J. Prey, and Y. Mou. Comparing the performance of
database selection algorithms. In SIGIR’99, 1999.

[11] N. Fuhr. A decision-theoretic approach to database selection
in networked IR. ACM TOIS, 17(3), May 1999.

[12] L. Gravano, C.-C. K. Chang, H. Garćıa-Molina, and
A. Paepcke. STARTS: Stanford proposal for Internet meta-
searching. In SIGMOD’97, 1997.

[13] L. Gravano, H. Garćıa-Molina, and A. Tomasic. GlOSS: Text-
source discovery over the Internet. ACM TODS, 24(2), June
1999.

[14] N. Green, P. G. Ipeirotis, and L. Gravano. SDLIP + STARTS
= SDARTS: A protocol and toolkit for metasearching. In
JCDL 2001, 2001.

[15] D. Hawking. Overview of the TREC-9 Web track. In TREC
9, 2001.

[16] D. Hawking and P. B. Thistlewaite. Methods for information
server selection. ACM TOIS, 17(1), Jan. 1999.

[17] P. G. Ipeirotis and L. Gravano. Distributed search over the hid-
den web: Hierarchical database sampling and selection. Tech-
nical report, Columbia University, Computer Science Depart-
ment, 2002.

[18] P. G. Ipeirotis, L. Gravano, and M. Sahami. Probe, count,
and classify: Categorizing hidden-web databases. In SIGMOD
2001, 2001.

[19] P. G. Ipeirotis, L. Gravano, and M. Sahami. QProber: A
system for automatic classification of hidden-web resources.
Technical report, Columbia University, Computer Science De-
partment, 2001.

[20] F. Jelinek. Statistical Methods for Speech Recognition. The
MIT Press, 1999.

[21] T. Joachims. Text categorization with support vector ma-
chines: Learning with many relevant features. In ECML-98,
1998.

[22] L. S. Larkey, M. E. Connell, and J. Callan. Collection selection
and results merging with topically organized U.S. patents and
TREC data. In CIKM 2000, 2000.

[23] B. B. Mandelbrot. Fractal Geometry of Nature. W. H. Free-
man & Co., 1988.

[24] W. Meng, K.-L. Liu, C. T. Yu, X. Wang, Y. Chang, and
N. Rishe. Determining text databases to search in the In-
ternet. In VLDB’98, 1998.

[25] A. L. Powell, J. C. French, J. P. Callan, M. Connell, and C. L.
Viles. The impact of database selection on distributed search-
ing. In SIGIR 2000, 2000.

[26] J. Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufmann Publishers, Inc., 1992.

[27] G. Salton and C. Buckley. Term-weighting approaches in au-
tomatic text retrieval. IPM, 24, 1988.

[28] G. Salton and M. J. McGill. Introduction to modern informa-
tion retrieval. McGraw-Hill, 1983.

[29] G. Salton and M. J. McGill. The SMART and SIRE exper-
imental retrieval systems. In Readings in Information Re-
trieval. Morgan Kaufmann, 1997.

[30] M. A. Sheldon. Content Routing: A Scalable Architecture for
Network-Based Information Discovery. PhD thesis, M.I.T.,
1995.

[31] A. Sugiura and O. Etzioni. Query routing for web search en-
gines: Architecture and experiments. In WWW9, 2000.

[32] J. Xu and J. P. Callan. Effective retrieval with distributed
collections. In SIGIR’98, 1998.

[33] J. Xu and W. Croft. Cluster-based language models for dis-
tributed retrieval. In SIGIR’99, 1999.

[34] B. Yuwono and D. L. Lee. Server ranking for distributed text
retrieval systems on the Internet. In DASFAA’97, 1997.

[35] G. K. Zipf. Human Behavior and the Principle of Least Effort.
Addison-Wesley, 1949.

