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1 Introduction

The Internet emerges as the largest database. Increasingly, users want to issue complex queries across Internet
sources to obtain the data they require. However, finding relevant information sources and querying them man-
ually is problematic: there are numerous sources, and they vary in the type of information objects they contain
and in the interface they present to their users. Some sources contain text documents and support simple query
models where a query is just a list of keywords. Other sources contain more structured data and provide query
interfaces in the style of relational query languages. Furthermore, users have to manually fuse the query results
by merging information, removing redundancies, ranking the answer objects in the appropriate order, and so on.

Since it is tedious to contact several heterogeneous sources, users can benefit frommetasearchersandmedi-
ators, which are services that provide users with a virtual integrated view of the heterogeneous sources. Users
access the view using a unified query interface that offerslocation, model, andinterface transparency, i.e., users
have the illusion of a single database and do not have to be aware of the location and interface of the sources. Al-
though users and applications might access data directly through wrappers, mediators and metasearchers offer an
integrated view of the world, where information related to the same entity has been fused together, redundancies
have been eliminated, and inconsistencies have been removed.

The architecture of metasearchers and mediators are virtually identical (Figure 1). Wrappers export a com-
mon data model view of each source’s data. Wrappers also provide a common query interface. After receiving
a query, a wrapper translates it into a source-specific query or command, hence giving interface transparency to
the user. Then, the wrapper translates the query results from the underlying source into the common data model
or format.

To evaluate a user query over multiple heterogeneous databases, both metasearchers and mediators will typ-
ically perform three main tasks:1

� Database Selection:Choose the databases that have data relevant to the user query.

� Query Translation: Find the query fragment to be evaluated at each of the databases chosen in the pre-
vious step, translate these fragments so that they can be executed at their corresponding databases, and
retrieve the query results from the databases.

Copyright 1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1Note that this query processing strategy assumes that the integrated view is not materialized. An alternative would be to materialize
the integrated view and evaluate queries on it directly. The query processing simplicity of the materialized view approach, together with
the steep decline in disk storage prices has made it the predominant approach followed by data warehouses that integrate and consolidate
corporate information.
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Figure 1: Both metasearchers and mediators use wrappers around the underlying databases. These wrappers
provide a relatively uniform view of these databases.

� Result Merging: Combine the query results from the above databases into the final query answer.

In spite of their shared goals and architecture, the focus of the research on metasearchers has been quite dif-
ferent from that of the research on mediators. Two key issues explain this difference:

� View Complexity: Metasearchers typically operate on top of document databases, and the view that
metasearchers export to users is generally some kind of union of the underlying databases. On the other
hand, mediators usually integrate multiple relations or objects with complementary information. Thus, fu-
sion of objects from several databases is not uncommon when defining mediator views. The higher com-
plexity of the mediator views requires powerful view definition languages, together with powerful lan-
guages to query the integrated view.

� Query Matches and Result Completeness:The interaction of a user with a mediator is very similar to
the interaction of a user with a relational database system; the user sends a query and the mediator typically
returns thecomplete answerto the query. In effect, mediators generally operate over databases where query
results are well defined sets of objects, as in the relational model. Metasearchers, however, usually deal
with collections of unstructured text documents that return document ranks as the answer to a query, where
the ranks are computed using undisclosed algorithms. The matches between queries and documents are
“fuzzy.” For example,vector-spacedatabases compute how “similar” a document and a query are, where
this similarity is a number between 0 and 1 [23]. Furthermore, these sources might returnonly the best
matchesfor the query. Hence, metasearchers have to handle query results that have been computed using
unknown matching algorithms. Also, metasearchers are aware thatpartial answersto queries are usually
acceptable on the Internet, thus abandoning the goal of producing complete answers. This decision has
strong implications on the query processing strategies that metasearchers might use.

Next, we describe how metasearchers (Section 2) and mediators (Section 3) address the three tasks that we
discussed above to provide a unified view of the underlying heterogeneous databases.

2 Metasearchers

Web indexeslike AltaVista (http://www.altavista.digital.com ) are centralized full-text indexes of
HTML documents. Unfortunately, the current web indexes do not manage to index every HTML document there
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is. Hence, if a user’s web index of choice does not return satisfactory results for a query, the user might be forced
to contact other indexes until the right documents are found. To complicate matters further, the contents of many
text sources are hidden behind search interfaces (e.g., Knight-Ridder’s Dialog information service, or the NC-
STRL sources2). Web crawlers will typically not index the contents of such sources, since these sources’ docu-
ments are only available in response to queries, not by following hypertext links. Hence, to access the contents
of thesesearch-only sources, users typically have to contact the sources themselves one by one. In either case,
users need to query several autonomous, potentially heterogeneous sources.

Building metasearchers over Internet document sources is difficult because, in general, sources are too nu-
merous. Therefore, finding the best sources for a query is a challenging task. Also, even if we know the docu-
ment ranking algorithms that sources use, extracting the best objects for a query according to the metasearcher
might be an expensive operation, since the sources’ ranking algorithms might differ radically from that of the
metasearcher’s. Building metasearchers is also difficult because different sources are largely incompatible. In
effect, the interfaces and query models of these sources vary from source to source. Even individual organiza-
tions usesearch enginesfrom different vendors to index their internal document collections. In general, text
search engines use different query languages, rank documents in the query results using secret algorithms, and
do not export information about the sources in a standard form.

Several metasearchers already exist on the Internet for querying multiple web indexes. However, not all of
them completely support the three major metasearch tasks described above. Examples include MetaCrawler [24]
(http://www.metacrawler.com ), SavvySearch (http://guaraldi.cs.colostate.edu:2000/ g, and
ProFusion [7].

STARTS, theStanford Protocol Proposal for Internet Retrieval and Search[9], is an emerging protocol whose
goal is to facilitate the three metasearching tasks above.STARTShas been developed in a unique way. It is not a
standard, but a group effort involving 11 companies and organizations, coordinated by the Digital Library project
at Stanford University.

Next, we discuss the three metasearching tasks in more detail, together with some related work. In particular,
we summarize the mainSTARTScomponents and how they facilitate these tasks. For a detailed description of
STARTS, please refer to [9].

2.1 Database Selection

A metasearcher might have thousands of sources available for querying. Some of these sources might charge for
their use. Some of the sources might have long response times. Therefore, it becomes crucial that the metasearcher
only contact sources that might contain useful documents for a given query, for which the metasearcher needs
information about each source’s contents.

To characterize the sources, we could manually write descriptions of their contents. For example, the In-
formation Manifold system [15, 17] relies on declarative descriptions of the sources’ contents and capabilities,
written in a version of description logic. These descriptions are useful to prune the search space for evaluating
user queries efficiently.

Alternatively, metasearchers might rely on automatically extracted summaries of the sources’ contents. The
GlOSSsystem [12, 10] uses source summaries that include the document frequency for each word in the source’s
vocabulary. [1] has applied inference networks (from information retrieval) to the database selection problem.
Their approach summarizes databases using the same type of information thatGlOSSkeeps, together with the
“inverse collection frequency” of the different terms. An inference network then uses this information to rank
the databases for a given query.

To extract content summaries automatically from the sources, metasearchers require cooperation from the
sources. If a source exports all of its contents (e.g., many web sites), then it is not as critical to have it describe

2The NCSTRL sources constitute an emerging library of computer science technical reports (http://www.ncstrl.org ).
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its collection to the metasearchers. After all, the metasearchers can just grab all of the sources’ contents and
summarize them any way they want. This is what the crawlers of web indexes like AltaVista do. In practice,
some sources freely deliver their entire document collection, but others do not. Often, those sources that have
for-pay information are of the second type. Morever, for performance reasons, it may still be useful to require
that sources export a more succinct description of themselves. If a source “hides” its information (e.g., through a
search interface), then it is even more important that the source can describe its contents. Otherwise, if a source
does not export any kind of content summary, it becomes hard for a metasearcher to assess automatically what
kind of information the source covers.

The STARTSprotocol specifies that sources should export partial data about its contents [9]. This data is
automatically generated, is orders of magnitude smaller than the original contents, and has proven helpful in
distinguishing the more useful from the less useful sources for a given query [12, 10]. TheSTARTSsummary for
a source includes a list of all the words that appear at documents in the source, possibly with various tags, like the
position in the documents where each word occurs, and some associated statistics that are easily computed from
the source’s index structures. For example, a sourceS might report that the English wordalgorithmappears in
the title of 53 documents inS, while the Spanish worddatosappears in the title of 12 documents. The summary
might also tell us that there are 892 documents in the source. A metasearcher can use this information to decide
whether a given query is likely to have good matches in sourceS.

2.2 Query Translation

A metasearcher submits queries over multiple sources. But the interfaces and capabilities of these sources may
vary dramatically. Even the basic query model that the sources support may vary. Some search engines (e.g.,
Glimpse) only support theBoolean retrieval model[23]. In this model, a query is a condition that documents
either do or do not satisfy. The query result is then asetof documents. For example, a querydistributed and
systemsreturns all documents that contain both the wordsdistributedandsystemsin them.

Alternatively, most commercial search engines also support a variation of thevector-space retrieval model
[23]. In this model, a query is a list of terms, and documents are assigned a score according to howsimilar they
are to the query. The query result is then arankof documents. For example, a query“distributed systems”returns
a rank of documents that is typically based on the number of occurrences of the wordsdistributedandsystemsin
them.3 A document in the query result might contain the worddistributedbut not the wordsystems, for example,
or vice versa, unlike in the Boolean model above.

Even if two sources support a Boolean retrieval model, their query syntax often differ. More serious problems
appear if different attributes are available for searching at different sources. For example, a source might support
queries likeabstract ”databases”that ask for documents that have the worddatabasesin their abstract, whereas
some other sources might not support theabstractattribute for querying.

Another complication results from different stemming algorithms or stop-word lists being implicit in the
query model of each source. (Stemming is used to make a query onsystemsalso retrieve documents onsys-
tem, for example. Stop words are used to not process very frequent words likethein the queries.) If a user wants
documents about the rock groupThe Who, knowing about the stop-word behavior of the sources would allow a
metasearcher to know whether it is possible to disallow the elimination of stop words from queries at each source.

As a result of all this heterogeneity, a metasearcher would have to translate the original query to adjust it to
each source’s syntax. To do this translation, the metasearcher needs to know the characteristics of each source.
The work in [3, 4] illustrates the complexities involved in query translation. Querying multiple sources is much
easier if the sources share a common query language.

TheSTARTSprotocol specifies a flexible query language for sources. Even if support for most of this language
is optional, query translation is much simpler if sources reveal what portions of the language they support. Thus,

3These ranks also typically depend on other factors, like the number of documents in the source that contain the query words.
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STARTSasks that sources export detailed information on their searching capabilities. This information includes,
for example, what attributes are supported for searching at each source (e.g.,author, title, body of text).

2.3 Result Merging

A source that supports the vector-space retrieval model ranks its documents according to how “similar” the doc-
uments are to a given query. In practice, there are many ways to compute these similarities. To make matters
more complicated, the ranking algorithms are usually proprietary to the search engine vendors, and their details
are not publicly available.

Merging query results from sources that use different and unknown ranking algorithms is hard. For example,
sourceS1 might report that documentd1 has ascoreof 0.3 for some query, while sourceS2 might report that
documentd2 has a score of 1,000 for the same query. If we want to merge the results fromS1 andS2 into a
single document rank, should we rankd1 higher thand2, or vice versa? (Some search engines are designed so
that the top document for a query always has a score of, say, 1,000.)

It is even hard to merge query results from sources that use the same ranking algorithm, even if we know this
algorithm. The reason is that the algorithm might rank documents differently based on the collection where the
document appears. For example, if a sourceS1 specializes in computer science, the worddatabasesmight appear
in many of its documents. Then, this word will tend to have a low associated weight inS1 (e.g., ifS1 uses the
tf�idf formula for computing weights [23]). The worddatabases, on the other hand, might have a high associated
weight in a sourceS2 that is totally unrelated to computer science and contains very few documents with that
word. Consequently,S1 might assign its documents a low score for a query containing the worddatabases, while
S2 assigns a few documents a high score for that query. Therefore, it is possible for two similar documentsd1

andd2 to receive very different scores for a given query, ifd1 appears inS1 andd2 appears inS2.
The problem of merging document ranks from multiple sources has been studied in the information retrieval

field, where it is often referred to as thecollection fusionproblem. Given a query, the goal is to extract as many
of therelevantdocuments as possible from the underlying document collections, where relevance is a subjective
notion. Key decisions include how far “down” each document rank to explore, and how to translate the scores
computed by the sources into the metasearcher’s scores. An approach to address these problems is to learn from
the results of training queries. Given a new query, the closest training queries are used to determine how many
documents to extract from each available collection, and how to interleave them into a single document rank [29,
30]. Another approach is to calibrate the document scores from each collection using statistics about the word
distribution in the collections [1].

TheSTARTSprotocol asks sources to report term statistics in their query results. For example, the entry for
a documentd in the result for a query containing the worddatabasemight report the number of words ind, and
that the query worddatabaseoccurs 15 times ind, among other statistics on the document and its source. This
way, metasearchers can try and merge query results in meaningful ways without having to retrieve the entire
documents.

3 Mediators

Mediator systems [31] provide users with an integrated view of multiple heterogeneous information sources.
These sources are not necessarily structured databases like relational and object oriented databases. In partic-
ular, the sources might contain semistructured data such as HTML (and very soon XML) documents, chemical
abstracts, genome data, biology “metadata” (e.g., annotations of raw data), and bibliographic entries. Further-
more, the sources provide different and typically limited query interfaces to the data. Next, we describe how
mediators handle the database selection and query translation tasks. We do not address the result merging task
here, which is much simpler for mediators than it is for metasearchers. (See Section 2.3.)
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3.1 Database Selection

When a mediator receives a query it first performs aquery decompositionstep where it computes the sources
that are relevant to the query and decides what data is needed from each source [15, 13, 19, 18]. Mediators al-
ways use human-provided descriptions of the relationship between the integrated view and the sources in order
to decompose queries. Assuming a significant amount of abstraction, we categorize the view/source relationship
specifications in the following two broad classes and we provide a high level comparison of the virtues and dis-
advantages of the two approaches. A detailed technical comparison of the two approaches can be found in [26].
In practice, a hybrid of the two approaches is both desirable and possible.

Theview definition approach, which is usually favored by the database community, describes the integrated
view collections as views of the underlying source collections. For example, we may join asalary relation
from thepayroll source with anemployer relation from thehuman resources source to produce an in-
tegrated viewcomplete emp info that a mediator will export. Then, given a query, the mediator will expand
the references to the integrated view with its definition, hence producing a rewritten query that has references to
source collections only. Notice that query processing is similar to conventional database query processing and
hence it can be based on existing query processors.

The view definition approach is not particular to the relational model. Indeed, recent mediator projects have
preferred object oriented or semistructured models [6] for this purpose and they have also tuned the view defini-
tion language to the particular needs of integration.

The main advantage of the view definition approach is that source information can be integrated and trans-
formed in complex ways.4 On the other hand, this approach lacks modularity when it comes to adding new
sources. For example, consider a view that is the union of collections of car advertisements. We will need to
update the view specification every time a new car advertisement source becomes available. Furthermore, this
approach misses a feature that is very desirable for query optimization: there is no direct description of the con-
tribution of a source to the integrated view. For example, there is no way to express in the view definitions that
one source covers only Honda’s, while another source covers only BMW’s. Hence, a mediator will not be able
to direct a query on Honda’s to the first source only. The source definition approach addresses this problem.

Thesource definition approach, which originated in the artificial intelligence and description logic commu-
nities, assumes the existence of global predicates and collections – say, a collectioncar ads – and then defines
the source contents with respect to the global predicates. For example, the Honda source above is defined to con-
tain car ads tuples withmake = Honda. However, this statement should not be taken as a view definition
of the source with respect to the global integrated view; the definition does not imply that the Honda source has
all Hondacar ads tuples that appear in the integrated view. It only specifies that cars found in this source have
to be Honda’s.

3.2 Query Translation

Once the mediator computes what data is needed from each source, an optimizer develops an efficient plan that
specifies what queries must be sent to the sources, and how the results will be combined. Note that the mediator
has to retrieve the data required from a wrapper using only queries that the wrapper can translate into source
specific queries or commands. For example, a mediator should not send a join query to a document retrieval
source that can do selections only. Instead, it must decompose the join query into simple selection queries that can
be handled by the source. At the same time, the capabilities of the most sophisticated sources must be exploited.
This precludes the use of a simplistic “lowest common denominator” approach. For example, assuming that
only one-condition selection queries are supported by the sources will also lead to inefficient plans because the
mediator will not exploit the query processing abilities of sources that can process joins and multiple conditions.
Indeed, in most cases, it is beneficial to producealgebraically optimalplans, i.e., plans that push as much work

4In theory, the only limit is the computational complexity of the view definition language.
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as possible down to the sources. Focusing on select-project-join queries, a planP is algebraically optimal [21]
if there is no other planP 0 such that for every queryw sent to a wrapper byP there is a corresponding queryw0

of P 0 such that the sets of relations and conditions ofw
0 are a superset of the corresponding sets ofw and the set

of exported attributes ofw is a superset of the set of exported attributes ofw
0.

Several projects [22, 16, 25, 21, 20, 27] propose and discuss query processors that, given some description of
the capabilities of the participating sources, adapt to the different, limited capabilities of the sources. An elegant
approach to describing capabilities was introduced in [22] where the supported query interfaces were described
by a finite number of parameterized views. For example, the following describes that the sourcebib supports
substring conditions on thetitle field of the collectionreports .

SELECT *
FROM bib.reports
WHERE reports.title LIKE $X

If we use these descriptions, finding a plan that consists of supported queries only is similar to finding a plan to
answer queries using views. [20, 21, 27] provide languages for the specification of an infinite number of param-
eterized views and show that it is still possible to find all the potentially optimal plans. Finally note that other
projects [14] tackle the rewriting issue as one describing acceptable plans that can be passed to the wrappers.
However, the central ideas remain unchanged.

As we described in Section 2.2, the capabilities-based rewriting problem has also been addressed for text
document collections [3, 4]. The system described in [3, 4] tends to produce efficient plans because it knows the
semantic relationship between its own relations and access methods, and the source relations and access methods.
For example, assume that the user query requests papers byKnuthwhere the title contains the wordcomplexity. A
source may not support acontains word predicate while, instead, it supports asubstring predicate. By
making the mediator aware that any document that satisfies the former predicate will also satisfy the latter one,
we can rewrite the user query into one that usessubstring and does the additional filtering at the mediator.
In effect, such a mediator performs a form of semantic optimization [2].

4 Conclusion

Metasearchers and mediators provide uniform views over large numbers of heterogeneous databases. The prob-
lems that research in both areas has addressed, though, tend to differ significantly. However, some recent work
has started to bridge the gap between these two areas:

� Semistructured Data: Metasearchers initially focused on text sources, while mediators were used for
querying structured databases. However, both areas are converging on the study of sources with semistruc-
tured data. Such data has more structure than free text, but this structure is not as rigid, regular, or complete
as that of relational schemas. Bibliographic entries, chemical abstracts, genome data, and a large number
of HTML pages are typical examples of semistructured data. The emerging XML standard highlights the
importance of an information exchange model for semistructured data.

Database and mediator research has modeled semistructured data as graphs where the nodes carry semantic
labels(i.e., the labels are essentially the metadata). Appropriate query and view definition languages have
been designed for querying and transforming the graph data. However, the proposed query languages have
logical underpinnings, and do not capture relevance ranking. Hence, they are still not well suited to many
Internet querying scenarios where the query language is not logic-based.

� Ranked Query Results:Internet sources tend to overlap in arbitrary ways. Furthermore, users are often
not interested in receiving “complete” answers to their queries. Instead, users sometimes prefer to receive
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the “best matches” for their queries. These characteristics of the data sources and the user expectations
present both problems (we should avoid retrieving duplicate data), and opportunities (we can access fewer
sources during query processing). To address these problems and opportunities several recent papers on
mediators have proposed ways to define source overlap and optimization algorithms that produce efficient
query execution plans [5, 28]. This work exploits the fact that users might be satisfied with efficiently
computed partial answers to their queries, and produce incremental query plans for answering their queries,
just like some metasearching systems already do for text documents [12, 10]. There has also been some
initial work on producing ranked query results from sources of structured or semistructured data. (See [8]
and DataSpot (http://www.dataspot.com ).) The work in [11] addresses the problem of querying
over multiple structured data sources that rank query results using different algorithms. One such source
could be a real-estate agent that receives queries from users, and ranks the available houses according to
how well they match the users’ specification, for example.
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