
Data Structures for Efficient Broker
Implementation

ANTHONY TOMASIC
INRIA
LUIS GRAVANO
Stanford University
CALVIN LUE, PETER SCHWARZ, and LAURA HAAS
IBM Almaden

With the profusion of text databases on the Internet, it is becoming increasingly hard to find
the most useful databases for a given query. To attack this problem, several existing and
proposed systems employ brokers to direct user queries, using a local database of summary
information about the available databases. This summary information must effectively distin-
guish relevant databases and must be compact while allowing efficient access. We offer
evidence that one broker, GlOSS, can be effective at locating databases of interest even in a
system of hundreds of databases and can examine the performance of accessing the GlOSS
summaries for two promising storage methods: the grid file and partitioned hashing. We show
that both methods can be tuned to provide good performance for a particular workload (within
a broad range of workloads), and we discuss the tradeoffs between the two data structures. As
a side effect of our work, we show that grid files are more broadly applicable than previously
thought; in particular, we show that by varying the policies used to construct the grid file we
can provide good performance for a wide range of workloads even when storing highly skewed
data.

Categories and Subject Descriptors: H.2.2 [Database Management]: Physical Design—access
methods; H.3.1 [Information Storage and Retrieval]: Content Analysis and Indexing—
indexing methods; H.3.3 [Information Storage and Retrieval]: Information Search and
Retrieval—search process; H.3.4 [Information Storage and Retrieval]: Systems and Soft-
ware—information networks

General Terms: Algorithms, Measurement, Performance

Additional Key Words and Phrases: Broker architecture, broker performance, distributed
information, GlOSS, grid files, partitioned hashing

This work was partially supported by ARPA Contract F33615-93-1-1339.
Authors’ addresses: A. Tomasic, INRIA Rocquencourt, 78153 Le Chesnay, France; email:
Anthony.Tomasic@inria.fr; L. Gravano, Computer Science Department, Stanford University,
Stanford, CA 94305-9040; email gravano@cs.stanford.edu; C. Lue, Trident Systems, Sunny-
vale CA; email: clue@tridmicr.com; P. Schwarz, Department K55/801, IBM Almaden Research
Center, 650 Harry Road, San Jose, CA 95120-6099; email: schwarz@almaden.ibm.com.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1997 ACM 1046-8188/97/0700–0223 $03.50

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997, Pages 223–253.

1. INTRODUCTION

The last few years have seen an explosion in the amount of information
available online. The falling costs of storage, processing, and communica-
tions have all contributed to this explosion, as has the emergence of the
infrastructure provided by the World Wide Web and its associated applica-
tions. Increasingly, the key issue is not whether some piece of information
is available online, but where. As a result, an emerging area of research
concerns brokers: systems that help users locate the text databases that are
most likely to contain answers to their queries. To perform this service,
brokers use summary information about the available databases. Brokers
must be able both to query and to update this summary information. A
central problem in broker design is to find a representation for summary
information that is both effective in its ability to select appropriate infor-
mation resources and efficient to query and maintain.

GlOSS (Glossary-Of-Servers Server) [Gravano et al. 1994a; 1994b] is one
broker that keeps database summaries to choose the most promising
databases for a given query. Initial studies of GlOSS are encouraging.
Experiments with a small number of databases indicate that although the
GlOSS summaries are orders of magnitude smaller than the information
that they summarize, they contain enough information to select the best
databases for a query. In this article, we show that the GlOSS summaries
can be employed as the representation for summary information in a
large-scale system. In particular, we offer evidence that GlOSS can effec-
tively locate databases of interest even in a system of hundreds of data-
bases. Our metric for effectiveness is based on selecting databases that
contain the largest number of matching documents for a simple Boolean
query. Second, we suggest appropriate data structures for storing such
large-scale GlOSS summaries.

We experiment with two data structures: partitioned (multiattribute)
hashing and the grid file. Partitioned hashing offers the best average-case
performance for a wide range of workloads—if the number of hash buckets
is chosen correctly. However, the grid file performs well and grows more
gracefully as the number or size of the summaries increases.

Grid files were developed to store data keyed in multiple dimensions and
are typically employed for data that are fairly uniformly distributed. The
GlOSS summaries we store are highly skewed. We show that by varying
the splitting policy used to construct a grid file we can provide good
performance for a wide range of workloads even when storing such highly
skewed data. Thus, as a side effect of our work, we demonstrate that grid
files are more generally applicable than previously believed, and we pro-
vide an exploration of the effect of different splitting policies on grid file
performance.

In summary, this article studies an emerging problem in the construction
of distributed information retrieval systems: namely, the performance of
brokers for accessing and updating summary information. Section 2 reviews
the GlOSS representation of summary information. Section 3 discusses

224 • Anthony Tomasic et al.

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

GlOSS effectiveness when there are large numbers of databases. The next
four sections focus on choosing a storage method for the summary informa-
tion. Section 4 discusses the issues involved in choosing a storage method
and describes some alternatives. Section 5 introduces the idea of using a
grid file to store the GlOSS summaries, describes various splitting policies
for managing grid file growth, and presents a simulation study of grid file
performance over a range of workloads, for several splitting policies.
Section 6 examines partitioned hashing as an alternative method for
efficiently storing GlOSS summaries. Section 7 compares the results from
the two storage methods and explains why we recommend the grid file.
Section 8 positions our work with respect to other work on brokers, and the
last section summarizes our results and our conclusions and provides some
ideas for future work.

2. GlOSS

In this section we briefly describe how GlOSS helps users choose databases
at which a query should be evaluated. Users first submit their query to
GlOSS to obtain a ranking of the databases according to their potential
usefulness for the given query. The information used by GlOSS to produce
this ranking consists of (1) a vector that indicates how many documents in
the database contain each word in the database vocabulary and (2) a count
of the total number of documents in the database [Gravano et al. 1994a].
This summary information is much smaller than the complete contents of
the database, so this approach scales well as the number of available
databases increases.

Table I shows a portion of the GlOSS summaries for two databases. Each
row corresponds to a word and each column to a database. For example, the
word “information” appears in 1234 documents in database db1 and in 30
documents in database db2. The last row of the table shows the total
number of documents in each database: database db1 has 1234 documents,
while database db2 has 1000 documents.

To rank the databases for a given query, GlOSS estimates the number of
documents that match the query at each database. GlOSS can produce
these estimates from the GlOSS summaries in a variety of ways. One
possibility for GlOSS is to assume that the query words appear in docu-
ments following independent and uniform probability distributions and to
estimate the number of documents matching a query at a database accord-
ingly. For example, for query “information AND retrieval” the expected

Table I. Part of the GlOSS Summaries of Two Databases

Word

Database

db1 db2

Information 1234 30
Retrieval 89 300
Documents 1234 1000

Data Structures for Efficient Broker Implementation • 225

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

number of matches in db1 (using the GlOSS summary information of Table
I) is 1234/1234 z 89/1234 z 1234 5 89, and the expected number of matches
in db2 is 30/1000 z 300/1000 z 1000 5 9. GlOSS would then return db1 as
the most promising database for the query, followed by db2. Several other
estimation functions are given in Gravano et al. [1994b].

As mentioned in the introduction, GlOSS can be measured with respect
to its effectiveness in locating the best databases for a given query, and it
can be measured in terms of its computational performance. In the next
section we study the effectiveness of GlOSS. The rest of the article is
devoted to computational performance.

3. EFFECTIVENESS OF GlOSS

Given a set of candidate databases and a set of queries, we explored the
ability of GlOSS to suggest appropriate databases for each query. The
original GlOSS studies [Gravano et al. 1994a; 1994b] tested GlOSS ability
to select among six databases. To be sure that GlOSS would be useful as a
large-scale broker, we scaled up the number of databases by about two
orders of magnitude. In this section, we describe a set of experiments that
demonstrates that GlOSS can select relevant databases effectively from
among a large set of candidates. We present a metric for evaluating how
closely the list of databases suggested by GlOSS corresponds to an “opti-
mal” list, and we evaluate GlOSS, based on this metric.

For our experiments, we used as data the complete set of United States
patents for 1991. Each patent issued is described by an entry that includes
various attributes (e.g., names of the patent owners, issuing date) as well
as a text description of the patent. The total size of the patent data is 3.4
gigabytes. We divided the patents into 500 databases by first partitioning
them into 50 groups based on date of issue and then dividing each of these
groups into ten subgroups, based on the high-order digit of a subject-
related patent classification code. This partitioning scheme gave databases
that ranged in size by an order of magnitude and were at least somewhat
differentiated by subject. Both properties are ones we would expect to see
in a real distributed environment.

For test queries, we used a set of 3719 queries submitted against the
INSPEC database offered by Stanford University through its FOLIO bool-
ean information retrieval system.1 INSPEC is not a patent database, but it
covers a similar range of technical subjects; so we expected a fair number of
hits against our patent data. Each query is a boolean conjunction of one or
more words, e.g., “microwave AND interferometer.” A document is consid-
ered to match a query if it contains all the words in the conjunction.

To test GlOSS ability to locate the databases with the greatest number of
matching documents, we compared its recommendations to those of an
“omniscient” database selection mechanism implemented using a full-text

1For more information on the query traces, see Tomasic and Garcia-Molina [1996], which
provides detailed statistics for similar traces from the same system.

226 • Anthony Tomasic et al.

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

index of the contents of our 500 patent databases. For each query, we found
the exact number of matching documents in each database, using the
full-text index, and ranked the databases accordingly. We compared this
ranking with the ranking suggested by GlOSS by calculating, for various
values of N, the ratio between the total number of matching documents in
the top N databases recommended by GlOSS and the total number of
matching documents in the N best databases according to the ideal rank-
ing. This metric, the normalized cumulative recall, approaches 1.0 as N
approaches 500, the number of databases, but is most interesting when N is
small. Because this metric is not meaningful for queries with no matching
documents in any database, we eliminated such queries, reducing the
number of queries in our sample to 3286.

Table II shows the results of this experiment. The table suggests that
compared to an omniscient selector GlOSS does a reasonable job of select-
ing relevant databases, on average finding over 70% of the documents that
could be found by examining an equal number of databases under ideal
circumstances, with gradual improvement as the number of databases
examined increases. The large standard deviations arise because although
GlOSS performs very well for the majority of queries, there remains a
stubborn minority for which performance is very poor. Nevertheless, using
GlOSS gives a dramatic improvement over randomly selecting databases to
search, for a fraction of the storage cost of a full-text index.

We felt these initial results were promising enough to pursue the use of
GlOSS representation for summary information. A more rigorous investi-
gation is in progress. Ideally, we would like to use a real set of test
databases, instead of one constructed by partitioning, and a matching set of
queries submitted against these same databases, including boolean disjunc-
tions as well as conjunctions. We will try to characterize those queries for
which GlOSS performs poorly and to study the impact of the number of
query terms on effectiveness. Other metrics will be included. For example,
a metric that revealed whether the matching documents were scattered
thinly across many databases or concentrated in a few large clumps would
allow us to measure the corresponding impact on effectiveness. Effective-
ness can also be measured using information retrieval metrics [Callan et al.

Table II. Normalized Cumulative Recall for 500 Databases for the INSPEC Trace

N Mean Standard Deviation

1 0.712 0.392
2 0.725 0.350
3 0.730 0.336
4 0.736 0.326
5 0.744 0.319
6 0.750 0.312
7 0.755 0.307
8 0.758 0.303
9 0.764 0.299

10 0.769 0.294

Data Structures for Efficient Broker Implementation • 227

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

1995]. In this case, GlOSS would be measured in terms of its effectiveness
in retrieving relevant documents, irrespective of the document location in
one database or another [Harman 1995a].

4. ALTERNATIVE DATA STRUCTURES FOR GlOSS SUMMARIES

The choice of a good data structure to store the GlOSS summaries depends
on the type and frequency of operations at the GlOSS servers. A GlOSS
server needs to support two types of operations efficiently: query processing
and summary updates. When a query arrives, GlOSS has to access the
complete set of document frequencies associated with each query keyword.
When new or updated summaries arrive, GlOSS has to update its data
structure, operating on the frequencies associated with a single database.
Efficient access by database might also be needed if different brokers
exchange database summaries to develop “expertise” [Schwartz 1990] or if
we allow users to do relevance feedback [Salton and McGill 1983] and ask
for databases “similar” to some given database. The two types of operations
pose conflicting requirements on the GlOSS data structure: to process
queries, GlOSS needs fast access to the table by word, whereas to handle
frequency updates, GlOSS needs fast access to the table by database.

Thus, our problem requires efficient access to multidimensional data. For
multidimensional data structures, queries and updates are generally ex-
pressed as selections on the possible data values of each dimension.
Selections come in the form of constants, ranges of values, or a selection of
all values along a dimension. A point query selects constants across all
dimensions. For example, retrieving the GlOSS summary of the word
information in db1 from Table I is a point query. A region query selects
ranges of values across all dimensions. Retrieving summaries for all words
between data and base from databases 2 through 5 is a region query.
GlOSS demands efficient partial-match queries and updates: one dimen-
sion has a constant selected, and the other dimension selects all values
across the dimension. Partial-match queries occur because we need to
access the GlOSS records by word and by database. A workload constructed
entirely of partial-match queries creates unique demands on the data
structure used to implement GlOSS.

Ideally we would like to simultaneously minimize the access cost in both
dimensions. In general, however, the costs of word and database access
trade off. Consequently, one must consider the relative frequencies of these
operations and try to find a policy that minimizes overall cost. Unfortu-
nately, the relative frequencies of word and database access are difficult to
estimate. They depend on other parameters, such as the number of data-
bases covered by GlOSS, the intensity of query traffic, the actual frequency
of summary updates, etc.

Just to illustrate the tradeoffs, let us assume that query processing is the
most frequent operation and that a GlOSS server receives 200,000 query
requests per day. Likewise, let us assume that we update each database
summary once a day. Given this scenario, and if GlOSS covers 500

228 • Anthony Tomasic et al.

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

databases, the ratio of accesses by word to accesses by database would be
about 400:1, and our data structure might therefore favor the performance
of accesses by word over that by database in the same proportion. However,
if the server received 350,000 queries a day, or covered a different number
of databases, or received updates more frequently, a vastly different ratio
could occur. Therefore, GlOSS needs a data structure that can be tuned to
adapt to the actual conditions observed in practice.

A simple data organization for GlOSS is to cluster the records according
to their associated word and to build a tree-based directory on the words
(e.g., a sparse B1 tree), to provide efficient access by word [Gravano et al.
1994a], thus yielding fast query processing. To implement GlOSS using
this approach, we could adapt any of the techniques for building inverted
files for documents (e.g., Brown et al. [1994], Cutting and Pederson [1990],
Tomasic et al. [1994], and Zobel et al. [1992]). However, this approach does
not support fast access by database, for updating summaries or exchanging
them with other brokers. To access all the words for a database, the entire
directory tree must be searched.

Organizations for “spatial” data provide a variety of techniques that we
can apply for GlOSS. In particular, we are interested in techniques that
efficiently support partial-match queries. Approaches that index multiple
dimensions using a tree-based directory, including quad trees, k-d trees,
K-D-B trees [Ullman 1988], R trees [Guttman 1984], R1 trees [Sellis et al.
1987], and BV trees [Freeston 1995], are not well suited for this type of
access. To answer a partial-match query, typically a significant portion of
the directory tree must be searched. A similar problem arises with tech-
niques like the ones based on the “z order” [Orenstein and Merrett 1984].
In contrast, the directory structure of grid files [Nievergelt et al. 1984] and
the addressing scheme for partitioned or multiattribute hashing [Knuth
1973] make them well suited for answering partial-match queries.

5. USING GRID FILES FOR GlOSS

In this section we describe how grid files [Nievergelt et al. 1984] can be
used to store the GlOSS summaries, and we describe a series of experi-
ments that explore their performance. We show how to tune the grid file to
favor access to the summary information by word or by database.

5.1 Basics

A grid file consists of data blocks, stored on disk and containing the actual
data records, and a directory that maps multidimensional keys to data
blocks. For GlOSS, the (two-dimensional) keys are (word-database identi-
fier) pairs. Initially there is only one data block, and the directory consists
of a single entry pointing to the only data block. Records are inserted in
this data block until it becomes full and has to be split into two blocks. The
grid file directory changes to reflect the splitting of the data block.

Figure 1 shows a grid file where the data blocks have capacity for two
records. In (1), we have inserted two records into the grid file: (llama, db5,

Data Structures for Efficient Broker Implementation • 229

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

5) and (zebra, db1, 2). There is only one data block (filled to capacity)
containing the two records and only one directory entry pointing to the only
data block.

To insert record (ostrich , db3, 2), we locate the data block where the
record belongs by first reading the directory entry corresponding to word
ostrich and database db3. Since the data block is full, we have to split it. We
can split the data block between different databases or between different
words. In (2), we split the data block between databases: all records with
databases in the (db1, db3) range go to one block, and all records with
databases in the (db4, db6) range go to the other block. We also split the
grid file directory to contain two entries, one pointing to each of the data
blocks.

To insert record (buffalo , db2, 2), we first locate the data block where the
record belongs: by looking at the directory, we find the pointer associated
with range (db1, db3) and (a, z) and the corresponding data block. This data
block already has two records in it, (ostrich , db3, 2) and (zebra, db1, 2), so
the insertion of the new tuple causes the data block to overflow. In (3), we
split the data block between words, and we reflect this splitting in the
directory by creating a new row in it. The first row of the directory
corresponds to word range (a, m) and the second to word range (n, z). Thus,
the overflowed data block is split into one block with record (buffalo , db2, 2)
and another block with records (ostrich , db3, 2) and (zebra, db1, 2). Note
that both directory entries corresponding to database range (db4, db6) point

Fig. 1. The successive configurations of a grid file during record insertion.

230 • Anthony Tomasic et al.

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

to the same data block, which has not overflowed and thus does not need to
be split yet. These two directory entries form a region. Regions may contain
any number of directory entries, but are always convex in our grid files. We
will refer to a division between directory entries in a region as a partition of
the region. The region in the example directory contains a single partition.
We define directory utilization as the ratio of directory regions to directory
entries. In this example, the directory utilization is 3⁄4 (75%).

To locate the portion of the directory that corresponds to the record we
are looking for, we keep one scale per dimension of the grid file. These
scales are one-dimensional arrays that indicate what partitions have taken
place in each dimension. For example, the word scale for the grid file
configuration in (3) is (a, m, z), and the corresponding database scale is
(db1, db3, db6).

Consider for a moment the behavior of grid files for highly skewed data.
For example, suppose the sequence of records (a, db1, 1), (a, db2, 1), (b, db1,
1), (b, db2, 1), (c, db1, 1), (c, db2, 1), etc. is inserted into the grid file of
Figure 1(c), and we continue to split between words. The resulting directory
would exhibit very low utilization, since, for example, all the directory
entries on the database dimension for the database db5 would point to the
same data block. In our application, the data is highly skewed, and we
attack the problem of low directory utilization by adjusting the way data
blocks are split to account for the skew of the data.

Figure 2 shows the successive configurations for a different grid file for
the same input as Figure 1. In this case, the grid file directory has been
prepartitioned along one dimension. Prepartitioning the grid file directory
has resulted in a larger directory for the same input. The directory
utilization in this example is 3/6 (50%). We defer further discussion of the
effect of prepartioning until Section 5.5.

5.2 Block Splitting

The rule that is used to decide how to split a data block is called the
splitting policy. The splitting policy can be used to adjust the overall cost of
using a grid file to store our summary information. Our goal is to find and
evaluate splitting policies that are easily parameterized to support an
observed ratio between the frequency of word and database accesses. We
describe two extreme splitting policies that characterize the endpoints of
the spectrum of splitting behavior, and then we introduce three additional
parameterized policies that can be adjusted to minimize overall cost.

To insert a record into the GlOSS grid file, we first find the block where
the record belongs, using the grid file directory. If the record fits in this
block, then we insert it.2 Otherwise the block must be split, either by
dividing it between two words or by dividing it between two databases.

2We can compress the contents of each block of the grid file by applying methods used for
storing sparse matrices efficiently [Pissanetzky 1984] or by using the methods in Zobel et al.
[1992] for compressing inverted files, for example. Any of these methods will effectively
increase the capacity of the disk blocks in terms of the number of records that they can hold.

Data Structures for Efficient Broker Implementation • 231

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

Splitting between databases tends to benefit access by database, whereas
splitting between words tends to benefit access by word. This choice of
splitting dimension is therefore the basic tool for controlling relative access
costs.

To limit the growth of the grid file directory, however, we always look for
ways to split the block that take advantage of preexisting partitions in the
directory.3 If more than one entry in the grid file directory maps to the
overflowed block, then the collection of directory entries pointing to the
overflowed block defines a region. This region of the directory contains at
least one partition (either between words or between databases). If the data
corresponding to the entries on either side of the partition form nonempty
blocks, then we can use one such preexisting partition to split the block
without introducing new entries into the directory. That is, the partition
becomes a division between two new, smaller, regions. For example, the
insertion of the records (panther, db5, 2) and (penguin, db5, 3) into Figure
1(c) causes the rightmost data block to overflow and a new block to be

3Several alternative organizations for the grid file directory control its growth and make it
proportional to the data size. These alternative organizations include the region-representa-
tion directory and the BR2 directory [Becker et al. 1993]. The 2-level directory organization
[Hinrichs 1985] shows how to implement the directory on disk. We have not yet explored how
these techniques would work in our environment.

Fig. 2. The successive configurations of a grid file during record insertion for a preparti-
tioned grid file.

232 • Anthony Tomasic et al.

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

created without changing the size of the directory. The single partition
becomes two regions for a total of four regions in the directory. If more than
one such partition exists, we favor those between databases over those
between words. If multiple partitions exist in a single dimension, we choose
the one that splits the block most nearly in half. (See Section 5.4 for a
variation of this policy that reduces the amount of unused space in blocks.)

To be precise, Figure 3 shows the basic algorithm for inserting a record
into the grid file. Line 1 computes the region and block where the record
should be inserted according to the database and word scales for the grid
file directory. Line 2 attempts to insert the record. If there is no overflow,
the insertion succeeds. Otherwise there is overflow in the block. Line 5
checks the region in which the record is being inserted for a partition in the
database scale. If there is a partition, the region is divided in half along a
partition line, and the records in the block of the region are redistributed
between the old and new block. The new block is assigned to the new
region. This process eliminates a partition of the region by creating a new
region. Lines 7–8 do the same for the word scale. If there are no qualifying
partitions (line 10), we need to create one by introducing a new row (or
column) in the directory.

Table III describes several policies for choosing a splitting dimension.
The DB-always policy always attempts to split the block between databases,
thus favoring access by database over access by word. Conversely, the
Word-always policy always attempts to split between words, thus favoring
access by word over access by database. In between these two extremes lies
a spectrum of other possibilities. The Bounded policy allows the database
scale of the grid file directory to be split up to bound times and then resorts
to splitting between words. Thus, it allows some splits between databases
(which favor access by database), while putting an upper bound on the
number of block reads that might be needed to access all the records for a
word. If bound is set to infinity, then Bounded behaves as DB-always,
whereas if bound is set to zero, then Bounded behaves as Word-always. The
Probabilistic policy splits between databases with probability prob-bound.
Unlike the Bounded policy, which favors splitting between databases
initially, this policy allows the choice of splitting dimension to be made

1. Compute region and block for record
2. If Record fits in block
3. Insert record
4. Else
5. If Usable partitions in database scale
6. Divide region in half on database scale
7. Else If Usable partitions in word scale
8. Divide region in half on word scale
9. Else

10. Split directory
11. Divide region on chosen scale
12. Insert record

Fig. 3. Algorithm for inserting a record in a grid file for GlOSS.

Data Structures for Efficient Broker Implementation • 233

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

independently at each split. The Prepartition policy works like Word-always,
except that the database scale of the directory is prepartitioned into m
regions before any databases are inserted, to see if “seeding” the database
scale with evenly spaced partitions improves performance. The size of each
region is m/db, where db is the number of available databases.

Note that once a scale has been chosen, it may not be possible to split the
block on that scale. For instance, we may choose to split a block on the
database scale, but the scale may have only a single value associated with
that block (and consequently, every record in the block has the same
database value). In this case we automatically split on the other scale.

5.3 Metrics for Evaluation

To evaluate the policies of Table III, we implemented a simulation of the
grid file in C11 on an IBM RISC/6000 workstation and ran experiments
using 200 of the 500 patent databases described in Section 3 (around 1.3
gigabytes of data). The resulting grid file had 200 columns (one for each of
the 200 databases) and 402,044 rows (one for each distinct word appearing
in the patent records). The file contained 2,999,676 total records. At four
bytes per entry, we assumed that each disk block could hold 512 records.

Our evaluation of the various policies is based on the following metrics
(Section 5.1):

—DB splits: Number of splits that occurred in the database scale.
—Word splits: Number of splits that occurred in the word scale.
—Total blocks: The total number of blocks in the grid file (excluding the

scales and the directory).
—Block-fill factor: The ratio of used block space to total block space. This

measure indicates how effectively data are packed into blocks.
—Directory size: The number of entries in the database scale of the grid file

directory times number of entries in the word scale. This measure
indicates the overhead cost of the grid file directory. About four bytes
would be needed for each directory entry in an actual implementation.

—Average word (or database) access cost: The number of blocks accessed
in reading all the records for a single word (or database), i.e., an entire
row (or column) of the grid file, averaged over all words (or databases) on
the corresponding scale.

Table III. Different Policies for Choosing the Splitting Dimension

Policy Splitting Dimension

DB-always Database
Word-always Word
Bounded If DB-splits , bound then Database else Word
Probabilistic If Random() , prob-bound then Database else Word
Prepartition Like Word-always, after prepartitioning on Database

234 • Anthony Tomasic et al.

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

—Expansion factor for words (or databases): The ratio between the number
of blocks accessed in reading all the records for a single word or database
and the minimum number of blocks that would be required to store that
many records, averaged over all words or databases on the corresponding
scale. This metric compares the access cost using the grid file to the best
possible access cost that could be achieved. Note that since we assume
that 512 records can be stored in a block, and there are only 200
databases, all the records for a single word can always fit in one block.
Thus the minimum number of blocks required for each word is one, and
the expansion factor for words is always equal to the average word access
cost.

—Average trace word access cost and expansion factor for trace words:
Similar to the word scale metrics, but averaged over the words occurring
in a representative set of patent queries, instead of over all words. For this
measurement, we used 1767 queries issued by real users in November,
1994, against a full-text patent database accessible at http://town.hall.org/
patent/patent.html. These queries contain 2828 words that appear in at
least one of our 200 databases (counting repetitions). This represents less
than 1% of the total vocabulary, but query words from the trace (trace
words) occur on average in 99.96 databases compared to the average of 7.46
for all words. Thus trace words occur with relatively high frequency in the
databases.

—Weighted (trace) average cost: This metric gives the overall cost of using
the grid file, given an observed ratio between word and database ac-
cesses. It is calculated by multiplying the word-to-database access ratio
by the average (trace) word access cost and adding the average database
access cost. For example, if the ratio of word to database accesses is
observed to be 100:1, the weighted average cost is (100* average word
access cost) 1 average database access cost.

Although the choice of splitting policy is the major factor in determining
the behavior of the grid file, performance is also sensitive to a number of other,
more subtle, variations in how the GlOSS summaries are mapped onto the
grid file. We therefore discuss these variants before moving on to the main
body of our results.

5.4 Mapping GlOSS to a Grid File

To insert the GlOSS summary data for a database into a grid file, one must
first define a mapping from each word to an integer that corresponds to a
row in the grid file. We explored two alternatives for this mapping, alpha
and freq. In the alpha mapping, all the words in all the databases are
gathered into a single alphabetically ordered list and are then assigned
sequential integer identifiers. In the freq mapping, the same set of words is

Data Structures for Efficient Broker Implementation • 235

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

ordered by frequency, instead of alphabetically, where the frequency for a
word is the sum of the frequencies for that word across all summaries.4

This difference in mapping has two effects. First, although the vast
majority of rows have exactly one record, the freq map clusters those rows
having multiple records in the upper part of the grid file, and the top rows
of the grid file contain a record for every database. In the alpha map, the
rows with multiple records are spread throughout the grid file. (By con-
trast, the distribution of records across the columns of the grid file is fairly
uniform.)

The second effect is due to the fact that, as an artifact of its construction,
the summary for each database is ordered alphabetically. For the alpha
mapping, therefore, (word id, frequency) pairs are inserted in increasing,
but nonsequential, word-identifier order. For example, db1 might insert
records (1,28) (2,15) (4,11), and db2 might insert records (1,25) (3,20) (4,11).
In each case, the word-identifiers are increasing, but they are nonsequen-
tial. By contrast, with the freq mapping, (word id, frequency) pairs are
inserted in essentially random order, since the words are ordered alphabet-
ically, but the identifiers are ordered by frequency.

Similar considerations pertain to the order in which databases are
inserted into the grid file. We considered sequential ordering (seq) and
random ordering (random). In the seq case, database 1 is inserted with
database identifier 1, database 2 with database identifier 2, etc. In the
random ordering the mapping is permuted randomly. The seq ordering
corresponds to statically loading the grid file from a collection of summa-
ries. The random ordering corresponds to the dynamic addition and deletion
of summaries as information is updated or exchanged among brokers.

A consequence of the seq ordering is that insertion of data into the grid
file is very deterministic. In particular, we noticed that our default means
of choosing a partition in the case of overflow was a bad one. Since
databases are inserted left to right, the left-hand member of a pair of split
blocks is never revisited: subsequent insertions will always insert into the
right-hand block. Thus, when the database scale is split (in line 11 of the
algorithm in Figure 3), it would be advantageous to choose the rightmost
value in the block as the value to split on. Furthermore, if given a choice of
preexisting partitions to use in splitting a block, it would be advantageous
to choose the rightmost partition for splitting (in line 6 of the algorithm).
To examine this effect, we parameterized the algorithm in Figure 3 to
choose either the rightmost value or partition (right) or the middlemost
value or partition (middle), as per the original algorithm.

We ran experiments for the eight combinations of mapping and splitting
options above for the DB-always, Word-always, Bounded, and Probabilistic
policies. Table IV shows the results for the DB-always policy, but the
conclusions we draw here apply to the other policies as well. Note that the

4In practice, one could approximate the freq mapping by using a predefined mapping table for
relatively common words and assigning identifiers in order for the remaining (infrequent)
words.

236 • Anthony Tomasic et al.

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

combination of options chosen can have a significant effect on performance.
The average word access cost for the worst combination of options is 1.8
times the average word access cost for the best combination. For average
database access cost, this factor is about 1.5. Block-fill factor varies from a
worst case of 0.46 to a best case of 0.68.

The table shows that the combination of frequency ordering for assign-
ment of word-identifiers, sequential insertion of databases, and the right
option for block splitting achieves the lowest access costs, both by word and
by database, and has a block-fill factor only slightly poorer than the best
observed. Therefore, we used this combination for our subsequent experi-
ments. The base parameters for these experiments are summarized in
Table V.

5.5 Comparison of Splitting Policies

We begin our comparison of the splitting policies by examining the basic
behavior of each of the five policies. Tables VI and VII provide performance
measurements for each policy; for the parameterized policies (Probabilistic,
Prepartition, and Bounded) we present data for a single representative
parameter value and defer discussion of other parameter values to later in
this section.

We start with the Word-always policy, since its behavior is very regular.
At the start of the experiment, there is a single empty block. As databases
are inserted, the block overflows, and the word scale is split at a point that
balances the resulting blocks. By the time all 200 databases have been
inserted, the word scale has been split 8878 times. In the resulting grid file,
each data block therefore contains complete frequency information for some
number of words, i.e., multiple rows of the grid file. The number of words in
a data block depends on the number of databases in which the correspond-
ing words appear. As expected, the average word access cost is one block
read. Clearly, this policy is the most favorable one possible for access by
word. To access all the records for a database, however, every block must be
read. The average database access cost therefore equals the total number of
blocks in the file. This policy minimizes the size of the grid file directory,

Table IV. The DB-always Policy for the Different Mapping and Splitting Options

Mapping Splits Average Cost
Total

Blocks

Block
Fill

Factor
Directory

SizeWord Database Policy Word DB Word DB

alpha seq middle 119 117 104.92 109.69 10859 0.54 13923
alpha seq right 138 115 83.55 115.89 8584 0.68 15870
alpha random middle 204 85 61.03 159.40 9258 0.63 17340
alpha random right 187 120 87.34 133.44 10586 0.55 22440
freq seq middle 118 172 93.04 108.66 12601 0.46 20296
freq seq right 118 167 58.41 108.36 8750 0.67 19706
freq random middle 194 127 69.14 128.30 9737 0.60 24638
freq random right 167 142 83.29 118.77 10398 0.56 23714

Data Structures for Efficient Broker Implementation • 237

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

since it reduces the directory to a one-dimensional vector of pointers to the
data blocks.

Next, consider the DB-always policy. Our measurements show that the
database scale was split 167 times. However, the size of the grid file far
exceeds the capacity of 167 blocks, so splitting must occur between words
as well (Section 5.2). Such splits will take advantage of existing partitions
of the word scale, if they exist; otherwise the word scale of the directory will
be split. Such splitting of the word scale occurred 118 times during our
experiment, leading to an average database access cost of 108.36 for this
policy. At 8.84 times the minimum number of blocks that must be read, this
is the best average database access cost of the policies we measured.
However, 58.41 is the worst average word access cost, and for the fre-
quently occurring words of the trace queries, the cost is even higher.

Table V. Parameter Values for the Base Set of Experiments

Parameter Value

Databases (columns) 200
Words (rows) 402,044
Records 2,999,676
Records per Block 512
Database Insertion seq
Word Insertion freq
Block Division right

See Section 5.4 for a description of the parameters.

Table VI. Performance Measurements for the Base Experiments for the Five Policies
Introduced in Section 5.2

Policy

Splits
Total

Blocks

Block
Fill

Factor
Directory

SizeWord DB

Word-always 8878 1 8878 0.66 8878
DB-always 118 167 8750 0.67 19706
Probabilistic (0.5) 202 101 8887 0.66 20402
Prepartition (10) 2361 10 8779 0.67 23610
Bounded (10) 8252 10 8694 0.67 82520

Table VII. Performance Measurements for the Base Experiment for the Five Policies in
Section 5.2

Policy
Average Word

Cost (Deviation)
Average DB

Cost (Deviation)
Expansion Factor
for DB (Deviation)

Average
Trace Word

Cost (Deviation)

Word-always 1.00 (0.00) 8878.00 (0.00) 710.09 (115.27) 1.00 (0.00)
DB-always 58.41 (18.32) 108.36 (11.79) 8.84 (15.23) 104.70 (27.75)
Probabilistic (0.5) 53.08 (12.19) 153.63 (38.79) 13.13 (25.63) 70.51 (13.09)
Prepartition (10) 10.00 (0.00) 2180.81 (238.88) 167.09 (248.87) 10.00 (0.00)
Bounded (10) 7.09 (0.74) 7883.91 (1695.71) 640.99 (1076.49) 8.35 (1.24)

238 • Anthony Tomasic et al.

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

As a point of comparison for the two extremes of the DB-always and
Word-always policies, the Probabilistic policy was measured, parameterized
so that the word and database scales would be chosen with equal probabil-
ity. If the distribution of data was uniform between the two scales, this
policy would on average split each scale the same number of times. As the
table shows, however, for our data this policy behaves very much like the
DB-always policy. For both of these policies, the skewed nature of the data
(i.e., the vastly larger number of distinct values on the word scale) makes
many attempts to split on the database scale unsuccessful. In effect, the
database scale quickly becomes “saturated,” and large numbers of splits
must occur in the word scale. For this parameter value, the Probabilistic
policy gives poorer average database access cost and slightly better average
word access cost, when compared to the DB-always policy. The difference is
more pronounced for the average trace word access cost. Block-fill factor
varies very little.

Figures 4 and 5 show how the three tunable policies, Bounded, Preparti-
tion, and Probabilistic, behave as the tuning parameter varies. In order to
graph these results on a common set of axes, we express the parameter as a
fraction of the total number of databases. Thus, for our study of 200
databases, an x-axis value of 0.05 in these figures represents parameter
values of 10, 10, and 0.05 for the Bounded, Prepartition, and Probabilistic
policies, respectively.

Fig. 4. The average word access cost as the bound changes.

Data Structures for Efficient Broker Implementation • 239

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

Figure 6 reveals a hidden cost of the Bounded policy: an up-to-tenfold
inflation in the size of the grid file directory for parameter values midway
between the extremes. Consider the parameter value 0.4 in this figure. The
Bounded policy forces splits between databases to occur for the first 40% of
the databases, that is, as early as possible in the insertion process, whereas
the other two policies distribute them evenly. Under the Bounded policy,
therefore, relatively few splits between words occur early in the insertion
process (because the regions being split are typically only one database
wide), but once the bound has been reached, many splits between words are
required to subdivide the remaining portion of the grid file. Each of these
latter splits introduces a number of additional directory entries equal to
the bound value. With a low bound value, there are few splits between
databases; with a high bound value, there are many splits between data-
bases, but few splits between words introduce additional directories en-
tries. With the bound near the middle, these two effects complement each
other to produce a huge directory. With the other policies, the number of
splits between words for each group of databases is fairly constant across
the width of the grid file, and the total number of splits between words (and
hence the directory size) is much smaller.

5.6 Weighted Average Costs

Table VII presents no clear winner in terms of an overall policy choice,
because the performance of a policy can only be reduced to a single number

Fig. 5. The average database access cost as the bound changes.

240 • Anthony Tomasic et al.

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

once the ratio of accesses by word to accesses by database has been
determined. Only then can an appropriately weighted overall access cost be
calculated. For a word-to-database access ratio of 100:1, Figure 7 shows the
weighted average cost for each of the policies, across the entire parameter
range.5 The lowest point on this set of curves represents the best choice of
policy and parameter for this access ratio, and it corresponds to the
Probabilistic policy with a parameter of about 0.025.

The best selections for various ratios are given in Tables VIII and IX, for
the weighted average cost and weighted trace average cost, respectively.
When access by word predominates, Word-always gives the best perfor-
mance. When access by database is as common as access by word (or more
common), DB-always is the preferred policy. In between, the Probabilistic
policy with an appropriate parameter dominates the other choices.

5.7 Bounded Access Costs

If the databases summarized by GlOSS grow gradually over time, the
weighted access costs for the grid file must grow as well. Using the
recommended policies of Tables VIII and IX, this increasing cost will be
distributed between word and database access costs so as to minimize the
weighted average cost. The response time for a given query, however,

5The Word-always and DB-always policies are represented by the points for Probabilistic(0) and
Probabilistic(1), respectively.

Fig. 6. Directory size as a function of policy parameter.

Data Structures for Efficient Broker Implementation • 241

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

depends only on the word access costs for the terms it contains and will
increase without bound as the grid file grows. If such response time growth
is unacceptable, the Bounded and Prepartition policies can be used to put an
upper limit on word access cost, in which case query cost will depend only
on the number of terms in the query.

Fig. 7. Weighted average cost for a word-to-database access ratio of 100:1.

Table VIII. The Policy Choices that Minimize the Weighted Average Cost, for Different
Word-to-Database Access Ratios

Ratio Policy Weighted Average Cost Block Fill Factor

1:1 DB-always 167 0.67
10:1 Probabilistic (0.125) 634 0.67
100:1 Probabilistic (0.025) 2409 0.66
1000:1 Word-always 9878 0.66

Table IX. The Policy Choices that Minimize the Weighted Trace Average Cost, for Different
Word-to-Database Access Ratios

Ratio Policy Weighted Average Cost Block Fill Factor

1:1 DB-always 213 0.67
10:1 Probabilistic (0.125) 659 0.67
100:1 Probabilistic (0.025) 2406 0.66
1000:

1
Word-always 9878 0.66

242 • Anthony Tomasic et al.

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

The upper limit on word access cost for these policies is determined by
the parameter value. With the Prepartition policy, the word access cost is
exactly the parameter value, e.g., the cost is 10 block accesses for any word
for Prepartition(10). The Bounded(10) policy gives the same upper limit, but
the average cost is lower (about 7) because for many words the cost does not
reach the bound. However, Tables VI and VII in Section 5.5 show the
penalty for the improved average word access cost: about a fourfold
increase in both directory size and database average access cost. The
corresponding tradeoffs for other values of the parameter can be deduced
from Figures 4, 5, and 6.

5.8 Other Experiments

We did a number of other experiments to complete our evaluation of grid
files as a storage method for GlOSS summaries. In particular, since we
must be able to maintain (update) the summaries efficiently, we tested
each of the policies under simulated updates. We also ran our experiments
with a smaller block size to see how that affected our results. Details can be
found in Tomasic et al. [1995]. The results were generally acceptable and
did not serve to differentiate the various policies; hence they are not
repeated here.

6. USING PARTITIONED HASHING FOR GlOSS

In this section we analyze partitioned (or multiattribute) hashing [Knuth
1973] as an alternative technique for GlOSS to access its records efficiently
both by word and by database. We first describe how partitioned hashing
handles the GlOSS summaries, and then we show experimental results on
its performance using the data of Section 5.

6.1 Partitioned-Hashing Basics

With partitioned hashing, the GlOSS records are stored in a hash table
consisting of B 5 2b buckets. Each bucket is identified by a string of b bits.
bw of these b bits are associated with the word attribute of the records, and
the bdb 5 b 2 bw remaining bits are with the database attribute of the
records. Hash functions hw and hdb map words and databases into strings
of bw and bdb bits, respectively. A record (w, db, f), with word w and
database db, is stored in the bucket with address hw (w)hdb(db), formed by
the concatenation of the hw(w) and hdb(db) bit strings. To access all the
records with word w, we search all the buckets whose address starts with
hw(w). To access all the records with database db, we search all the
buckets whose address ends with hdb(db).6

The hw hash function maps words into integers between 0 and 2bw 2 1.
Given a word w 5 an . . . a0 , hw does this mapping by first translating
word w into integer iw 5 (i50

n lettervalue (ai) 3 36i [Wiederhold 1987] and

6An improvement over this scheme is to apply the methodology of Faloutsos [1986] and use
Gray codes to achieve better performance of partial-match queries.

Data Structures for Efficient Broker Implementation • 243

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

then taking (iwA mod 1)2bw , where A 5 0.6180339887 [Knuth 1973].
Similarly, the hdb hash function maps database numbers into integers
between 0 and 2bdb 2 1. Given a database number idb, hdb maps it into
integer (idbA mod 1)2bdb. We initially assign one disk block per hash table
bucket. If a bucket overflows we assign more disk blocks to it.

Given a fixed value for b, we vary the values for bw and bdb. By letting bw

be greater than bdb, we favor access to the GlOSS records by word, since
there will be fewer buckets associated with each word than with each
database. In general we just consider configurations where bw is not less
than bdb, since the number of words is much higher than the number of
databases, and in our model the records will be accessed more frequently by
word than by database. In the following section, we analyze experimentally
the impact of the bw and bdb parameters on the performance of partitioned
hashing for GlOSS.

6.2 Experimental Results

To analyze the performance of partitioned hashing for GlOSS, we ran
experiments using the 2,999,676 records for the 200 databases of Section 5.
For these experiments, we assumed that 512 records fit in one disk block,
that each bucket should span one block on average, and that we want each
bucket to be 70% full on average. Therefore, we should have around B 5
2,999,676/0.7 3 512 5 8370 buckets, and we can dedicate approxi-
mately b 5 13 bits for the bucket addresses. (Section 7 shows results for
other values of b.)

To access all the records for a word w we must access all of the 2bdb

buckets with address prefix hw(w). Accessing each of these buckets in-
volves accessing one or more disk blocks, depending on whether the buckets
have overflowed or not. Figure 8 shows the average word access cost as a

Fig. 8. Average word access costs as a function of bw.

244 • Anthony Tomasic et al.

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

function of bw (b 5 13 and bdb 5 b 2 bw). As expected, the number of blocks
per word decreases as bw increases, since the number of buckets per word
decreases. Conversely, Figure 9 shows that the average database access
cost increases steeply as bw increases. In the extreme case when bw 5 13
and bdb 5 0, we need to access every block in every bucket of the hash
table, resulting in an expansion factor for databases of around 773.28.7 In
contrast, when bw 5 7 and bdb 5 6 we access, on average, around 11.24
times as many blocks for a database as we would need if the records were
clustered by database.

Partitioned hashing does not distribute records uniformly across the
different buckets. For example, all the records corresponding to database
db belong in buckets with address suffix hdb(db). Surprisingly, this char-
acteristic of partitioned hashing does not lead to a poor block fill factor: the
average block fill factor for b 5 13 and for the different values of bw and bdb
is mostly higher than 0.6, meaning that, on average, blocks were at least
60% full. These high values of block fill factor are partly due to the fact that
only the last block of each bucket can be partially empty: all of the other
blocks of a bucket are completely full.

To measure the performance of partitioned hashing for access by word,
we have so far computed the average value of various parameters over all
the words in the combined vocabulary of the 200 databases. Figure 8 also
shows a curve using the words in the query trace of Section 5. The average
trace word access cost is very similar to the average word access cost. Two
aspects of partitioned hashing and our experiments explain this behavior.
First, the number of blocks read for a word w does not depend on the
number of databases associated with w: we access all the 2bdb buckets with

7Smarter bucket organizations can help alleviate this situation by sorting the records by
database inside each bucket, for example. However, all buckets of the hash table would still
have to be examined to get the records for a database.

Fig. 9. Average database access cost as a function of bw.

Data Structures for Efficient Broker Implementation • 245

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

prefix hw(w). Consequently, we access a similar number of blocks for each
word. (For example, when bw 5 7 and bdb 5 6 the number of blocks we
access per word ranges between 66 and 82.) Second, there are only 2bw

possible different word access costs, because the hash function hw maps the
words into 2bw different values. Each trace word w will contribute a
“random sample” (hw(w)) of this set of 2bw possible costs. Furthermore, the
number of words in the query trace (2828 word occurrences from a set of
1304 different words) is significant with respect to the number of different
access costs, for the values of b that we used in our experiments. In
summary, each hashed value hw(w) acts as a random sample of a limited
set of different access costs, and we consider a high number of such
samples.

To determine the best values for bw and bdb for an observed word-to-
database access ratio, we computed the weighted average cost for different
access ratios, as in Section 5.6. Figure 10 shows the results for a 100:1
word-to-database access ratio (i.e., when accesses by word are 100 times as
frequent as accesses by database). For this ratio, the best choice is bw 5 10
and bdb 5 3, with a weighted average cost of around 1844.51. Table X
summarizes the results for the different access ratios. Table XI shows the
corresponding results for the trace words.8

7. COMPARING GRID FILES TO PARTITIONED HASHING FOR STORING
SUMMARIES

A comparison of Tables VIII and IX with Tables X and XI shows that with
an ideal choice of parameters for either structure, partitioned hashing and
the grid file are competitive data structures for storing GlOSS summaries.

8Aho and Ullman [1979] and Lloyd [1980] study how to analytically derive the value of bw and
bdb that would minimize the number of buckets accessed for a given query distribution.

Fig. 10. Weighted average cost for a word-to-database access ratio of 100:1, as a function of
bw.

246 • Anthony Tomasic et al.

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

The grid file outperforms partitioned hashing only when word and database
accesses are equally frequent. Additionally, the implementation of parti-
tioned hashing is generally simpler than grid files. However, for a number
of practical reasons, we believe that the grid file is better suited to this
application.

First, to get optimum performance from partitioned hashing, it is critical
to choose the total number of buckets correctly. For instance, suppose that
we overestimate the number of records of the GlOSS summaries and set
the number of bits that identify each bucket to b 5 14 instead of to b 5 13
for the experiments of Section 6. Table XII shows that, as expected, the
average block fill factor drops to about half the values for b 5 13 (see Table
X), because there are twice as many buckets now for the same number of
records. The best average access costs also deteriorate: for example, the
weighted average cost for the 100:1 word-to-database access ratio grows to
2624 (from 1844.51 for the b 5 13 case). Alternatively, if we underestimate
the number of records of the GlOSS summaries and set b 5 12, we obtain
the results in Table XIII. In this case, the average block fill factor is higher
than in the b 5 13 case. However, all of the average access costs are
significantly higher. For example, for the 100:1 word-to-database access
ratio, the weighted average cost for b 5 12 is 2623.05, whereas it is 1844.51
for b 5 13. These experiments show that it is crucial for the performance of
partitioned hashing to choose the right number of buckets in the hash
table. Since we expect databases to grow over time, even an initially
optimal choice will degrade as database size increases. By contrast, the grid
file grows gracefully. Dynamic versions of multiattribute hashing like the
ones in Lloyd and Ramamohanarao [1982] solve this problem at the
expense of more complicated algorithms, resulting in techniques that are
closely related to the grid files.

Second, with partitioned hashing, the tradeoff between word and data-
base access cost is fixed for all time once a division of hash value bits has

Table X. The Choices for bw and bdb that Minimize the Weighted Average Cost, for
Different Word-to-Database Access Ratios

Ratio bw bdb Weighted Average Cost Block Fill Factor

1:1 7 6 217 0.64
10:1 8 5 587 0.70
100:1 10 3 1845 0.71
1000:1 11 2 6323 0.69

Table XI. The Choices for bw and bdb that Minimize the Weighted Trace Average Cost, for
Different Word-to-Database Access Ratios

Ratio bw bdb Weighted Trace Average Cost Block Fill Factor

1:1 7 6 218 0.64
10:1 8 5 588 0.70
100:1 10 3 1851 0.71
1000:1 11 2 6456 0.69

Data Structures for Efficient Broker Implementation • 247

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

been made. The only way to correct for an error is to rebuild the hash table.
By contrast, the value of the probabilistic splitting parameter for the grid
file can be dynamically tuned. Although changing the parameter may not
be able to correct for unfortunate splits in the existing grid file, at least
future splitting decisions will be improved.

Finally, partitioned hashing treats all words the same, regardless of how
many or how few databases they occur in, and likewise treats all databases
the same, regardless of the number of words they contain. By contrast, the
cost of reading a row or column of the grid file tends to be proportional to
the number of records it contains.

8. RELATED WORK

Many approaches to solving the text database discovery problem have been
proposed. These fall into two groups: distributed browsing systems and
query systems. In distributed browsing systems (e.g., Berners-Lee et al.
1992; Neuman 1992), users follow predefined links between data items.
While a wealth of information is accessible this way, links must be
maintained by hand and are therefore frequently out of date (or nonexist-
ent). Finding information can be frustrating to say the least.

To address this problem, an increasing number of systems allow users to
query a collection of “metainformation” about available databases. The
metainformation typically provides some summary of the contents of each
database; thus, these systems fit our generic concept of a broker. Of course,
different systems use different types of summaries, and their implementa-
tion varies substantially [Barbara and Clifton 1992; Danzig et al. 1992;
Duda and Sheldon 1994; Kahle and Medlar 1991; Obraczka et al. 1993;
Ordille and Miller 1992; Schwartz et al. 1992; Sheldon et al. 1994; Simpson
and Alonso 1989].

Table XII. The Choices for bw and bdb that Minimize the Weighted Average Cost, for
Different Word-to-Database Access Ratios and for b 5 14

Ratio bw bdb Weighted Average Cost Block Fill Factor

1:1 7 7 255 0.36
10:1 9 5 832 0.36
100:1 10 4 2624 0.36
1000:1 12 2 8096 0.36

Table XIII. The Choices for bw and bdb that Minimize the Weighted Average Cost, for
Different Word-to-Database Access Ratios and for b 5 12

Ratio bw bdb Weighted Average Cost Block Fill Factor

1:1 6 6 253 0.74
10:1 8 4 832 0.72
100:1 10 4 2623 0.72
1000:1 12 2 7968 0.73

248 • Anthony Tomasic et al.

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

Some systems provide manual mechanisms to specify metainformation
(e.g., WAIS [Kahle and Medlar 1997], Yahoo,9 and ALIWEB10) and attach
human-generated text summaries to data sources. Given a query, these
systems search for matching text summaries and return the attached data
sources. Unfortunately, human-generated summaries are often out of date.
In effect, as the database changes the summaries generally do not. In
addition, English text summaries generally do not capture the information
the user wants.

Other systems construct metainformation automatically. These systems
are generally of two types: document-based systems generate metainforma-
tion from the documents at the data source; cooperative systems provide a
broker architecture that the data source administrator maps to the data.
Two important issues that these systems have to address are retrieval
effectiveness and scalability.

Document-based systems face a retrieval effectiveness problem, since
each document is equal to every other document. Given two databases that
are equally relevant to a query, the database with more documents will be
more highly represented in the answer. We believe that GlOSS representa-
tions of databases could improve retrieval effectiveness for this class of
system. This application of GlOSS is an area of future research.

Document-based systems are faced with a scalability problem when the
number of documents grows. The architecture of document-based systems
generally comprises a centralized server (e.g., Lycos11 and AltaVista12). In
such a centralized architecture, a robot usually scans the collection of
documents in a distributed way, fetching every document to the central
server. One solution to the scalability problem is to index only document
titles or, more generally, just a small fraction of each document (e.g., the
World Wide Web Worm13). This approach sacrifices important information
about the contents of each database. We believe that the retrieval effective-
ness and scalability of document-based systems would be dramatically
improved if each data source generated a GlOSS summary instead of
transmitting the entire contents of each data source to the central server.
As an example, a GlOSS-based metainformation query facility has been
implemented for WAIS servers.14 Recently, Callan et al. [1995] describe the
application of inference networks (from traditional information retrieval) to
the text database discovery problem. Their approach summarizes data-
bases using document frequency information for each term (the same type
of information that GlOSS keeps about the databases), together with the
“inverse collection frequency” of the different terms.

9http://www.yahoo.com
10http://web.nexor.co.uk/aliweb/doc/aliweb.html
11http://www.lycos.com
12http://www.altavista.digital.com
13http://wwww.cs.colorado.edu/wwww
14http://gloss.stanford.edu

Data Structures for Efficient Broker Implementation • 249

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

Another approach to solving the effectiveness and performance problems
is to design a more sophisticated broker architecture. In principle, we can
achieve greater effectiveness by creating brokers that specialize in a
certain topic. Scalability comes from removing the central server bottle-
neck. In Indie (shorthand for “Distributed Indexing”) [Danzig et al. 1991;
1992] and Harvest [Bowman et al. 1994], each broker knows about some
subset of the data sources, with a special broker that keeps information
about all other brokers. The mechanism of Schwartz [1990] and WHOIS11
[Weider and Faltstrom 1994] allow brokers (index-servers in WHOIS11) to
exchange information about sources they index and to forward queries they
receive to other knowledgeable brokers. Flater and Yesha [1993] describe a
system that allows sites to forward queries to likely sources (based, in this
case, on what information has been received from that source in the past).

While there have been many proposals for how to summarize database
contents and how to use the summaries to answer queries, there have been
very few performance studies in this area. Schwartz [1990] includes a
simulation study of the effectiveness of having brokers exchange content
summaries, but is not concerned with what these content summaries are
nor with the costs of storing and exchanging them. Callan et al. [1995]
study the inference network approach experimentally. Likewise, Gravano
and Garcı́a-Molina [1995] and Gravano et al. [1994a; 1994b] examine the
effectiveness and storage efficiency of GlOSS without worrying about costs
of access and update.

On a related topic, the fusion track of the TREC conference [Harman
1995b; 1996] has produced papers on the “collection fusion” problem
[Voorhees 1996; Voorhees et al. 1995]. These papers study how to merge
query results from multiple data sources into a single query result so as to
maximize the number of relevant documents that users get from the
distributed search. Callan et al. [1995] also study this problem.

The representation of summary information for distributed text data-
bases is clearly important for a broad range of query systems. Our article
goes beyond existing work in addressing the storage of this information and
in studying the performance of accesses and updates to this information.

9. CONCLUSION

The investigation reported in this article represents an important step
toward making GlOSS a useful tool for large-scale information discovery.
We showed that GlOSS can, in fact, effectively distinguish among text
databases in a large system with hundreds of databases. We further
identified partitioned hashing and grid files as useful data structures for
storing the summary information that GlOSS requires. We showed that
partitioned hashing offers the best average-case performance for a wide
range of workloads, but that performance can degrade dramatically as the
amount of data stored grows beyond initial estimates. The grid file can be
tuned to perform well and does not require any initial assumption about
the ultimate size of the summary information. Our work on tuning grid

250 • Anthony Tomasic et al.

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

files demonstrates that good performance can be achieved even for highly
skewed data.

We examined how the characteristics of the GlOSS summaries make the
policy for splitting blocks of the grid file a critical factor in determining the
ultimate row and column access costs, and we evaluated several specific
policies using databases containing U.S. Patent Office data. Our investiga-
tion showed that if the expected ratio of row accesses to column accesses is
very high (greater than about 1000:1 in our experiment), the best policy is
to always split between words. Some existing distributed information
retrieval services exceed this high ratio. If the ratio is very low or if
updates exceed queries, the best policy is to split between databases
whenever possible. Between these extremes, a policy of splitting between
databases with a given probability can be used to achieve the desired
balance between row and column access costs. For a given probability (and
expected number of database splits, ds), this policy performs better than
policies that prepartition the database scale ds times or that always divide
on the database scale up to ds times. If it is important to have a firm bound
on query costs, policies that prepartition or divide the database scale a
fixed number of times can be used.

More work is needed to explore the utility of the GlOSS summaries as a
representation of summary information for brokers. Their effectiveness
should be studied in a more realistic environment with real databases and
matching queries, where the queries involve disjunction as well as conjunc-
tion. There is more work to be done on the storage of these summaries as
well. An unfortunate aspect of the grid files is their need for a relatively
large directory. Techniques have been reported for controlling directory
size [Becker et al. [1993]]; we must examine whether those techniques are
applicable to the highly skewed grid files generated by the GlOSS summa-
ries. Compression techniques [Zobel et al. 1992] would have a significant
impact on the performance figures reported here. Finally, building an
operational GlOSS server for a large number of real databases is the only
way to truly determine the right ratio between word and database access
costs.

On a broader front many other issues remain to be studied. The vastly
expanding number and scope of online information sources make it clear
that a centralized solution to the database discovery problem will never be
satisfactory, showing the need to further explore architectures based on
hierarchies [Gravano and Garcı́a-Molina 1995] or networks of brokers.

REFERENCES

AHO, A. V. AND ULLMAN, J. D. 1979. Optimal partial-match retrieval when fields are inde-
pendently specified. ACM Trans. Database Syst. 4, 2 (June), 168–179.

BARBARÁ, D. AND CLIFTON, C. 1992. Information brokers: Sharing knowledge in a heteroge-
neous distributed system. Tech. Rep. MITL-TR-31-92, Matsushita Information Technology
Laboratory, Princeton, N.J. October.

BECKER, L., HINRICHS, K., AND FINKE, U. 1993. A new algorthm for computing joins with grid
files. In Proceedings of the 9th International Conference on Data Engineering. IEEE
Computer Society Press, Los Alamitos, Calif., 190–197.

Data Structures for Efficient Broker Implementation • 251

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

BERNERS-LEE, T., CAILLIAU, R., GROFF, J.-F., AND POLLERMANN, B. 1992. World-Wide Web:
The information universe. Elect. Network. Res. Appl. Policy 1, 2.

BOWMAN, C. M., DANZIG, P. B., HARDY, D. R., MANBER, U., AND SCHWARTZ, M. F. 1994. Har-
vest: A scalable, customizable discovery and access system. Tech. Rep. CU-CS-732–94, Dept.
of Computer Science, Univ. of Colorado, Boulder, Colo.

BROWN, E. W., CALLAHAN, J. P., AND CROFT, W. B. 1994. Fast incremental indexing for
full-text information retrieval. In Proceedings of the 20th International Conference on Very
Large Data Bases. VLDB Endowment, Saratoga, Calif., 192–202.

CALLAN, J. P., LU, Z., AND CROFT, W. B. 1995. Searching distributed collections with infer-
ence networks. In Proceedings of the 18th Annual SIGIR Conference. ACM, New York.

CUTTING, D. AND PEDERSEN, J. 1990. Optimizations for dynamic inverted index mainte-
nance. In Proceedings of the 13th International Conference on Research and Development in
Information Retrieval. ACM, New York, 405–411.

DANZIG, P. B., AHN, J., NOLL, J., AND OBRACZKA, K. 1991. Distributed indexing: A scalable
mechanism for distributed information retrieval. In Proceedings of the 14th Annual SIGIR
Conference. ACM, New York.

DANZIG, P. B., LI, S.-H., AND OBRACZKA, K. 1992. Distributed indexing of autonomous
Internet services. Comput. Sys. 5, 4.

DUDA, A. AND SHELDON, M. A. 1994. Content routing in a network of WAIS servers. In the
14th IEEE International Conference on Distributed Computing Systems. IEEE, New York.

FALOUTSOS, C. 1986. Multiattribute hashing using Gray codes. In Proceedings of the 1986
ACM SIGMOD Conference. ACM, New York, 227–238.

FLATER, D. W. AND YESHA, Y. 1993. An information retrieval system for network resources.
In Proceedings of the International Workshop on Next Generation Information Technologies
and Systems.

FREESTON, M. 1995. A general solution of the n-dimensional b-tree problem. In Proceedings
of the 1995 ACM SIGMOD Conference. ACM, New York, 80–91.

GRAVANO, L. AND GARCIA-MOLINA, H. 1995. Generalizing GlOSS for vector-space databases
and broker hierarchies. In Proceedings of the 21st International Conference on Very Large
Data Bases (VLDB’95). VLDB Endowment, Saratoga, Calif., 78–89.

GRAVANO, L., GARCIA-MOLINA, H., AND TOMASIC, A. 1994a. The effectiveness of GlOSS for
the text-database discovery problem. In Proceedings of the 1994 ACM SIGMOD Conference.
ACM, New York. Also available as ftp://db.stanford.edu/pub/gravano/1994/
stan.cs.tn.93.002.sigmod94.ps.

GRAVANO, L., GARCIA-MOLINA, H., AND TOMASIC, A. 1994b. Precision and recall of GlOSS
estimators for database discovery. In Proceedings of the 3rd International Conference on
Parallel and Distributed Information Systems (PDIS’94). IEEE Computer Society Press, Los
Alamitos, Calif. Also available as ftp://db.stanford.edu/pub/gravano/1994/stan.cs.tn.94.101.
pdis94.ps.

GUTTMAN, A. 1984. R-trees: A dynamic index structure for spatial searching. In Proceedings
of the 1984 ACM SIGMOD Conference. ACM, New York, 47–57.

HARMAN, D. K., Ed. 1995a. Overview of the 3rd Text Retrieval Conference (TREC-3). NIST
Special Pub. 500–225, Coden: NSPUE2. U.S. Dept. of Commerce, Technology Administra-
tion, National Institute of Standards and Technology (NIST), Gaithersburg, Md.

HARMAN, D., Ed. 1995b. Proceedings of the 3rd Text Retrieval Conference (TREC-3). Na-
tional Institute of Standards and Technology, Gaithersburg, Md. Available as Special Pub.
500–225.

HARMAN, D., E. 1996. Proceedings of the 4th Text Retrieval Conference (TREC-4). National
Institute of Standards and Technology, Gaithersburg, Md.

HINRICHS, K. 1985. Implementation of the grid file: Design concepts and experience. BIT 25,
569–592.

KAHLE, B. AND MEDLAR, A. 1991. An information system for corporate users: Wide Area
Information Servers. Tech. Rep. TMC199, Thinking Machines Corp., Boston, Mass.

KNUTH, D. E. 1973. The Art of Computer Programming. Vol. 3, Sorting and Searching.
Addison-Wesley, Reading, Mass.

LLOYD, J. W. 1980. Optimal partial-match retrieval. BIT 20, 406–413.

252 • Anthony Tomasic et al.

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

LLOYD, J. W. AND RAMAMOHANARAO, K. 1982. Partial-match retrieval for dynamic files. BIT
22, 150–168.

NEUMAN, B. C. 1992. The Prospero file system: A global file system based on the Virtual
System model. Comput. Syst. 5, 4.

NIEVERGELT, J., HINTERBERGER, H., AND SEVCIK, K. C. 1984. The grid file: An adaptable,
symmetric multikey file structure. ACM Trans. Database Syst. 9, 1 (Mar.), 38–71.

OBRACZKA, K., DANZIG, P. B., AND LI, S.-H. 1993. Internet resource discovery services. IEEE
Comput. 26, 9 (Sept.).

ORDILLE, J. J. AND MILLER, B. P. 1992. Distributed active catalogs and meta-data caching in
descriptive name services. Tech. Rep. 1118, Univ. of Wisconsin, Madison, Wisc.

ORENSTEIN, J. A. AND MERRETT, T. H. 1984. A class of data structures for associative
searching. In the 3rd ACM Symposium on Principles of Database Systems. ACM, New York,
181–190.

PISSANETZKY, S. 1984. Sparse Matrix Technology. Academic Press, New York.
SALTON, G. AND MCGILL, M. J. 1983. Introduction to Modern Information Retrieval.

McGraw-Hill, New York.
SCHWARTZ, M. F. 1990. A scalable, non-hierarchical resource discovery mechanism based on

probabilistic protocols. Tech. Rep. Cu-CS-474-90, Dept. of Computer Science, Univ. of
Colorado, Boulder, Colo.

SCHWARTZ, M. F., EMTAGE, A., KAHLE, B., AND NEUMAN, C. B. 1992. A comparison of Internet
resource discovery approaches. Comput. Syst. 5, 4.

SELLIS, T., ROUSSOPOULOS, N., AND FALOUTSOS, C. 1987. The R1-tree: A dynamic index for
multi-dimensional objects. In Proceedings of the 13th Conference on Very large Databases.
VLDB Endowment, Saratoga, Calif., 507–518.

SHELDON, M. A., DUDA, A., WEISS, R., O’TOOLE, J. W., AND GIFFORD, D. K. 1994. A content
routing system for distributed information servers. In Proceedings of the 4th International
Conference on Extending Database Technology. Springer-Verlag, Berlin.

SIMPSON, P. AND ALONSO, R. 1989. Querying a network of autonomous databases. Tech. Rep.
CS-TR-202-89, Dept. of Computer Science, Princeton Univ., Princeton, N.J.

TOMASIC, A. AND GARCIA-MOLINA, H. 1996. Performance issues in distributed shared-nothing
information retrieval systems. Inf. Process. Manage. 32, 6.

TOMASIC, A., GARCIA-MOLINA, H., AND SHOENS, K. 1994. Incremental updates of inverted
lists for text document retrieval. In Proceedings of the 1994 ACM SIGMOD Conference.
ACM, New York, 289–300.

TOMASIC, A., GRAVANO, L., LUE, C., SCHWARZ, P., AND HAAS, L. 1995. Data structures for
efficient broker implementation. Tech. Rep., IBM Almaden Research Center, San Jose,
Calif. Also available as ftp://db.stanford.edu/pub/gravano/1995/ibm_rj.ps.

ULLMAN, J. D. 1988. Principles of Database and Knowledge-Base Systems. Vol. 1. Computer
Science Press, Boca Raton, Fla.

VOORHEES, E. M. 1996. Siemens TREC-4 report: Further experiments with database merg-
ing. In Proceedings of the 4th Text Retrieval Conference (TREC-4). NIST, Gaithersburg, Md.

VOORHEES, E. M., GUPTA, N. K., AND JOHNSON-LAIRD, B. 1995. The collection fusion problem.
In Proceedings of the 3rd Text Retrieval Conference (TREC-3). NIST, Gaithersburg, Md.

WEIDER, C. AND FALTSTROM, P. 1994. The WHOIS11 directory service. ConneXions 8, 12 (Dec.).
WIEDERHOLD, G. File Organization for Database Design. McGraw-Hill, New York.
ZOBEL, J., MOFFAT, A., AND SACKS-DAVIS, R. 1992. An efficient indexing technique for

full-text database systems. In Proceedings of the 18th International Conference on Very
Large Data Bases. VLDB Endowment, Saratoga, Calif., 352–362.

Received November 1995; accepted April 1996

Data Structures for Efficient Broker Implementation • 253

ACM Transactions on Information Systems, Vol. 15, No. 3, July 1997.

