
QUERYING MULTIPLE DOCUMENT COLLECTIONS

ACROSS THE INTERNET

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

Luis Gravano

August 1997



ii



c
 Copyright 1997 by Luis Gravano

All Rights Reserved

iii



iv



I certify that I have read this dissertation and that in

my opinion it is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

H�ector Garc��a-Molina
(Principal Adviser)

I certify that I have read this dissertation and that in

my opinion it is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

Jennifer Widom

I certify that I have read this dissertation and that in

my opinion it is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

Terry Winograd

Approved for the University Committee on Graduate

Studies:

v



vi



Abstract

Information sources are available everywhere, both within the internal networks of or-

ganizations and on the Internet. The source contents are often hidden behind search

interfaces and models that vary from source to source. Furthermore, these sources

are usually numerous, and users cannot evaluate their queries over all of them. Con-

sequently, it is crucial for users to havemetasearchers, which are services that provide

uni�ed query interfaces to multiple information sources. Given a user query, the meta-

searcher �rst chooses the best sources to evaluate the query. Second, the metasearcher

submits the query to these sources. Finally, the metasearcher merges the query results

from the sources. To address the �rst task, we designed GlOSS, a scalable system

that chooses the best document sources for a query. The GlOSS information about

each source is orders of magnitude smaller than the source contents. To address the

other two tasks above and to facilitate the extraction of the GlOSS information from

the sources, we coordinated the design of STARTS, an emerging protocol for Internet

retrieval and search involving around 11 companies and organizations. Unfortunately,

extracting the best objects for a query according to the metasearcher might be an

expensive operation, since the sources' ranking algorithms might di�er radically from

that of the metasearcher's. We studied a result merging condition that characterizes

what sources are \good" with respect to result merging. Finally, we also studied the

metasearching problem for a novel application: the detection of illegal dissemination

of copyrighted material. To address this problem we developed dSCAM, an \illegal

copy" metasearcher that �nds potential copies of a document over distributed text

sources.

vii



viii



A mis abuelos Luis y Adelita

ix



x



Acknowledgements

First things �rst. Hector Garc��a-Molina, my advisor at Stanford, has been the great-

est: a truly 7 � 24 advisor, incredibly busy but always available for discussion and

guidance. His famous, sometimes dreaded yellow sheets with hand-written comments

about our papers have improved my writing style enormously. He has taught me how

to write, communicate, and think clearly. I hope that I can be at least half as patient

and caring with my future students as he is with his.

Jorge Sanz, my advisor at IBM Argentina and IBM Almaden in the pre-Stanford

years, was the �rst one to show me what research was all about. I would probably

not be in academia now if I had not met him back in 1990 when I was looking for

a topic for my undergraduate thesis. The endless discussions, sometimes extending

way past three o'clock in the morning, taught me how much fun research could be.

Many other people at IBM were incredibly supportive and exciting to work with

during my parallel-processing years, especially Shuki Bruck, Bob Cypher, Magda

Konstantinidou, and Dragutin Petkovic at IBM Almaden, and Sergio Felperin and

Gustavo Pifarr�e at IBM Argentina. All of these IBMers encouraged me to come to

grad school to the USA. I really thank them for one of the best decisions I have ever

made.

During the Stanford years, I continued meeting wonderful people at research labs

in the Bay Area. I had the pleasure to work again at IBM Almaden, this time

with Laura Haas, Peter Schwarz, and Anthony Tomasic, among others. (The results

in Section 4.7 are part of the work that we did together.) I also worked at Hewlett-

Packard Laboratories in Palo Alto with Surajit Chaudhuri and Umesh Dayal. Special

thanks go to Laura and Umesh, two truly outstanding researchers and the warmest

xi



people, who did not complain (well, not too much at least) when they had to send

millions of copies of their letters of recommendation during my slightly too \thorough"

job hunt earlier this year. Working with Surajit has also been great, in spite (or

because!) of our loud, very loud discussions about almost anything. I really hope

that I will work again with every single one of these incredible people.

At Stanford, the list is long. Initially, I had the privilege to work with Anthony on

GlOSS (Chapter 3 and the inspiration of many of the others are joint work with him

and H�ector). Anthony gave me invaluable advice on grad-student life. Later, I joined

the Digital Library project. Its manager, Andreas Paepcke, is an admirable person

whose sense of humor has made many tough days much more bearable. (Chapter 2 is

joint work with him, Chen-Chuan Kevin Chang, and H�ector.) The other professors

in the project and the database group, Daphne Koller, Je� Ullman, Jennifer Widom,

Gio Wiederhold, and Terry Winograd, have always been willing to brainstorm about

virtually any topic. The same is true of the other members of the group, although

they tend to discuss issues as interesting as why Argentinians pronounce the letter \y"

the \wrong" way. My o�cemates in Margaret Jacks 402 and Gates 432 have engaged

in this and other edifying discussions over the years, especially Sergey Brin, Venky

Harinarayan, Yannis Papakonstantinou, who prevented me from eating too many of

my NutriGrain bars, Narayanan Shivakumar (a.k.a. Shiva), and Yue Zhuge. (Shiva,

H�ector, and I wrote Chapter 6 together.) I have had many inspiring conversations

with other members of the group like Michelle Baldonado, Scott Hassan, Larry Page,

Anand Rajaraman, Vasilis Vassalos, Tak Yan, and Ramana Yerneni, just to mention

a few. Some of the future-work ideas in Chapter 8 have come out of these discussions.

Finally, Sharon Lambeth and Marianne Siroker have made my life so much easier over

these years, dealing with all the Stanford bureaucracy, �nances, obscure requirements,

and various reimbursements in the most e�cient way.

I would never have �nished my Ph.D. without the support of all my friends in

Argentina and in the USA. I will not list them here: I am extremely lucky to have

many great friends (and I do not use the word friend lightly). You know who you

are and I thank you for the endless listening-understanding-scolding cycles. I would

also like to thank my brothers, Mat��as and Agust��n, for always being there. Agust��n:

xii



keep bombarding me with your emails and your energy! I need them.

A �nal word for my parents, Mar��a Virginia Fornari and Juan Carlos Gravano.

Les debo todo lo que soy: Uds. me hicieron valorar la educaci�on y el estudio desde

que tengo uso de raz�on. A Uds. y a los abuelos, de quienes hered�e, entre muchas

otras cosas, el amor por la docencia, les dedico esta tesis.

xiii



Contents

Abstract vii

Acknowledgements xi

1 Introduction 1

2 STARTS: A Protocol for Metasearching 4

2.1 History of our Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Our Metasearch Model and its Associated Problems . . . . . . . . . . 7

2.2.1 The Query-Language Problem . . . . . . . . . . . . . . . . . . 8

2.2.2 The Rank-Merging Problem . . . . . . . . . . . . . . . . . . . 10

2.2.3 The Source-Metadata Problem . . . . . . . . . . . . . . . . . . 11

2.2.4 Metasearch Requirements . . . . . . . . . . . . . . . . . . . . 11

2.3 Our Protocol Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Query Language . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Merging of Ranks . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.3 Source Metadata . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 GlOSS: Boolean Source Discovery 36

3.1 Text-Source Discovery for Boolean Sources . . . . . . . . . . . . . . . 37

3.2 GlOSS: Glossary-Of-Servers Server . . . . . . . . . . . . . . . . . . . 41

3.2.1 Query Representation . . . . . . . . . . . . . . . . . . . . . . 42

3.2.2 Database Word-Frequency Information . . . . . . . . . . . . . 42

xiv



3.2.3 Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.4 The Ind Estimator . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Evaluation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Experimental Framework . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.1 Databases and the INSPEC Query Trace . . . . . . . . . . . . 47

3.4.2 Constructing the Database Frequency Information . . . . . . . 47

3.4.3 Di�erent \Right" Sets of Databases . . . . . . . . . . . . . . . 48

3.4.4 Con�guration of the Experiments . . . . . . . . . . . . . . . . 51

3.5 Ind Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.1 Ind as a Predictor of the Result Size of the Queries . . . . . . 52

3.5.2 Evaluating Ind over Pairs of Databases . . . . . . . . . . . . . 53

3.5.3 Evaluating Ind over Six Databases . . . . . . . . . . . . . . . 57

3.5.4 Impact of Using Other Traces . . . . . . . . . . . . . . . . . . 58

3.6 Improving GlOSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6.1 Making ChosenEST and Best More Flexible . . . . . . . . . . . 59

3.6.2 Other Estimators . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.7 GlOSS's Storage Requirements . . . . . . . . . . . . . . . . . . . . . . 64

3.7.1 New Evaluation Parameters . . . . . . . . . . . . . . . . . . . 65

3.7.2 Eliminating the \Subject" Index . . . . . . . . . . . . . . . . . 68

3.7.3 Characteristics of the Database Frequency Information and Full

Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.7.4 Storage Cost Estimates . . . . . . . . . . . . . . . . . . . . . . 71

3.7.5 Pruning the Word-Frequency Information . . . . . . . . . . . 74

3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 gGlOSS: Vector-Space Source Discovery 78

4.1 Ranking Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Choosing Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.1 High-Correlation Scenario . . . . . . . . . . . . . . . . . . . . 84

4.2.2 Disjoint Scenario . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3 Comparing Database Ranks . . . . . . . . . . . . . . . . . . . . . . . 88

xv



4.4 Evaluating gGlOSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4.1 Queries and Databases . . . . . . . . . . . . . . . . . . . . . . 91

4.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 92

4.5 Alternative Ideal Ranks . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.6 Decentralizing gGlOSS . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.7 Larger Scale E�ectiveness Experiments . . . . . . . . . . . . . . . . . 101

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5 The Result Merging Problem 105

5.1 Our Search Model for Structured Sources . . . . . . . . . . . . . . . . 109

5.2 Extracting Top Objects from a Tractable Source . . . . . . . . . . . . 114

5.2.1 Algorithm Top . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2.2 Performance of Algorithm Top . . . . . . . . . . . . . . . . . . 118

5.3 Varying Source Types . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.4 Source Tractability as a Necessary Condition . . . . . . . . . . . . . . 128

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6 dSCAM: A Non-Traditional Metasearcher 134

6.1 Using SCAM for Copy Detection . . . . . . . . . . . . . . . . . . . . 138

6.2 The dSCAM Information about the Databases . . . . . . . . . . . . . 141

6.3 The Conservative Approach . . . . . . . . . . . . . . . . . . . . . . . 142

6.4 The Liberal Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.4.1 Counting Only Rare Words . . . . . . . . . . . . . . . . . . . 146

6.4.2 Using Probabilities . . . . . . . . . . . . . . . . . . . . . . . . 148

6.5 Searching the Databases with Potential Copies . . . . . . . . . . . . . 149

6.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7 Related Work 163

7.1 Metasearchers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.2 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.3 Text-Source Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . 166

xvi



7.4 Result Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.5 Distributed Copy Detection . . . . . . . . . . . . . . . . . . . . . . . 170

8 Future Work 172

Bibliography 179

xvii



List of Figures

2.1 A metasearcher queries a source, and may specify that the query be

evaluated at several sources at the same resource. . . . . . . . . . . . 7

3.1 A portion of the database frequency information that GlOSS keeps for

three databases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 The Ind estimator for GlOSS chooses the most promising databases

for a given query. In the example, database B, which is actually the

database containing the highest number of matching documents, is

chosen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Information Ind needs for DB = fINSPEC, PSYCINFOg and q= au-

thor Knuth ^ title computer. . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Summary of the characteristics of the six databases considered. . . . . 47

3.5 The documents relevant to a given query vs. the documents actually

given as the answer to the query, for three di�erent databases. Docu-

ments are represented by numbers in this �gure. . . . . . . . . . . . . 50

3.6 Basic con�guration of the experiments. . . . . . . . . . . . . . . . . . 52

3.7 Ind as an estimator of the result size of the queries. . . . . . . . . . . 53

3.8 Results corresponding to DB = fINSPEC (I), PSYCINFO (P)g and

Ind as the estimator. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.9 Results corresponding to DB = fINSPEC (I), COMPENDEX (C)g

and Ind as the estimator. . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.10 Parameters P and R for DB =fINSPEC, PSYCINFOg and Ind as the

estimator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

xviii



3.11 Parameters P and R for DB =fINSPEC, COMPENDEXg and Ind as

the estimator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.12 Parameters P and R for the basic con�guration of the experiments. . 58

3.13 Parameters P and R for the basic con�guration, but using the queries

in TRACEERIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.14 The average P parameters as a function of �B for the Ind estimator

(�C = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.15 The average R parameters as a function of �B for the Ind estimator

(�C = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.16 The average P parameters as a function of �C for the Ind estimator

(�B = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.17 The average R parameters as a function of �C for the Ind estimator

(�B = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.18 The average P and R parameters for the basic con�guration with Min

as the estimator. The last two columns show the corresponding values

for the basic con�guration, using Ind as the estimator. . . . . . . . . 65

3.19 The average P and R parameters for the basic con�guration with Bin

as the estimator. The last two columns show the corresponding values

for the basic con�guration, using Ind as the estimator. . . . . . . . . 65

3.20 Summary of the relationship between the Success, Alpha, and Beta

functions and P Ind
Best and RInd

Best , for criteria CAB and COB. . . . . . . . 68

3.21 Evaluation criteria for the basic con�guration, but estimating the \sub-

ject" frequencies as the maximum of the frequencies of the primitive

indexes. The last column shows the Success values for the basic con-

�guration, using the exact \subject" frequencies. . . . . . . . . . . . 70

3.22 Characteristics of the database frequency information kept by GlOSS

vs. those of a full index, for the INSPEC database. . . . . . . . . . . 70

3.23 Estimated storage costs of a full index vs. the GlOSS frequency infor-

mation for the INSPEC database. . . . . . . . . . . . . . . . . . . . . 72

xix



3.24 Storage estimates for GlOSS and a full index for the six databases. The

entries for GlOSS in the last three rows correspond to the basic con-

�guration, but estimating the \subject" frequencies as the maximum

of the frequencies of the primitive indexes. . . . . . . . . . . . . . . . 74

3.25 Criterion CAB, for di�erent values of threshold. The \subject" entries

are estimated as the maximum of the entries corresponding to the

primitive indexes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.26 Criterion COB, for di�erent values of threshold. The \subject" entries

are estimated as the maximum of the entries corresponding to the

primitive indexes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.27 Number of entries left for the di�erent thresholds and �eld designa-

tors in the INSPEC database. The last three rows correspond to the

basic con�guration, but estimating the \subject" frequencies as the

maximum of the frequencies of the primitive indexes. . . . . . . . . . 76

4.1 The ideal and gGlOSS database ranks for Example 19. . . . . . . . . 90

4.2 Parameter Rn as a function of n, the number of databases examined

from the ranks, for the Ideal(0:2) ideal database ranking and the dif-

ferent gGlOSS rankings. . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3 Parameter Pn as a function of n, the number of databases examined

from the ranks, for the Ideal(0:2) ideal database ranking and the dif-

ferent gGlOSS rankings. . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4 Parameter R3 as a function of the threshold l, for ideal rank Ideal(l). 95

4.5 Parameter P3 as a function of the threshold l, for ideal rank Ideal(l). 96

4.6 The Rn and Pn metrics for hGlOSS and our sample experiment. . . . 101

4.7 The average Rn metric for 500 text databases and the TRACEINSPEC

queries of Chapter 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.1 Algorithm to retrieve the top Target objects for a query from a tractable

source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2 The main parameters in our experiments for Algorithm Top. . . . . . 121

xx



5.3 The percentage of objects retrieved by Algorithm Top as a function of

the initial score G0 used (� = 0). . . . . . . . . . . . . . . . . . . . . . 122

5.4 The percentage of objects retrieved by Algorithm Top as a function of

the initial score G0 used (� = 0 and � = 0:10). . . . . . . . . . . . . . 123

5.5 The percentage of objects retrieved by Algorithm Top as a function of

� (G0 = 0:87 for min and G0 = 0:99 for max). . . . . . . . . . . . . . 124

6.1 The percentage of the 50 databases that are searched as a function of

the adjusted similarity threshold T k (Registered suspicious documents;

SumRatio strategy; T = 1). . . . . . . . . . . . . . . . . . . . . . . . . 152

6.2 The average recall as a function of the adjusted similarity threshold T k

(Registered suspicious documents; SumRatio strategy; T = 1). . . . . . 153

6.3 The average precision as a function of the adjusted similarity threshold

T k (Registered suspicious documents; SumRatio strategy; T = 1). . . . 153

6.4 The percentage of the 50 databases that are searched as a function of

the adjusted similarity threshold T k (Disjoint suspicious documents;

SumRatio strategy; T = 1). . . . . . . . . . . . . . . . . . . . . . . . . 154

6.5 The percentage of the 50 databases that are searched as a function

of the SCAM threshold T (Registered suspicious documents; k = 10;

T k = 0:05 � T ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.6 The average recall as a function of the SCAM threshold T (Registered

suspicious documents; k = 10; T k = 0:05 � T ). . . . . . . . . . . . . . 157

6.7 The average precision as a function of the SCAM threshold T (Regis-

tered suspicious documents; k = 10; T k = 0:05 � T ). . . . . . . . . . . 158

6.8 The average number of times that dSCAM (incorrectly) chooses to

search the (growing) database, as a function of the size of the database

(Disjoint suspicious documents; SumRatio strategy). . . . . . . . . . . 159

6.9 The percentage of words of the suspicious documents that are included

in the query to extract the potential copies from the databases (Regis-

tered suspicious documents; Ratio strategy). . . . . . . . . . . . . . . 160

xxi



6.10 Average selectivity of the queries used to extract the potential copies

from the databases, as a function of the SCAM threshold T (Registered

suspicious documents; Ratio strategy). . . . . . . . . . . . . . . . . . 161

xxii



Chapter 1

Introduction

The Internet has grown dramatically over the past few years. Document sources are

available everywhere, both within the internal networks of organizations and on the

Internet. The source contents are often hidden behind search interfaces and models

that vary from source to source. Even individual organizations use search engines

from di�erent vendors to index their internal document collections. Therefore, using

the wealth of available resources e�ectively presents challenging problems. This thesis

focuses primarily on how to help users �nd and use the information that they need.

Increasingly, users want to issue complex queries across Internet sources to obtain

the data they require. Because of the size of the Internet, it is not possible anymore

to process such queries in naive ways, e.g., by accessing all the available sources.

Thus, we must process queries in a way that scales with the number of sources. Also,

sources vary in the type of information objects they contain and in the interface they

present to their users. Some sources contain text documents and support simple query

models where a query is just a list of keywords. Other sources contain more structured

data and provide query interfaces in the style of relational database interfaces. User

queries might require accessing sources supporting radically di�erent interfaces and

query models. Thus, we must process queries in a way that deals with heterogeneous

sources.

Users can bene�t from metasearchers, which are services that provide uni�ed

query interfaces to multiple search engines. Thus, users have the illusion of a single

1



2 CHAPTER 1. INTRODUCTION

combined document source. A metasearcher (or any end client, in general) would

typically issue queries to multiple sources, for which it needs to perform three main

tasks. First, the metasearcher chooses the best sources to evaluate a query. Then,

it submits the query to these sources. Finally, it merges the results from the sources

and presents them to the user that issued the query. Note that sources often rank

the documents in the query results from \best" to \worst" for the query by using

undisclosed algorithms.

Building metasearchers is a hard task because di�erent search engines are largely

incompatible and do not allow for interoperability. Building metasearchers is also hard

because in general sources are too numerous. Therefore, �nding the best sources for

a query is a challenging task. Finally, even if we know the ranking algorithms that

sources use, extracting the best objects for a query according to the metasearcher

might be an expensive operation, since the sources' ranking algorithms might di�er

radically from that of the metasearcher's.

In this thesis, we facilitate the construction of metasearchers by developing the

following key technologies:

� STARTS (Chapter 2): It is hard for a metasearcher to perform the tasks above

with no cooperation from the information sources. Thus, a metasearcher needs

at least metadata about the sources' contents (for query translation and source

discovery), and statistics about the query results that the sources return (for

meaningful result merging). This need for cooperation led to the design of

STARTS, an emerging protocol for Internet retrieval and search that facilitates

the three tasks of metasearchers. STARTS has been developed in a unique way.

It is not a standard, but a group e�ort coordinated by Stanford's Digital Library

project, and involving around 11 companies and organizations.

� GlOSS (Chapters 3 and 4): Once sources cooperate with metasearchers by

exporting the content summaries speci�ed by the STARTS protocol, meta-

searchers use these summaries to de�ne their source discovery strategy. One

such strategy is the one followed byGlOSS (Glossary-Of-Servers Server). GlOSS



3

is a system that keeps statistics on the available information sources. A meta-

searcher can then use GlOSS to estimate which sources are the potentially most

useful for a given query. We de�ne GlOSS for sources supporting either the

Boolean or the vector-space model of document retrieval [SM83]. We also gen-

eralize our approach by showing how to build a hierarchy of GlOSS servers.

The top level of the hierarchy is so small it could be widely replicated, even at

end-user workstations.

� A result-merging condition (Chapter 5): Once a metasearcher has chosen what

sources to contact for a given query, it also has to decide how much data to

retrieve from each of these sources to �nd the \best" answers for the query. In

e�ect, a crucial problem that a metasearcher faces is extracting from the under-

lying sources the top objects for a user query according to the metasearcher's

ranking function. We present a condition that a source must satisfy so that a

metasearcher can extract the top objects for a query from the source without

examining its entire contents. Not only is this condition necessary but it is also

su�cient, and we show an algorithm to extract the top objects from sources

that satisfy the given condition.

� dSCAM (Chapter 6): The metasearching paradigm is applicable for novel ap-

plications. One such application is to automatically detect when a \new" doc-

ument is \suspiciously close" to existing ones. This problem has become of

crucial importance, because the Internet has made the illegal dissemination

of copyrighted material easy. In this scenario, the information sources con-

tain \registered documents," and the \queries" are actually new documents for

which we want to �nd suspicious documents, i.e., we want to �nd documents

that overlap with the queries signi�cantly. To address this problem we devel-

oped dSCAM, which is an \illegal copy" metasearcher that uses the GlOSS

approach for �nding the \most suspicious" text sources for a query.

We conclude this thesis by discussing related work in Chapter 7, and challenging

open problems in Chapter 8.



Chapter 2

STARTS: A Protocol for

Metasearching

As mentioned in the previous chapter, it is hard to build metasearchers over text

sources because the search engines that these sources use are incompatible, making

interoperability di�cult. STARTS, the Stanford Protocol Proposal for Internet Re-

trieval and Search, is an emerging protocol whose goal is to facilitate the main three

metasearching tasks of Chapter 1 [GCGMP97]:

� Choosing the best sources to evaluate a query

� Evaluating the query at these sources

� Merging the query results from these sources

STARTS has been developed in a unique way. It is not a standard, but a group

e�ort involving around 11 companies and organizations. The objective of this chapter

is not only to give an overview of the STARTS protocol proposal, but also to discuss

the process that led to its de�nition. In particular:

� We will describe the history of the project, including the current status of a

reference implementation, and will highlight some of the existing \tensions"

between information providers and search engine builders (Sections 2.1 and

2.2).

4



2.1. HISTORY OF OUR PROPOSAL 5

� We will explain the protocol, together with some of the tradeo�s and compro-

mises that we had to make in its design (Section 2.3).

2.1 History of our Proposal

The Digital Library project at Stanford coordinated search engine vendors and other

key players to informally design a protocol that would allow searching and retrieval of

information from distributed and heterogeneous sources. We were initially contacted

by Steve Kirsch, president of Infoseek (http://www.infoseek.com), in June, 1995.

His idea was that Stanford should collect the views of the search engine vendors

on how to address the problem at hand. Then Stanford, acting as an unbiased

party, would design a protocol proposal that would reconcile the vendors' ideas. The

key motivation behind this informal procedure was to avoid the long delays usually

involved in the de�nition of formal standards.

In July, 1995, we started our e�ort with �ve companies: Fulcrum (http://www.-

fulcrum.com), Infoseek, PLS (http://www.pls.com), Verity (http://www.verity.-

com), and WAIS. Microsoft Network (http://www.msn.com) joined the initial group

in November. We circulated a preliminary draft describing the main three problems

that we wanted to address (i.e., choosing the best sources for a query, evaluating

the query at these sources, and merging the query results from the sources). We

scheduled meetings with people from the companies to discuss these problems and

get feedback. We met individually with each company between December, 1995, and

February, 1996. During each meeting, we would brie
y address each of the three

problems to agree on their de�nition, terminology, etc. After this, we would discuss

the possible solutions for each problem in detail.

Based on the comments and suggestions that we received, we produced a �rst

draft of our proposal by March, 1996. We then produced two revisions of this draft

using feedback from the original companies, plus other organizations that started



6 CHAPTER 2. STARTS: A PROTOCOL FOR METASEARCHING

participating: Excite (http://www.excite.com), GILS (http://info.er.usgs.-

gov:80/gils/), Harvest (http://harvest.transarc.com), Hewlett-Packard Labo-

ratories (http://www.hpl.hp.com), and Netscape (http://www.netscape.com). Fi-

nally we held a workshop at Stanford with the major participants on August 1st,

1996. The goal of this one-day workshop was to iron out the controversial aspects of

the proposal, and to get feedback for its �nal draft [GCGMP96].

De�ning STARTS has been a very interesting experience: we wanted to design a

protocol that would be simple, yet powerful enough to allow us to address the three

problems at hand. We could have adopted a \least common denominator" approach

for our solution. However, many interesting interactions would have been impossible

under such a solution. Alternatively, we could have incorporated the sophisticated

features that the search engines provide, but that also would have challenged inter-

operability, and would have driven us away from simplicity. Consequently, we had to

walk a very �ne line, trying to �nd a solution that would be expressible enough, but

not too complicated or impossible to quickly implement by the search engine vendors.

Another aspect that made the experience challenging was dealing with compa-

nies that have undisclosed, proprietary algorithms, as those for ranking documents.

(See Section 2.3.2.) Obviously, we could not ask the companies to reveal these algo-

rithms. However, we still needed to have them export enough information so that a

metasearcher could do something useful with the query results.

As mentioned above, the STARTS-1.0 speci�cation is already completed. A ref-

erence implementation of the protocol has been built at Cornell University by Carl

Lagoze. (See http://www-diglib.stanford.edu for information.) Also, the Z39.50

community is designing a pro�le of their Z39.50-1995 standard based on STARTS.

(This pro�le was originally called ZSTARTS, but has since changed its name to ZDSR,

for Z39.50 Pro�le for Simple Distributed Search and Ranked Retrieval.)



2.2. OUR METASEARCH MODEL AND ITS ASSOCIATED PROBLEMS 7

Source 2

Source 1

Resource 

Query

Results

Client

Figure 2.1: A metasearcher queries a source, and may specify that the query be
evaluated at several sources at the same resource.

2.2 OurMetasearchModel and its Associated Prob-

lems

In this section we expand on the basic metasearch model of Chapter 1, and on the

three main problems that a metasearcher faces today. These problems motivated the

STARTS e�ort.

For the purpose of the STARTS protocol, we view the Internet as a potentially

large number of resources (e.g., Knight-Ridder's Dialog information service, or the

NCSTRL sources 1). Each resource consists of one or more sources (Figure 2.1). A

source is a collection of text documents (e.g., Inspec and the Computer Database

in the Dialog resource), with an associated search engine that accepts queries from

clients and produces results. We assume that documents are \
at," in the sense that

we do not, for example, allow any nesting of documents. We do not consider non-

textual documents or data either (e.g., geographical data) to keep the protocol simple.

Sources may be \small" (e.g., the collection of papers written by some university

professor) or \large" (e.g., the collection of World-Wide Web pages indexed by a

crawler).

As described in Chapter 1, a metasearcher (or any end client, in general) would

typically issue queries to multiple sources. To query multiple sources within the

1The NCSTRL sources constitute an emerging library of computer science technical reports
(http://www.ncstrl.org).



8 CHAPTER 2. STARTS: A PROTOCOL FOR METASEARCHING

same resource (e.g., as possible in Knight-Ridder's Dialog information service), the

metasearcher issues the query to one of the sources at the resource (Source 1 in

Figure 2.1), specifying the other \local" sources where to also evaluate the query

(Source 2 in Figure 2.1). This way, the resource can eliminate duplicate documents

from the query result, for example, which would be di�cult for the metasearcher to

do if it queried all of the sources independently.

Building metasearchers that query multiple sources is a hard task because di�erent

search engines are largely incompatible and do not allow for interoperability. In

general, text search engines:

� Use di�erent query languages (the query-language problem; Section 2.2.1)

� Rank documents in the query results using secret algorithms (the rank-merging

problem; Section 2.2.2)

� Do not export information about the sources in a standard form (the source-

metadata problem; Section 2.2.3)

Below we visit each of these metasearch problems. The discussion will illustrate

the need for an agreement between search engine vendors so that metasearchers can

work e�ectively.

2.2.1 The Query-Language Problem

A metasearcher submits queries over multiple sources. But the interfaces and capa-

bilities of these sources may vary dramatically. Even the basic query model that the

sources support may vary.

Some search engines (e.g., Glimpse) only support the Boolean retrieval model [Sal89].

In this model, a query is a condition that documents either do or do not satisfy. The

query result is then a set of documents. For example, a query distributed and systems

returns all documents that contain both the words distributed and systems in them.

Alternatively, most commercial search engines also support some variation of the

vector-space retrieval model [Sal89]. In this model, a query is a list of terms, and

documents are assigned a score according to how similar they are to the query. The



2.2. OUR METASEARCH MODEL AND ITS ASSOCIATED PROBLEMS 9

query result is then a rank of documents. For example, a query distributed systems

returns a rank of documents that is typically based on the number of occurrences of

the words distributed and systems in them. 2 A document in the query result might

contain the word distributed but not the word systems, for example, or vice versa,

unlike in the Boolean-model case above.

Even if two sources support a Boolean retrieval model, their query syntax often

di�er. A query asking for documents with the words distributed and systems might

be expressed as \distributed and systems" in one source, and as \+distributed

+systems" in another, for example.

More serious problems appear if di�erent �elds (e.g., abstract) are available for

searching at di�erent sources. For example, a source might support queries like

(abstract "databases") that ask for documents that have the word databases in

their abstract, whereas some other sources might not support the abstract �eld for

querying.

Another complication results from di�erent stemming algorithms or stop-word

lists being implicit in the query model of each source. (Stemming is used to make a

query on systems also retrieve documents on system, for example. Stop words are used

to not process words like the in the queries, for example.) If a user wants documents

about the rock group The Who, knowing about the stop-word behavior of the sources

would allow a metasearcher, for example, to know whether it is possible to disallow

the elimination of stop words from queries at each source.

As a result of all this heterogeneity, a metasearcher would have to translate the

original query to adjust it to each source's syntax. To do this translation, the meta-

searcher needs to know the characteristics of each source. (The work in [CGMP96a,

CGMP96b] illustrates the complexities involved in query translation.) As we will

see in Section 2.3.1, querying multiple sources is much easier if the sources support

some common query language. Even if support for most of this language is optional,

query translation is much simpler if sources reveal what portions of the language they

support.

2These ranks also typically depend on other factors, like the number of documents in the source
that contain the query words, for example.



10 CHAPTER 2. STARTS: A PROTOCOL FOR METASEARCHING

2.2.2 The Rank-Merging Problem

A source that supports the vector-space retrieval model ranks its documents according

to how \similar" the documents and a given query are. Unfortunately, there are many

ways to compute these similarities. To make matters more complicated, the ranking

algorithms are usually proprietary to the search engine vendors, and their details are

not publicly available.

Merging query results from sources that use di�erent and unknown ranking algo-

rithms is hard. (See Chapter 5.) For example, source S1 might report that document

d1 has a score of 0.3 for some query, while source S2 might report that document

d2 has a score of 1,000 for the same query. If we want to merge the results from S1

and S2 into a single document rank, should we rank d1 higher than d2, or vice versa?

(Some search engines are designed so that the top document for a query always has

a score of, say, 1,000.)

It is even hard to merge query results from sources that use the same ranking

algorithm, even if we know this algorithm. The reason is that the algorithm might

rank documents di�erently based on the collection where the document appears. For

example, if a source S1 specializes in computer science, the word databases might

appear in many of its documents. Then, this word will tend to have a low associated

weight in S1 (e.g., if S1 uses the tf�idf formula for computing weights [Sal89]). The

word databases, on the other hand, might have a high associated weight in a source

S2 that is totally unrelated to computer science and contains very few documents

with that word. Consequently, S1 might assign its documents a low score for a query

containing the word databases, while S2 assigns a few documents a high score for

that query. Therefore, it is possible for two very similar documents d1 and d2 to

receive very di�erent scores for a given query, if d1 appears in S1 and d2 appears in

S2. Thus, even if the sources use the same ranking algorithm, a metasearcher still

needs additional information to merge query results in a meaningful way.



2.2. OUR METASEARCH MODEL AND ITS ASSOCIATED PROBLEMS 11

2.2.3 The Source-Metadata Problem

A metasearcher might have thousands of sources available for querying. Some of these

sources might charge for their use. Some of the sources might have long response

times. Therefore, it becomes crucial that the metasearcher just contact sources that

might contain useful documents for a given query. (See Chapters 3 and 4.) The

metasearcher then needs information about each source's contents.

Some sources freely deliver their entire document collection, whereas others do not.

Often, those sources that have for-pay information are of the second type. If a source

exports all of its contents (e.g., many World-Wide Web sites), then it is not as critical

to have it describe its collection to the metasearchers. After all, the metasearchers

can just grab all of the sources' contents and summarize them any way they want.

This is what \crawlers" like AltaVista (http://www.altavista.digital.com) do.

However, for performance reasons, it may still be useful to require that such sources

export a more succinct description of themselves. In contrast, if a source \hides" its

information (e.g., through a search interface), then it is even more important that

the source can describe its contents. Otherwise, if a source does not export any

kind of content summary, it becomes hard for a metasearcher to assess what kind of

information the source covers.

2.2.4 Metasearch Requirements

In summary, a sophisticated metasearcher will need to perform the following tasks in

order to e�ciently query multiple resources:

� Extract the list of sources from the resources periodically (to �nd out what

sources are available for querying) (Section 2.3.3)

� Extract metadata and content summaries from the sources periodically (to

be able to decide what sources are potentially useful for a given query) (Sec-

tion 2.3.3)

Also, given a user query:



12 CHAPTER 2. STARTS: A PROTOCOL FOR METASEARCHING

� Issue the query to one or more sources at one or more resources (Sections 2.3.1

and 2.3.3)

� Get the results from the multiple resources, merge them, and present them to

the user (Section 2.3.2)

2.3 Our Protocol Proposal

In this section we de�ne a protocol proposal that addresses the metasearch require-

ments of Section 2.2.4. This protocol is meant for machine-to-machine communica-

tion: users should not have to write queries using the proposed query language, for

instance. Also, all communication with the sources is sessionless in our protocol, and

the sources are stateless. Finally, we do not deal with any security issues, or with

error reporting in our proposal. The main motivation behind these (and many of the

other) decisions is to keep the protocol simple and easy to implement.

Our protocol does not describe an architecture for metasearching. However, it does

describe the facilities that a source needs to provide in order to help a metasearcher.

The facilities provided by a source can range from simple to sophisticated, and one

of the key challenges in developing our protocol was in deciding the right level of

sophistication. In e�ect, metasearchers often have to search across simple sources as

well as across sophisticated ones. On the one hand, it is important to have some

agreed-upon minimal functionality that is simple enough for all sources to comply

with. On the other hand, it is important to allow the more sophisticated sources

to export their richer features. Therefore, our protocol keeps the requirements to a

minimum, while it provides optional features that sophisticated sources can use if

they wish.

Our protocol mainly deals with what information needs to be exchanged between

sources and metasearchers (e.g., a query, a result set), and not so much with how

that information is formatted (e.g., using Harvest SOIFs 3) or transported (e.g.,

3SOIF objects are typed, ASCII-based encodings for structured objects; see http://-

harvest.transarc.com/afs/transarc.com/public/trg/Harvest/user-manual/.



2.3. OUR PROTOCOL PROPOSAL 13

using HTTP). Actually, what transport to use generated some heated debate during

the STARTS workshop. Consequently, we expect the STARTS information to be

delivered in multiple ways in practice. For concreteness, the STARTS speci�cation

and examples that we give below use SOIFs just to illustrate how our content can

be delivered. However, STARTS includes mechanisms to specify other formats for its

contents [GCGMP96].

2.3.1 Query Language

In this section we describe the basic features of the query language that a source should

support. To cover the functionality o�ered by most commercial search engines, queries

have both a Boolean component: the �lter expression, and a vector-space component:

the ranking expression. Also, queries have other associated properties that further

specify the query results. For example, a query speci�es the maximum number of

documents that should be returned, among other things.

Filter and Ranking Expressions

Queries have a �lter expression (the Boolean component) and a ranking expression

(the vector-space component). The �lter expression speci�es some condition that

must be satis�ed by every document in the query result (e.g., all documents in the

answer must have Ullman as one of the authors). The ranking expression speci�es

words that are desired, and imposes an order over the documents in the query result

(e.g., the documents in the answer will be ranked according to how many times they

contain the words distributed and databases in their body).

Example 1: Consider the following query with �lter expression:

((author "Ullman") and (title "databases"))

and ranking expression:

list((body-of-text "distributed") (body-of-text "databases"))



14 CHAPTER 2. STARTS: A PROTOCOL FOR METASEARCHING

This query returns documents having Ullman as one of the authors and the word

databases in their title. The documents that match the �lter expression are then

ranked according to how well their text matches the words distributed and databases.

In principle, a query need not contain a �lter expression. If this is the case, we

assume that all documents qualify for the answer, and are ranked according to the

ranking expression. Similarly, a query need not contain a ranking expression. If this

is the case, the result of the query is the set of objects that match the (Boolean) �lter

expression. Some search engines only support �lter or ranking expressions, but not

both (e.g., Glimpse only supports �lter expressions). Therefore, we allow sources to

support just one type of expression. In this case, the sources indicate (Section 2.3.3)

what type they support as part of their metadata.

Both the �lter and the ranking expressions may contain multiple terms. The �lter

and ranking expressions combine these terms with operators like \and" and \or"(e.g.,

((author "Ullman") and (title "databases"))). The ranking expressions also

combine terms using the \list" operator, which simply groups together a set of

terms, as in Example 1. Also, the terms of a ranking expression may have a weight

associated with them, indicating their relative importance in the ranking expression.

In de�ning the expressive power of the �lter and ranking expressions we had to

balance the needs of search engine builders and metasearchers. On the one hand,

builders in general want powerful expressions, so that all the features of their engine

can be called upon. On the other hand, metasearchers want simpler �lter and ranking

expressions, because they know that not all search engines support the same advanced

features. The simpler the �lter and ranking expressions are, the more likely it is that

engines will have common features, and the easier it will be to interoperate. Also,

those metasearchers whose main market is Internet searching prefer simple expressions

because most of their customers use simple queries. In contrast, search engine builders

cater to a broader mix of customers. Some of these customers require sophisticated

query capabilities.



2.3. OUR PROTOCOL PROPOSAL 15

Next we de�ne the �lter and ranking expressions more precisely. We start by

de�ning the l-strings, which are the basic building blocks for queries. Then we show

how these strings are adorned with �elds and modi�ers to build atomic terms. Finally,

we describe how to construct complex �lter and ranking expressions.

Atomic Terms

One of the most heavily discussed issues in our workshop was how to support multiple

languages and character sets. Our initial design had not supported queries using

multiple character sets or languages. However, the search engine vendors felt strongly

against this limitation. So, we decided early on in our workshop to include multi-

lingual/character support, but the question was how far to go. For example, did

we want to support a query asking for documents with the Spanish word taco? Did

we also want to handle queries asking for documents whose abstract was in French,

but that also included the English word weekend? Another issue was how to handle

dialects, e.g., how to specify that a document is written, say, in British English vs.

in American English.

During the workshop we also discussed whether we could make the multi-language

support invisible to those who just wanted to submit English queries. That is, we do

not want to specify English explicitly everywhere if no other language is used. The

design we settled on does allow English and ASCII as the defaults, while giving the

query writer substantial power to specify languages and character sets used.

A term in our query language is an l-string modi�ed by an unordered list of

attributes (e.g., (author "Ullman")). To allow queries in languages other than En-

glish, an l-string is either a string (e.g., "Ullman"), or a string quali�ed with its as-

sociated language and, optionally, with its associated country. For example, [en-US

"behavior"] is an l-string, meaning that the string \behavior" represents a word in

American English. The language-country quali�cation follows the format described

in RFC 1766 (http://andrew2.andrew.cmu.edu/rfc/rfc1766.html). (Countries

are optional.) To support multiple character sets, the actual string in an l-string is a

Unicode sequence encoded using UTF-8. A nice property of this encoding is that the

code for a plain English string is the ASCII string itself, unmodi�ed.



16 CHAPTER 2. STARTS: A PROTOCOL FOR METASEARCHING

An attribute is either a �eld or a modi�er. The term (date-last-modified >

"1996-08-01"), for example, has �eld date-last-modified and modi�er >. This

term matches documents that were modi�ed after August 1, 1996.

To make interoperability easier, we decided to de�ne a \recommended" set of

attributes that sources should try to support. This set needed to be large enough

so that users can express their queries. At the same time, the set needed to be

simple enough to not compromise interoperability. The choice of the recommended

attribute set was fodder for heated discussion, especially around what attributes we

should require the sources to support. In e�ect, requiring that sources support some

attributes would make the protocol more expressive, but harder to adhere to by the

sources.

We considered several candidate attribute sets that had already been de�ned

within di�erent standards e�orts. (See Section 7.2.) Unfortunately, none of the

existing attribute sets contained just the attributes that we needed, as determined

from our discussions. Therefore, we decided to pick the GILS 4 attribute set [Chr97],

which in turn inherits all of the Z39.50-1995 Bib-1 use attributes [Org95]. The GILS

set contained most of the attributes that we needed, and we simpli�ed it to include

only those attributes. We also added a few attributes that were not in the GILS set

but that were considered necessary in our discussions.

Below is the \Basic-1" set of attributes (i.e., �elds and modi�ers), which are the

attributes that we recommend that sources support. The attributes not marked as

new are from the GILS attribute set. In [GCGMP96] we explain how to use other

attribute sets for sources covering di�erent domains, for example.

� Fields: A �eld speci�es what portion of the document text is associated with

the term (e.g., the author portion, the title portion, etc.). At most one should

be speci�ed for each term. If no �eld is speci�ed, "Any" is assumed. Those

�elds marked as required must be supported, meaning that the source must

recognize these �elds. However, the source may freely interpret them. The

4The Government Information Locator Service, GILS, is an e�ort to facilitate access to govern-
mental information.



2.3. OUR PROTOCOL PROPOSAL 17

rest of the �elds are optional. (Our �elds correspond to the Z39.50/GILS \use

attributes.")

Field Required? New?

Title Yes No

Author No No

Body-of-text No No

Document-text No Yes

Date/time-last-modified Yes No

Any Yes No

Linkage Yes No

Linkage-type No No

Cross-reference-linkage No No

Languages No No

Free-form-text No Yes

The Document-text �eld provides a way to pass documents to the sources

as part of the queries, which could be useful to do relevance feedback [Sal89].

Relevance feedback allows users to request documents that are similar to a

document that was found useful.

The value of the Linkage �eld of a document is its URL, and it is returned with

the query results so that the document can be retrieved outside of our protocol.

The Linkage-type of a document is its MIME type. The list of the URLs that

are mentioned in the document is reported in its Cross-reference-linkage.

The Free-form-text �eld provides a way to pass to the sources queries that

are not expressed in our query language, adding 
exibility to our proposal. A

search engine vendor asked for this capability so that informed metasearchers

could use the sources' richer native query languages, for example.

� Modi�ers: A modi�er speci�es what values the term represents (e.g., treat

the term as a stem, as its phonetics (soundex), etc.). Zero or more modi�ers



18 CHAPTER 2. STARTS: A PROTOCOL FOR METASEARCHING

can be speci�ed for each term. All the modi�ers below are optional, i.e., the

search engines need not support them. (Our modi�ers correspond to the Z39.50

\relation attributes.")

Modi�er Default New?

<, <=, =, >=, >, != = No

Phonetic No soundex No

Stem No stemming No

Thesaurus No thesaurus expansion Yes

Right-truncation No right truncation No

Left-truncation No left truncation No

Case-sensitive Case insensitive Yes

The <, <=, =, >=, >, != modi�ers only make sense for �elds like \Date/time-

-last-modified," for example.

Example 2: Consider the following �lter expression:

(title stem "databases")

The documents that satisfy this expression have the word databases in their title, or

some other word with the same stem, like database.

Complex Filter Expressions

Our complex �lter expressions are based on a simple subset of the type-101 queries

of the Z39.50-1995 standard. We use operators to build complex �lter expressions

from the terms. As with the attributes, we wanted to choose a set of operators that

would both be easy to support and be su�ciently expressive. The \Basic-1"-type

�lter expressions use the following operators. If a source supports �lter expressions,

it must support all these operators.

� and



2.3. OUR PROTOCOL PROPOSAL 19

� or

� and-not

� prox, specifying two terms, the required distance between them, and whether

the order of the terms matters.

Example 3: Consider two terms t1 and t2 and the following �lter expression:

(t1 prox[3,T] t2)

The documents that match this �lter expression contain t1 followed by t2 with at

most three words in between them. "T" (for \true") indicates that the word order

matters (i.e., that t1 has to appear before t2).

Note that not is not one of our operators, to prevent users from asking for docu-

ments with the sole quali�cation that they not contain the word databases in them,

for example. Such a query would be too expensive to evaluate. Instead, we have the

and-not operator. Thus, all queries always have a \positive" component.

The proximity operator is an interesting example of a compromise that we had

to reach: some search engine vendors found our initial proposal, which allowed for

unidirectional or bidirectional \paragraph" and \sentence" distance, for example, un-

acceptably complicated to implement. Later, we simpli�ed the proximity operator

to only allow for unidirectional word distance. A search engine vendor still thought

that this operator was too complicated, while other participants, especially informa-

tion providers, found it unreasonably limiting. We �nally managed to agree on the

current speci�cation.

Complex Ranking Expressions

We also use operators to build complex ranking expressions from terms. The \Basic-

1"-type ranking expressions use the operators above (\and," \or," \and-not," and

\prox") plus a new operator, \list," which simply groups together a set of terms.

The \list" operator represents the most common way of constructing vector-

space queries: these queries are typically just 
at lists of terms. Our original design



20 CHAPTER 2. STARTS: A PROTOCOL FOR METASEARCHING

did not allow for any other operators in the ranking expressions. However, some

search engine vendors felt that this language was not expressive enough, and asked

that the Boolean-like operators be included. If a source supports ranking expressions,

it must now support all these operators. But again, a source might choose to simply

ignore the Boolean-like operators from ranking expressions, and process a ranking ex-

pression like ("distributed" and "databases") as if it were list("distributed"

"databases").

The Boolean-like operators would most likely be interpreted as \fuzzy-logic" oper-

ators by the search engines in order to rank the documents, as the following example

illustrates.

Example 4: Consider two ranking expressions:

R1 = ("distributed" and "databases")

R2 = list("distributed" "databases")

Consider a source with a document that has a weight (as determined by the local

search engine) of 0.3 for the word distributed and a weight of 0.8 for the word databases.

Then, the search engine might assign the document a score of minf0:3; 0:8g = 0:3

for ranking expression R1 (interpreting the and operator as the minimum function).

The same engine might use a di�erent scoring algorithm for \list" queries with the

same terms, and assign the document a score of, say, 0:5� 0:3 + 0:5� 0:8 = 0:55 for

ranking expression R2.

Thus, by interpreting the Boolean-like operators and the list operator for build-

ing ranking expressions di�erently, sources can provide richer semantics for user

queries.

Each term in a ranking expression may have an associated weight (a number

between 0 and 1), indicating the relative importance of the term in the query.

Example 5: Consider the following ranking expression:

list(("distributed" 0.7) ("databases" 0.3))



2.3. OUR PROTOCOL PROPOSAL 21

The weights in the expression indicate that the search engines should treat the term

"distributed" as more important than the term "databases" when ranking the

documents in the query results.

Further Result Speci�cation

To complete the speci�cation of the query results, our queries include the following

information in addition to a �lter and a ranking expression:

� Drop stop words: whether the source should delete the stop words from the

query or not. A metasearcher knows if it can turn o� the use of stop words at

a source from the source's metadata (Section 2.3.3).

� Default attribute set and language used in the query. This is optional, just

for notational convenience, since queries may include attributes from attribute

sets other than \Basic-1," and terms may correspond to languages other than

English.

� Sources (in the same resource) where to evaluate the query in addition to the

source where the query is submitted (Section 2.2).

� Answer speci�cation:

{ Fields to be returned in the query answer (Default: Title, Linkage)

{ Fields to be used to sort the query results, and whether the order is as-

cending or descending (Default: Score of the documents for the query, in

descending order)

{ Documents to be returned:

� Minimum acceptable document score

� Maximum acceptable number of documents

A complete query is represented as a list of attribute-value pairs, providing the

�lter and ranking expressions, the answer speci�cation, etc. Below is an example of

such a query encoded using Harvest's SOIF. As discussed in Section 2.3, we encode



22 CHAPTER 2. STARTS: A PROTOCOL FOR METASEARCHING

the STARTS information using SOIF here just to illustrate how our query content

could be delivered, but other encodings are possible. We describe the formal syntax

and format for the queries in [GCGMP96].

Example 6: Below is a SOIF object for a query. The number in brackets after

each SOIF attribute (e.g., "48" after the FilterExpression SOIF attribute) is the

number of bytes of the value for that attribute, to facilitate parsing.

@SQuery{

Version{10}: STARTS 1.0

FilterExpression{48}: ((author "Ullman") and

(title stem "databases"))

RankingExpression{61}: list((body-of-text "distributed")

(body-of-text "databases"))

DropStopWords{1}: T

DefaultAttributeSet{7}: basic-1

DefaultLanguage{5}: en-US

AnswerFields{12}: title author

MinDocumentScore{3}: 0.5

MaxNumberDocuments{2}: 10

}

This query speci�es that the sources should eliminate any stop words from the

�lter and ranking expressions before processing them, and that the word databases

in the �lter expression should be stemmed. Then, for example, a document having

the word database in its title will match subexpression (title stem "databases").

The query results should contain the title and author of the documents, in addi-

tion to the linkage (URL) of the documents, which is always returned. Also, only

documents with a score for the ranking expression of at least 0.5 should be in the

answer. Furthermore, only the 10 documents with the top score are to be returned.



2.3. OUR PROTOCOL PROPOSAL 23

2.3.2 Merging of Ranks

There are three types of complications that arise in interpreting query results from

multiple sources. One is that each source may execute a di�erent query, depending on

its local query capabilities. Thus, a source might ignore parts of a query that it does

not support, for example. Another complication is that sources may use di�erent

algorithms to rank the documents in the query results. Furthermore, the sources

do not reveal their ranking algorithms. A third complication is that the ranking

information by itself is insu�cient for merging multiple query results, even if all the

sources execute the same query using the same ranking algorithm. In e�ect, the

actual document ranks might depend on the contents of each source, as described in

Section 2.2.2. We will now discuss how our protocol copes with these issues.

As mentioned above, sources are not required to support all of the features of

the query language of Section 2.3.1. So, a source might decide to ignore certain

parts of a query that it receives, for example. Then, each source returns the query

that it actually processed together with the query results, as the following example

illustrates. Since we do not include any way of reporting errors in our protocol, this

mechanism assists the metasearchers in interpreting the query results.

Example 7: Consider a source that does not support the ranking-expression part of

queries. Consider the query with �lter expression:

((author "Ullman") and (title stem "databases"))

and ranking expression:

list((body-of-text "distributed") (body-of-text "databases"))

If the source simply ignores the ranking expressions, the actual query that the

source processes has �lter expression:

((author "Ullman") and (title stem "databases"))

and an empty ranking expression. This actual query is returned with the query

results.



24 CHAPTER 2. STARTS: A PROTOCOL FOR METASEARCHING

To merge the query results from multiple sources into a single, meaningful rank, a

source should return the following information for each document in the query result:

� The unnormalized score of the document for the query

� The id of the source(s) where the document appears

� Statistics about each query term in the ranking expression (as modi�ed by the

query �elds, if possible):

{ Term-frequency: the number of times that the query term appears in the

document.

{ Term-weight: the weight of the query term in the document, as assigned

by the search engine associated with the source (e.g., the normalized tf.idf

weight [Sal89] for the query term in the document, or whatever other

weighing of terms in documents the search engine might use).

{ Document-frequency: the number of documents in the source that contain

the term. This information is also provided as part of the metadata for

the source.

Also:

� Document-size: the size of the document (in KBytes)

� Document-count: the number of tokens (as determined by the source) in the

document

The results for a query start with a SOIF object of type \SQResults," followed by

a series of SOIF objects of template type \SQRDocument." Each of the latter objects

corresponds to a document in the query result.

Example 8: The result for the query of Example 6 from the Source-1 source may

look like the following.



2.3. OUR PROTOCOL PROPOSAL 25

@SQResults{

Version{10}: STARTS 1.0

Sources{8}: Source-1

ActualFilterExpression{48}: ((author "Ullman") and

(title stem "databases"))

ActualRankingExpression{26}: (body-of-text "databases")

NumDocSOIFs{1}: 1

}

@SQRDocument{

Version{10}: STARTS 1.0

RawScore{4}: 0.82

Sources{8}: Source-1

linkage{47}: http://www-db.stanford.edu/~ullman/pub/dood.ps

title{68}: A Comparison Between Deductive and Object-Oriented

Database Systems

author{18}: Jeffrey D. Ullman

TermStats{89}: (body-of-text "distributed") 10 0.31 190

(body-of-text "databases") 15 0.51 232

DocSize{3}: 248

DocCount{5}: 10213

}

The �rst SOIF object reports properties of the entire query result. For example,

we learn from the value of ActualRankingExpression that Source-1 eliminated the

term (body-of-text "distributed") from the ranking expression. Presumably, the

word distributed is a stop word at Source-1. We also �nd out that there is only one

document in the query result. All of the other documents in Source-1 either do not

satisfy the �lter expression, or have a score lower than 0.5 for the ranking expression.

The second SOIF object corresponds to the only document in the query result.

This document, whose URL is given as the value for the linkage attribute, has a

score of 0.82 for the ranking expression, and satis�es the �lter expression. In e�ect,



26 CHAPTER 2. STARTS: A PROTOCOL FOR METASEARCHING

the word database appears in the document's title (database shares its stem with

databases), and Ullman is one of the authors of the document.

The document SOIF object also contains statistics about the document, which are

crucial for rank merging. For example, we know that the word distributed appears 10

times in the document, and the word databases 15 times. The size of the document

is 248 KBytes, and there are 10,213 words in it.

Using all this information, a metasearcher can then re-rank the documents that

it obtained from the various sources, following its own criteria and without actually

retrieving the documents, as the following example illustrates.

Example 9: Consider the following SOIF object describing the only document in

the result for the query of Example 6 from source Source-2.

@SQRDocument{

Version{10}: STARTS 1.0

RawScore{4}: 0.27

Sources{8}: Source-2

linkage{37}: http://elib.stanford.edu/lagunita.ps

title{73}: Database Research: Achievements and Opportunities

into the 21st. Century

author{48}: Avi Silberschatz, Mike Stonebraker, Jeff Ullman

TermStats{89}: (body-of-text "distributed") 20 0.12 901

(body-of-text "databases") 34 0.15 788

DocSize{3}: 125

DocCount{4}: 9031

}

This document has a lower score than the document from Source-1 of Example 8.

However, the Source-2 document might be a better match for the query than the

Source-1 document, and the lower score could just be an artifact of the ranking

algorithm that the sources use, or be due to the characteristics of the holdings of both



2.3. OUR PROTOCOL PROPOSAL 27

sources. A metasearcher could then simply discard the sources' scores, and compute

a new score for each document based on, say, the number of times that the words in

the ranking expression appear in the documents. Then, such a metasearcher would

rank the Source-2 document higher than the Source-1 document, since the former

document contains the words distributed and databases 20 and 34 times, respectively,

whereas the latter document only contains these words 10 and 15 times, respectively.

Example 9 shows one simple-minded way in which a metasearcher can re-rank

documents from multiple query results. More sophisticated schemes could also use

the document frequencies of the query terms, for example. However, there are still

unresolved issues when merging document ranks from multiple sources. For example,

one possibility is to rank documents as if they all belonged in a single, large document

source. Alternatively, we could use information about the originating sources to design

the �nal document rank. The goal of our protocol is not to resolve these issues, but

simply to provide the \raw material" so that metasearchers can experiment with a

variety of formulas and approaches for combining multiple query results.

From our discussions with the search engine vendors, it became clear that it would

be hard for some of them to provide the statistics above with their query results. The

reason is that by the time the results are returned to the user, these statistics, which

are typically used to compute the document scores, are lost. Since returning just the

document scores with the query results is not enough for rank merging, we are asking

sources to at least provide the query results for a given sample document collection

and a given set of queries as part of their metadata. This way, the metasearchers

would treat each source as a \black box" that receives queries and produces document

ranks. However, the metasearchers would try to approximate how each source ranks

documents using their knowledge of what is in the sample collection. So, if the

sample queries are carefully designed, the metasearchers might be able to draw some

conclusions on how to calibrate the query results in order to produce a single document

rank.



28 CHAPTER 2. STARTS: A PROTOCOL FOR METASEARCHING

2.3.3 Source Metadata

To select the right sources for a query and to query them we need information about

the sources' contents and capabilities. In this section we describe two pieces of meta-

data that every source is required to export: a list of metadata attribute-value pairs,

describing properties of the source, and a content summary of the source. Each piece

is a separate object, to allow metasearchers to retrieve just the metadata that they

need. For simplicity, each of these two pieces is retrieved as a single \blob." We do

not ask sources to support more sophisticated interfaces, like a search interface, to

export this data.

In this section we also describe the information that a resource exports. This

information identi�es the metadata for the sources in the resource.

Source Metadata Attributes

Each source exports information about itself by giving values to the metadata at-

tributes below. A metasearcher can use this information to rewrite the queries that

it sends to each source, since each source may support di�erent parts of the query

language of Section 2.3.1, for example.

As with the attribute sets for documents, several attribute sets have been de�ned

to describe sources. Unfortunately, none of these sets contain exactly the attributes

that we need, as determined from our discussions. Therefore, we de�ned the \MBasic-

1" set of metadata attributes, borrowing from two well known attribute sets, the

Z39.50-1995 Exp-1 and the GILS attribute sets. We added a few attributes, marked

as new below, that are not in these two attribute sets, and that the participating

organizations concluded were necessary. Some attributes are marked as required, and

the sources must support them.



2.3. OUR PROTOCOL PROPOSAL 29

Field Required? New?

FieldsSupported Yes Yes

ModifiersSupported Yes Yes

FieldModifierCombinations Yes Yes

QueryPartsSupported No Yes

ScoreRange Yes Yes

RankingAlgorithmID Yes Yes

TokenizerIDList No Yes

SampleDatabaseResults Yes Yes

StopWordList Yes Yes

TurnOffStopWords Yes Yes

SourceLanguages No No

SourceName No No

Linkage Yes No

ContentSummaryLinkage Yes Yes

DateChanged No No

DateExpires No No

Abstract No No

AccessConstraints No No

Contact No No

The FieldsSupported attribute for a source lists the optional �elds (Section 2.3.1)

that are supported at the source for querying, in addition to the required �elds like

Linkage and Title. Also, each �eld is optionally accompanied by a list of the lan-

guages that are used in that �eld in the source. Required �elds can also be listed here

with their corresponding language list.

Similarly, the ModifiersSupported attribute lists the modi�ers (Section 2.3.1)

that are supported at a source. Each modi�er is optionally accompanied by a list of

the languages for which it is supported at the source, since modi�ers like Stem are

language dependent.

To keep the metadata objects simple, we do not require sources to indicate what



30 CHAPTER 2. STARTS: A PROTOCOL FOR METASEARCHING

supported �elds are actually searchable, as opposed to being only retrievable. For

example, a source might report the Language of each document in the query results,

although it might not accept queries involving that �eld. However, we do ask sources

to report what combinations of �elds and modi�ers are legal at the source in the

FieldModifierCombinations attribute. For example, asking that an author name

be stemmedmight be illegal at a source, even if the Author �eld and the Stemmodi�er

are supported in other contexts at the source.

The QueryPartsSupported attribute speci�es whether the source supports rank-

ing expressions only, �lter expressions only, or both.

The ScoreRange attribute lists the minimumand maximumscore that a document

can get for a query at the source (including �1 and +1); we use this information

for merging ranks, to interpret the scores that come from the sources.

The RankingAlgorithmID attribute contains some form to identify the ranking

algorithm the source uses. Even when we do not know the actual algorithm used it

is useful to know that two sources use the same algorithm (e.g., Acme-1), for merging

ranks.

The TokenizerIDList attribute has values like (Acme-1 en-US) (Acme-2 es),

for example, meaning that the source uses tokenizer Acme-1 to extract the indexable

tokens from strings in American English, and tokenizer Acme-2 for strings in Spanish.

The inclusion of this metadata attribute was controversial: our original proposal

required that sources export a list of the characters that they used as token separators

(e.g., \ ,;.", meaning that a blank space, a comma, etc., are used to delimit tokens).

Obviously this information would not be su�cient to completely specify the tokens

at each source, but it could at least help metasearchers decide if a query on Z39.50

should include this term as is, or should instead contain two terms, namely Z39 and

50, for example, as would be the case if \." were a separator. Alternatively, it was

proposed that sources export some regular expression describing what their tokens

looked like. Both of these proposals were not general enough to describe tokens for

arbitrary languages and character sets, and were deemed too complicated to support.

Therefore, we settled on the current proposal, which simply requires that sources

name their tokenizers. This way, a metasearcher can learn how a particular tokenizer



2.3. OUR PROTOCOL PROPOSAL 31

works by submitting a query to a source that uses it, and examining the actual

query that the source processes, as speci�ed in the query results (Section 2.3.2). A

metasearcher would need to do this not on a source-by-source basis, but only once

per tokenizer.

The SampleDatabaseResults attribute provides the URL to get the query results

for a sample document collection (Section 2.3.2).

The Linkage attribute reports the URL where the source should be queried, while

the ContentSummaryLinkage attribute gives the URL of the content summary of the

source.

Example 10: Consider the following SOIF object with some of the metadata at-

tributes for a source Source-1:

@SMetaAttributes{

Version{10}: STARTS 1.0

SourceID{8}: Source-1

FieldsSupported{17}: [basic-1 author]

ModifiersSupported{19}: {basic-1 phonetics}

FieldModifierCombinations{39}: ([basic-1 author] {basic-1 phonetics})

QueryPartsSupported{2}: RF

ScoreRange{7}: 0.0 1.0

RankingAlgorithmID{6}: Acme-1

...

DefaultMetaAttributeSet{8}: mbasic-1

source-languages{8}: en-US es

source-name{17}: Stanford DB Group

linkage{26}: http://www-db.stanford.edu/cgi-bin/query

content-summary-linkage{38}: ftp://www-db.stanford.edu/cont_sum.txt

date-changed{9}: 1996-03-31}

This source supports the Author �eld for searching, in addition to the required

�elds, and the Phoneticsmodi�er. It also accepts queries with both �lter and rank-

ing expressions, and the document scores it produces range from 0 to 1. Source-1



32 CHAPTER 2. STARTS: A PROTOCOL FOR METASEARCHING

contains documents in American English (en-US) and Spanish (es). Queries should

be submitted to this source at http://www-db.stanford.edu/cgi-bin/query, and

its content summary is available at ftp://www-db.stanford.edu/cont sum.txt.

Source Content Summary

Content summaries help the metasearchers in choosing the most promising sources

for a given query. These summaries could be manually generated, like the ones asso-

ciated with the Abstract metadata attribute. However, this approach usually yields

outdated and incomplete summaries, and is a burden on the source administrators.

On the other end of the spectrum, a source summary could simply be the entire

contents of the source. This approach is similar to the one taken by several World-

Wide Web \crawlers."

In addition to its Abstract, we require that each source export partial data about

its contents. This data is automatically generated, is orders of magnitude smaller than

the original contents, and has proven useful in distinguishing the more useful from

the less useful sources for a given query (Chapters 3 and 4). Our content summaries

include:

� List of words that appear in the source. This list is preceded by information

indicating whether:

{ The words listed are stemmed or not.

{ The words listed include stop words or not.

{ The words listed are case sensitive or not.

{ The words listed are accompanied by the �eld corresponding to where in

the documents they occurred or not (e.g., (title "algorithm")).

If possible, the words listed should not be stemmed, and should include the stop

words. Also, the words should be case sensitive, and be accompanied by their

corresponding �eld information, as shown above.

In addition, the words might be quali�ed with their corresponding language

(e.g., [en-US "behavior"]).



2.3. OUR PROTOCOL PROPOSAL 33

� Statistics for each word listed, including at least one of the following:

{ Total number of postings for each word (i.e., the number of times that the

word appears in the source)

{ Document frequency for each word (i.e., the number of documents that

contain the word)

� Total number of documents in source

Example 11: Consider the following SOIF object with part of the content summary

for Source-1 from Example 10:

@SContentSummary{

Version{10}: STARTS 1.0

Stemming{1}: F

StopWords{1}: F

CaseSensitive{1}: F

Fields{1}: T

NumDocs{3}: 892

Field{5}: title

Language{5}: en-US

TermDocFreq{11023}: "algorithm" 100 53

"analysis" 50 23

...

Field{5}: title

Language{2}: es

TermDocFreq{1211}: "algoritmo" 23 11

"datos" 59 12

...

}



34 CHAPTER 2. STARTS: A PROTOCOL FOR METASEARCHING

This content summary reports statistics on unstemmed, case insensitive words

that are quali�ed with �eld information. For example, the English word algorithm

appears in the title of 53 documents, while the Spanish word datos appears in the

title of 12 documents in Source-1. The summary also tells us that there are 892

documents in the source. A metasearcher can use this information to decide whether

a given query is likely to have good matches in Source-1, as we will see in Chapters 3

and 4.

Resource De�nition

So far, we have focused on sources. As discussed in Section 2.2, our model allows

several sources to be grouped together as a single resource (e.g., Knight-Ridder's

Dialog information service). Each resource exports contact information about the

sources that it contains. More speci�cally, a resource simply exports its list of sources,

together with the URLs where the metadata attributes for the sources can be accessed

and the format of this data. Using this information, a metasearcher learns how and

where to contact each of the sources in the resource.

Example 12: Consider the following SOIF object with contact information for a

resource. This object reports that there are two sources available for querying at

the resource, Source-1 and Source-2, and also gives the URLs where to obtain their

corresponding metadata-attribute SOIF objects.

@SResource{

Version{10}: STARTS 1.0

SourceList{83}: Source-1 ftp://www.stanford.edu/source_1

Source-2 ftp://www.stanford.edu/source_2

}



2.4. CONCLUSION 35

2.4 Conclusion

Search engines for text sources do not allow for easy interoperability among them,

making it hard to build metasearchers. We believe that the STARTS protocol provides

simple but fundamental facilities for searching and resource discovery across Internet

resources. If implemented, STARTS can signi�cantly streamline the construction of

metasearchers, as well as enhance the functionality they can o�er. We also think that

our discussion of issues and \tensions" emerging from our STARTS experience can

provide useful lessons for anyone dealing with Internet data access.



Chapter 3

GlOSS: Boolean Source Discovery

The dramatic growth of the Internet over the past few years has created a new

problem: �nding the right text databases (sources or collections) to evaluate a given

query. There are thousands of sources available to the users on the Internet, and it is

practically impossible for a metasearcher to query all of them when processing a user

query: not only would such an exhaustive search take a long time to complete, but it

could also be expensive, since some of the text databases on the Internet may charge

for their use. Consequently, metasearchers need a way to narrow their searches to

a few useful text databases. This chapter presents a framework for (and analyzes

a solution to) this problem, which we call the text-source discovery problem. Our

solution assumes that sources export summaries of their contents as speci�ed by the

STARTS protocol described in the previous chapter.

Many tools have recently appeared on the Internet to help users (in particular,

metasearchers) select the (text) databases that might be most useful for their queries

(see Section 7.3). However, many of these tools essentially keep a global index of the

available documents. This approach does not scale well with the growing number of

sources and documents. Furthermore, this approach is problematic for commercial

sources that are not willing to export their contents for indexing. Alternatively,

many other tools index only a small part of each available document (e.g., its title).

This approach fails to identify many useful sources because a signi�cant part of each

document is simply discarded. Similarly, other tools just keep succinct summaries of

36



3.1. TEXT-SOURCE DISCOVERY FOR BOOLEAN SOURCES 37

the contents of each database. These summaries are sometimes manually written, are

often out of date, and fail to capture the whole content of the databases.

Our solution to the text-source discovery problem is to build a service that can

suggest potentially good databases to search. Then, a metasearcher will present

a query to our service (dubbed GlOSS, for Glossary-Of-Servers Server) to select a

set of promising databases to search. GlOSS keeps only partial information on the

contents of each database, so it scales with the growing number of available databases.

However, this information covers the full-text content of the documents, so that the

useful sources are identi�ed. This chapter describes GlOSS for sources supporting

the Boolean model of document retrieval [GGMT94a, GGMT94b, TGL+97], while

Chapter 4 describes gGlOSS, a generalized version of GlOSS that works for sources

supporting the vector-space model of document retrieval [GGM95a].

3.1 Text-Source Discovery for Boolean Sources

GlOSS gives a hint of what databases might be useful for the user's query, based

on word-frequency information for each database. This information indicates, for

each database and each word in the database vocabulary, how many documents at

that database actually contain the word. For example, a collection of computer

science technical reports could indicate that the word Knuth occurs in 180 documents,

the word computer in 25,548 documents, and so on. This information is orders of

magnitude smaller than a full index since for each word we only need to keep its

frequency, as opposed to the identities of the documents that contain it.

Example 13: Consider three databases, A, B, and C, and suppose that GlOSS

has collected the statistics of Figure 3.1. If GlOSS receives a query q=retrieval ^

discovery (this query searches for documents that contain both words, retrieval and

discovery), GlOSS has to estimate the number of matching documents in each of the

three databases. Figure 3.1 shows that database C does not contain any documents

with the word discovery, and so, there cannot be any documents in C matching query

q. For the other two databases, GlOSS has to \guess" what the number of documents



38 CHAPTER 3. GLOSS: BOOLEAN SOURCE DISCOVERY

matching query q is. There are di�erent ways in which this can be done. An estimator

for GlOSS uses the GlOSS information to make this guess. One of the estimators for

GlOSS that we study in this chapter, Ind, estimates the result size of the given query

in each of the databases in the following way. Database A contains 100 documents,

40 of which contain the word retrieval. Therefore, the probability that a document

in A contains the word retrieval is 40
100

. Similarly, the probability that a document

in A contains the word discovery is 5
100

. Under the assumption that words appear

independently in documents, the probability that a document in database A has both

the words retrieval and discovery is 40
100�

5
100. Consequently, we can estimate the result

size of query q in database A as Goodness(q;A) = 40
100

� 5
100

� 100 = 2 documents 1.

Similarly,Goodness(q;B) = 500
1000

� 40
1000

�1000 = 20, and Goodness(q; C) = 10
200
� 0

200
�

200 = 0.

The Ind estimator chooses those databases with the highest estimates as the

databases where to direct the given query. So, Ind will return fBg as the answer

to q (see Figure 3.2). This may or may not be a \correct" answer, depending on

di�erent factors. Firstly, it is possible that some of the result-size estimates given by

Ind are wrong. For example, it could be the case that database B did not contain

any matching document for q, while Ind predicted there would be 20 such documents

in B. Furthermore, if database A did contain matching documents, then Ind would

fail to pick any database with matching documents (since its answer was fBg).

Secondly, even if the estimates given by Ind are accurate, the correctness of the

answer produced depends on the user's semantics for the query. Assume in what

follows that the result-size estimates given above are correct (i.e., there actually are

two documents matching query q in database A, 20 in database B, and none in

database C). Given a query q and a set of databases, the user may be interested in

one out of (at least) two di�erent sets of databases over which to evaluate query q:

� Matching, the set of all of the databases containing matching documents for the

query. For the sample query, this set is fA, Bg, whereas Ind produced fBg as its

answer. Therefore, if the semantics intended by the query submitter are \recall

1We will discuss other ways of determining how good a database is for a query in Section 3.4.3.



3.1. TEXT-SOURCE DISCOVERY FOR BOOLEAN SOURCES 39

Database A B C
Number of documents 100 1000 200
Number of documents
with the word retrieval 40 500 10
Number of documents
with the word discovery 5 40 0

Figure 3.1: A portion of the database frequency information that GlOSS keeps for
three databases.

oriented," in the sense that all of the databases inMatching should be searched,

then Ind's answer is not correct. Such a user is interested in getting exhaustive

answers to the queries. (Section 3.6.2 presents the Bin estimator, aimed at

addressing these semantics.) If, on the other hand, the intended semantics are

\precision oriented," in the sense that only databases in Matching should be

searched, then Ind's answer is correct. In this case, the user is in \sampling"

mode, and simply wants to obtain somematching documents, without searching

useless databases.

� Best, the set of all of the databases containing more matching documents than

any other database. Searching these databases yields the highest payo� (i.e.,

the largest number of documents). For the sample query, this set is fBg, which

is also the answer produced by Ind. Again, users might be interested in empha-

sizing \precision" or \recall," in the sense described for the Matching case.

To evaluate the set of databases that GlOSS returns for a given query, we present a

framework based on the precision and recall metrics of information-retrieval theory. In

that theory, for a given query q and a given set S of relevant documents for q, precision

is the fraction of documents in the answer to q that are in S, and recall is the fraction

of S in the answer to q. We borrow these notions to de�ne metrics for the text-source

discovery problem: for a given query q and a given set of \relevant databases" S, P is

the fraction of databases in the answer to q that are in S, and R is the fraction of S in

the answer to q. We further extend our framework by o�ering di�erent de�nitions for



40 CHAPTER 3. GLOSS: BOOLEAN SOURCE DISCOVERY

A B C

retrieval and discovery

with the Ind estimator

Database Database Database

documentsdocuments

GlOSS

2 matching 20 matching no matching
documents

Figure 3.2: The Ind estimator for GlOSS chooses the most promising databases for a
given query. In the example, database B, which is actually the database containing
the highest number of matching documents, is chosen.

a \relevant database." We have performed experiments using query traces from the

FOLIO library information-retrieval system at Stanford University, and involving six

databases available through FOLIO. As we will see, the results obtained for GlOSS

and several estimators are very promising. In Section 4.7 we also report experiments

involving 500 text sources. Even though GlOSS keeps a small amount of information

about the contents of the available databases, this information proved to be su�cient

to produce very useful hints on where to search.

Another advantage of GlOSS is that its frequency information can be updated

mechanically. Other approaches (see Section 7.3) require human-generated summaries

of the contents of a database, and are prone to errors or very out-of-date information.

Also, GlOSS's storage requirements are low: a rough estimate suggested that 22.29

MBytes were enough to keep all of the data needed by GlOSS for the six databases

we studied, or only 2:15% of the estimated size of a full index of the six databases.

Therefore, it is straightforward to replicate the service at many sites. Thus, a user may

be able to consult GlOSS at the local machine or cluster, and immediately determine

the candidate databases for a given query.



3.2. GLOSS: GLOSSARY-OF-SERVERS SERVER 41

Of course, GlOSS is not the only solution to the text-source discovery problem,

and in practice we may wish to combine it with other complementary strategies.

These strategies are described in Section 7.3. Incidentally we note that, to the best of

our knowledge, experimental evaluations of these other strategies for the text-source

discovery problem are rare: in most cases, strategies are presented with no statistical

evidence as to how good they are at locating sites with documents of interest for

actual user queries. Thus, we view our experimental methodology and results (even

though they still have limitations) as an important contribution to this emerging

research area.

Section 3.2 introduces GlOSS and the concept of an estimator. In particular,

Section 3.2.4 describes Ind, the �rst estimator for GlOSS that we will evaluate in

this chapter. Section 3.3 de�nes our �rst evaluation metrics, based on the precision

and recall parameters [SM83]. Section 3.4 describes the experiments performed to

assess the e�ectiveness of GlOSS. Section 3.4.3 identi�es three di�erent \right" sets

of databases where users might want to evaluate their queries. Section 3.5 reports

the experimental results, including experiments on two query traces to assess how

dependent our results are on a speci�c query trace (Section 3.5.4). Section 3.6.1

introduces variants to Ind and to our evaluation metrics. Section 3.6.2 presents Min

and Bin, two new estimators for GlOSS. Finally, Section 3.7 estimates GlOSS's

storage requirements, using the sources in our e�ectiveness experiments.

3.2 GlOSS: Glossary-Of-Servers Server

Consider a query q (permissible queries are de�ned in Section 3.2.1) that we want

to evaluate over a set of databases DB. GlOSS selects a subset of DB consisting of

\good candidate" databases for actually submitting q. To make this selection, GlOSS

uses an estimator (Section 3.2.3), that assesses how \good" each database in DB is

with respect to the given query, based on the word-frequency information on each

database (Section 3.2.2).



42 CHAPTER 3. GLOSS: BOOLEAN SOURCE DISCOVERY

3.2.1 Query Representation

In this chapter, we will only consider Boolean \and" queries, that is, queries that

consist of positive atomic subqueries connected by the Boolean \and" operator (de-

noted as \^" in what follows). (We consider other kinds of queries in Chapter 4.) An

atomic subquery is a keyword �eld-designation pair. An example of a query is:

author Knuth ^ subject computer

This query has two atomic subqueries: author Knuth and subject computer. In author

Knuth, author is the �eld designation, and Knuth the corresponding keyword 2. Al-

though we restrict our study to \and" queries, we can extend our approach to include

\or" queries in a variety of di�erent ways. For example, in Section 3.7.2 we analyze

a limited form of \or" queries, showing how GlOSS can handle this type of queries.

3.2.2 Database Word-Frequency Information

GlOSS keeps the following information about every database dbi:

� jdbij, the total number of documents in database dbi, and

� fij, the number of documents in dbi that contain tj, for all keyword �eld-

designation pairs tj. Note that GlOSS does not have available the actual \in-

verted lists" corresponding to each keyword-�eld pair and each database, but

just the length of these inverted lists.

If fij = 0, GlOSS does not need to store this explicitly, of course. Therefore, if

GlOSS �nds no information about fij, then fij will be assumed to be 0.

A real implementation of GlOSS requires that each database cooperate and periodi-

cally export these frequencies to the GlOSS server following some prede�ned protocol,

like the STARTS protocol of Chapter 2.

2Uniform �eld designators for all the databases we considered (see Section 3.4.1) were available
for our experiments. However, GlOSS does not rely completely on this, and could be adapted to the
case where the �eld designators are not uniform across the databases, for example.



3.2. GLOSS: GLOSSARY-OF-SERVERS SERVER 43

3.2.3 Estimators

Given the frequencies and sizes for a set of databases DB, GlOSS uses an estimator

EST to select the set of databases to which to submit the given query. An estimator

consists of a function EstimateEST that estimates the result size of a query in each of

the databases, and a \matching" function (the max function below) that uses these es-

timates to select the set of databases (ChosenEST below) to which to submit the query.

Once EstimateEST (q; db) has been de�ned, we can determine ChosenEST (q;DB) in

the following way:

ChosenEST (q;DB) = fdb 2 DBjEstimateEST (q; db) > 0 ^

EstimateEST (q; db) = max
db02DB

EstimateEST (q; db
0)g (3.1)

Equation 3.1 may seem targeted to identifying the databases containing the highest

number of matching documents. However, Section 3.6.2 shows how we can de�ne

EstimateEST (q; db) so that ChosenEST (q; db) becomes the set of all of the databases

potentially containing matching documents, when we present the Bin estimator. In-

stances of EstimateEST are given in Sections 3.2.4 and 3.6.2, while a di�erent \match-

ing" function is used in Section 3.6.1.

3.2.4 The Ind Estimator

This section describes Ind, the estimator that we will use for most of our experi-

ments. Ind (for \independence") is an estimator built upon the (possibly unrealistic)

assumption that keywords appear in the di�erent documents of a database follow-

ing independent and uniform probability distributions. Under this assumption, given

a database dbi, any n keyword �eld-designation pairs t1; : : : ; tn, and any document

d 2 dbi, the probability that d contains all of t1; : : : ; tn is:

fi1
jdbij

� : : :�
fin
jdbij



44 CHAPTER 3. GLOSS: BOOLEAN SOURCE DISCOVERY

INSPEC PSYCINFO
Number of documents 1,416,823 323,952
Number of documents with author Knuth 13 0
Number of documents with title computer 24,086 2704

Figure 3.3: Information Ind needs for DB = fINSPEC, PSYCINFOg and q= author
Knuth ^ title computer.

So, according to Ind, the estimated number of documents in dbi that will satisfy the

query t1 ^ : : : ^ tn is [SFV83]:

EstimateInd( t1 ^ : : : ^ tn; dbi) =

Qn
j=1 fij

jdbijn�1
(3.2)

The ChosenInd set is then computed with Equation 3.1. Thus, Ind chooses those

databases with the highest estimates (as given by EstimateInd).

To illustrate these de�nitions, let DB =fINSPEC, PSYCINFOg (INSPEC and

PSYCINFO are databases that we will use in our experiments, see Section 3.4). Also,

let:

q = author Knuth ^ title computer

Figure 3.3 shows the statistics available to Ind. From this, Ind computes:

EstimateInd(q; INSPEC) =
13 � 24; 086

1; 416; 823
' 0:22

Incidentally, the actual result size of the query q in INSPEC, Goodness(q; INSPEC),

is one document.

Since Knuth is not an author in the PSYCINFO database, and due to the Boolean

semantics of the query representation, the result size of query q in the PSYCINFO

database must be zero. This agrees with what Equation 3.2 predicts: EstimateInd(q;

PSYCINFO) = 0�2704
323;952 = 0. This holds in general for Boolean \and" queries: if fij = 0

for some 1 � j � n, then

EstimateInd( t1 ^ : : : ^ tn; dbi) = Goodness( t1 ^ : : : ^ tn; dbi) = 0



3.3. EVALUATION PARAMETERS 45

As we have seen, when all frequencies are non-zero, EstimateInd can di�er from

Goodness. Section 3.5.1 analyzes how well EstimateInd approximates Goodness.

To continue with our example, since DB =fINSPEC, PSYCINFOg, and INSPEC

is the only database with a non-zero result-size estimate, as given by EstimateInd , it

follows that ChosenInd(q;DB) = fINSPECg. So, Ind chooses the only database in

the pair that might contain some matching document for q. In fact, since Goodness(q;

INSPEC) = 1, Ind succeeds in selecting the only database that actually contains a

document matching query q.

3.3 Evaluation Parameters

Let DB be a set of databases and q a query. In order to evaluate an estimator

EST, we need to compare its prediction against what actually is Right(q;DB), the

\right subset" of DB to query. There are several notions of what the right subset

means, depending on the semantics the query submitter has in mind. Section 3.4.3

examines some of these options. For example, Right(q;DB) can be de�ned as the

set of all the databases in DB that contain documents that match query q. Once

we have de�ned the Right set for a query q and a database set DB, we evaluate how

well ChosenEST (q;DB) approximates Right(q;DB). (In general, we will drop the

parameters of functions when this will not lead to confusion. For example, we refer

to Right(q;DB) as Right, whenever q and DB are clear from the context.)

To evaluate ChosenEST , we adapt the well-known precision and recall parameters

from information-retrieval theory [SM83] to the text-source discovery framework. If

we regard Right as the set of \items" (databases in this context) that are relevant to

a given query q, and ChosenEST as the set of items that is actually retrieved, we can

de�ne the following functions PEST
Right and REST

Right , based upon the precision and recall

parameters:

PEST
Right (q;DB) =

8><
>:

jChosenEST (q;DB)\Right(q;DB)j

jChosenEST (q;DB)j
if jChosenEST (q;DB)j > 0

1 otherwise
(3.3)



46 CHAPTER 3. GLOSS: BOOLEAN SOURCE DISCOVERY

REST
Right(q;DB) =

8><
>:

jChosenEST (q;DB)\Right(q;DB)j

jRight(q;DB)j
if jRight(q;DB)j > 0

1 otherwise
(3.4)

Intuitively, P is the fraction of selected databases that are Right ones, and R is

the fraction of the Right databases that are selected. For example, suppose that the

set of databases is DB = fA;B;Cg, and that for a given query q, Right(q;DB) is

de�ned to be fA;Bg. (This could be the case if only A and B contained documents

matching query q, as in Example 3.1.) Furthermore, if ChosenEST (q;DB) = fBg,

then PEST
Right (q;DB) = 1, since the only chosen database, B, is in the Right set. On

the other hand, REST
Right (q;DB) = 0:5, since only half of the databases in Right are

included in ChosenEST .

Note that PEST
Right (q;DB) = 1 whenever ChosenEST = ;, to capture the fact that

no database in ChosenEST is not in Right. Similarly, REST
Right (q;DB) = 1 if Right = ;,

since all of the Right databases are included in ChosenEST .

Di�erent users will be interested in di�erent semantics for the queries. One way

to de�ne di�erent semantics is through the de�nition of Right (see Section 3.4.3).

Even for a �xed Right set of databases, some users may be interested in emphasizing

\precision" (databases not in Right should be avoided, even if this implies missing

some of the \right" databases), while some others may want to emphasize \recall"

(at least all of the databases in Right should be included in the answer to query q).

Therefore, high values of PEST
Right should be the target in the former case, and high

values of REST
Right in the latter.

In the remainder of this chapter, we evaluate di�erent estimators in terms of the

average value, over a set of user queries, of the P and R parameters de�ned above,

for di�erent Right sets of databases. In Section 3.7 we introduce alternative metrics

for our experiments, and show their relationship with the P and R metrics above.

3.4 Experimental Framework

To evaluate the performance of di�erent GlOSS estimators according to the P and

R parameters of Section 3.3, we performed experiments using query traces from the



3.4. EXPERIMENTAL FRAMEWORK 47

Database Number of documents Area
INSPEC 1,416,823 Physics, Elect. Eng., Computer Sc.
COMPENDEX 1,086,289 Engineering
ABI 454,251 Business Periodical Literature
GEOREF 1,748,996 Geology and Geophysics
ERIC 803,022 Educational Materials
PSYCINFO 323,952 Psychology

Figure 3.4: Summary of the characteristics of the six databases considered.

FOLIO library information-retrieval system at Stanford University.

3.4.1 Databases and the INSPEC Query Trace

Stanford University provides on-campus access to its information-retrieval system

FOLIO. FOLIO gives access to several databases. Figure 3.4 summarizes some char-

acteristics of the six databases we chose for our experiments. Six is a relatively small

number, given our interest in exploring hundreds of databases. However, we were

limited to a small number of databases by their accessibility and by the high cost

of our experiments. Thus, our results will have to be taken with caution, indicative

of the potential bene�ts of this type of estimators. Section 4.7 shows experimental

results for GlOSS that involve 500 text sources.

A trace of all user commands for the INSPEC database was collected from 4/12

to 4/25 in 1993. This set of commands contained 8392 queries. As discussed in

Section 3.2.1, we only considered correctly formed \and" queries. Also, we did not

consider the so-called \phrase" queries (e.g., titlephrase knowledge bases). The �nal

set of queries, TRACEINSPEC , has 6897 queries, or 82.19% of the original set.

3.4.2 Constructing the Database Frequency Information

To perform our experiments, we evaluated each of the TRACEINSPEC queries in the

six databases described in Figure 3.4. This is the data we need to build the di�erent

Right sets (see Section 3.4.3) for each of the queries.



48 CHAPTER 3. GLOSS: BOOLEAN SOURCE DISCOVERY

Also, to build the database word-frequency information needed by GlOSS (Sec-

tion 3.2.2) we evaluated, for each query of the form t1^: : :^tn, the n queries t1; : : : ; tn

in each of the six databases. Note that the result size of the execution of tj in database

dbi is equal to fij as de�ned in Section 3.2. This is exactly the information an esti-

mator EST needs to de�ne ChosenEST , for each query in TRACEINSPEC
3. It should

be noted that this is just the way we gathered the data in order to perform our ex-

periments. An actual implementation of such a system requires that each database

export the number of postings for each word to GlOSS.

3.4.3 Di�erent \Right" Sets of Databases

Section 3.3 introduced the notion of the Right set of databases for a given query.

Di�erent de�nitions for the Right set determine di�erent instantiations of the P and

R parameters de�ned by Equations 3.3 and 3.4. To illustrate the issues involved in

determining Right, consider the following example:

Example 14: Figure 3.5 shows three databases: A, B, and C. Consider a query q

issued by a user. Each database produces a set of matching documents as the answer

to q. Figure 3.5 shows that database A gives document 4 as the answer to q, database

B, documents 5, 6, and 7, and database C, documents 8 and 9. Also, each database

contains a set of documents that are relevant to the user that issued query q, that

is, are actually of interest to the user. These documents may or may not match the

answer to q. Thus, database A has three relevant documents: documents 1, 2, and 3,

database B has one relevant document: document 5, and database C has two relevant

documents: documents 8 and 9. Furthermore, assume that the user is interested in

evaluating the query in one database only. The question is how to de�ne the Right

set given this scenario. There are three alternatives:

� Right = fAg, since A is the database with the highest number of documents

(three) relevant to the user's information need. However, the answer produced

3In fact, we are not retrieving all of the word frequencies, but only those that are needed for the
queries in TRACEINSPEC .



3.4. EXPERIMENTAL FRAMEWORK 49

by database A when presented with query q consists of document 4 only, which

is not a relevant document. Therefore, the user would not bene�t from the

fact that A contains the highest number of relevant documents among the three

available databases, making this de�nition for Right not very useful.

� Right = fCg, since C is the database that produces the highest number of

relevant documents in the answer to query q. This is an interesting de�nition.

However, we believe that it is unreasonable to expect a service like GlOSS to

guess this type of Right set of sites. Since the information kept by GlOSS about

each database is necessarily much less detailed than that kept by the search

engine at each database, it would be very hard for GlOSS to accurately guess

the number of relevant documents in the answer to a query given by a database.

� Right = fBg, since B is the database that produces the largest number of

matching documents for q. Presumably, if the individual databases retrieve a

reasonable approximation of the set of documents relevant to the given query,

the Right database according to this de�nition would yield the highest number

of useful documents. Also, the semantics of this de�nition are easily understood

by the users, since they do not depend on relevance judgments, for example.

In our �rst two de�nitions of the Right set, we will take the third approach illus-

trated in the example. That is, the goodness of a database db with respect to a query

q will be determined by the number of documents that db returns when presented

with q (i.e., the number of documents matching q in db). Our �rst de�nition for

Right(q;DB) is Matching(q;DB), the set of all databases in DB containing at least

one document that matches query q. More formally,

Right(q;DB) = Matching(q;DB) = fdb 2 DBjGoodness(q; db) > 0g (3.5)

There are (at least) two types of users that may specify Matching(q;DB) as their

right set of databases. One is users that want an exhaustive answer to their query.



50 CHAPTER 3. GLOSS: BOOLEAN SOURCE DISCOVERY

1
2

3

4

5

6 7

8

9

Database B Database C

set of relevant documents

set of matching documents

Database A

Figure 3.5: The documents relevant to a given query vs. the documents actually given
as the answer to the query, for three di�erent databases. Documents are represented
by numbers in this �gure.

They are not willing to miss any of the matching documents. We will refer to these

users as \recall-oriented" users. On the other hand, \precision-oriented" users may be

in \sampling" mode: they simply want to obtain some matching documents without

searching useless databases.

Our second de�nition for Right(q;DB) is Best(q;DB), the set of those databases

that contain more matching documents than any other database. More formally,

Right(q;DB) = Best(q;DB)

= fdb 2 DBjGoodness(q; db) > 0 ^

Goodness(q; db) = max
db02DB

Goodness(q; db0)g (3.6)

Again, users that de�ne Best(q;DB) as their right set of databases for query q might

be classi�ed as being \recall oriented" or \precision oriented." \Recall-oriented" users

want all of the best databases for their query. These users are willing to miss some

databases, as long as they are not the best ones. That is, the users recognize that

there are more databases that could be examined, but want to ensure that at least

those having the highest payo� (i.e., the largest number of documents) are searched.



3.5. IND RESULTS 51

On the other hand, \precision-oriented" users want to examine (some) best databases.

Due to limited resources (e.g., time, money) the users only want to submit their query

at databases that will yield the highest payo�.

Our third de�nition for Right(q;DB), MatchingI(q;DB), is speci�c for the case

INSPEC 2 DB, and for queries q 2 TRACEINSPEC . (This de�nition will be useful

in the experiments we describe starting in Section 3.5.2.) In this case, we assume

that INSPEC is the right database to search, regardless of the number of matching

documents in the other databases, because the users issued the TRACEINSPEC queries

to the INSPEC database, and perhaps they knew what the right database to search

was. This is somewhat equivalent to regarding each query q 2 TRACEINSPEC as

augmented with the extra conjunct ^ database INSPEC. So, our third de�nition for

Right is:

Right(q;DB) = MatchingI(q;DB)

=

8>>><
>>>:

fINSPECg if INSPEC 2 DB ^

Goodness(q; INSPEC) > 0

; otherwise

(3.7)

3.4.4 Con�guration of the Experiments

There are a number of parameters to our experiments. Figure 3.6 shows an assignment

of values to these parameters that will determine the basic con�guration. In later

sections, some of these parameters will be changed, to produce alternative results.

The parameters �C and �B will be de�ned in Section 3.6.1.

3.5 Ind Results

In this section, we evaluate Ind by �rst studying how well it can predict the result

size of a query and a database (Section 3.5.1). After this, we analyze Ind's ability

to distinguish between two databases (Section 3.5.2) and then we generalize the ex-

periments to include six databases (Section 3.5.3). Finally, we repeat some of the

experiments for a di�erent set of queries to see how dependent our results are on the



52 CHAPTER 3. GLOSS: BOOLEAN SOURCE DISCOVERY

Database set fINSPEC, COMPENDEX, ABI,
(DB) GEOREF, ERIC, PSYCINFOg

Estimator Ind
Query set TRACEINSPEC
Query sizes All
considered

�C 0
�B 0

Figure 3.6: Basic con�guration of the experiments.

query trace used (Section 3.5.4).

3.5.1 Ind as a Predictor of the Result Size of the Queries

The key to Ind is its estimation function EstimateInd (q; db), which predicts how many

documents matching query q database db has. Before seeing how accurate Ind is at

selecting a good subset of databases, let us study its estimation function EstimateInd .

An important question is whether EstimateInd is a good predictor of the result size

of a query in absolute terms, that is, whether the following holds:

EstimateInd (q; db) � Goodness(q; db)

If we analyze the data we collected, as explained in Section 3.4, the answer is no,

unfortunately. In general, Ind tends to underestimate the result size of the queries.

The more conjuncts in a query, the worse this problem becomes. Figure 3.7 shows a

plot of the pairs:

< Goodness(q; INSPEC);EstimateInd(q; INSPEC) >

for the queries in TRACEINSPEC . (See Section 3.4.) The accumulation of points on

the y = x axis corresponds to the one-atomic-subquery queries (e.g., author Knuth),

for which EstimateInd = Goodness. (This follows from Equation 3.2.)

Nevertheless, Ind will prove to be good at discriminating between useful and less

useful databases according to the P and R parameters of Section 3.3. The reason for



3.5. IND RESULTS 53

0

500

1000

1500

2000

0 500 1000 1500 2000

E
st

im
at

e_
In

d

Goodness

Figure 3.7: Ind as an estimator of the result size of the queries.

this is that even though EstimateInd (q; db) will in general not be a good approximation

of Goodness(q; db), it is usually the case that EstimateInd(q; db0) < EstimateInd (q; db)

if database db contains more documents matching query q than database db0 does.

3.5.2 Evaluating Ind over Pairs of Databases

In this section, we report some results for the basic con�guration (Figure 3.6), but

with DB, the set of available databases, set to just two databases. Figures 3.8 and

3.9 show two matrices classifying the 6897 queries in TRACEINSPEC for the cases

DB =fINSPEC, PSYCINFOg and DB =fINSPEC, COMPENDEXg. The sum of

all of the entries of each matrix equals 6897. Consider for example Figure 3.8, for

DB =fINSPEC, PSYCINFOg. Each row of the matrix represents an outcome for

Matching and Best. The �rst row, for instance, represents queries where both INSPEC

and PSYCINFO had matching documents (Matching=fINSPEC, PSYCINFOg) but

where INSPEC had the most matching documents (Best =fINSPECg). On the other



54 CHAPTER 3. GLOSS: BOOLEAN SOURCE DISCOVERY

hand, each column represents the prediction made by Ind. For example, the num-

ber 2678 means that for 2678 of the queries in TRACEINSPEC , Best =fINSPECg,

Matching =fINSPEC, PSYCINFOg, and Ind selected INSPEC as its prediction

(ChosenInd =fINSPECg). In the same row, there were 26 other queries where Ind

picked a matching database (PSYCINFO) but not the best one. In the �rst two rows,

we see that for most of the queries (5614 out of 6897), INSPEC was the best database.

This is not surprising, since the queries used in the experiments were originally issued

by users to the INSPEC database.

The two matrices of Figures 3.8 and 3.9 show that ChosenInd = ; only ifMatching =

;. From Equations 3.1 and 3.2 it follows that this relationship holds in general, that is,

as long as there is at least one database that contains matching documents, ChosenInd

will be non-empty. Also, note that very few times (15 for fINSPEC, PSYCINFOg

and 92 for fINSPEC, COMPENDEXg) does Ind determine a tie between the two

databases (and so, ChosenInd consists of both databases). This is so since it is un-

likely that EstimateInd(q; db1) will be exactly equal to EstimateInd(q; db2) if db1 6= db2.

With the current de�nition of ChosenInd , if for some query q and databases db1 and

db2 it is the case that, say, EstimateInd(q; db1) = 9 and EstimateInd(q; db2) = 8:9, then

ChosenInd (q; fdb1; db2g) = fdb1g. We might want in such a case to include db2 also

in ChosenInd . We address this issue in Section 3.6.1, where we relax the de�nition of

ChosenInd and Best.

Figures 3.10 and 3.11 report the values of the P and R parameters for the three

di�erent target sets de�ned in Section 3.4.3. For example, in the second row of

Figure 3.10, RInd
Best= 0.9910. This means that for the average query, ChosenInd includes

99:10% of the Best databases when DB =fINSPEC, PSYCINFOg. Therefore, for

most of the TRACEINSPEC queries, Best � ChosenInd : from Figure 3.8, Best �

ChosenInd for 6831 queries. Also, for 6328 queries, ChosenInd was exactly equal to

Best. The reason for such high values is that INSPEC and PSYCINFO cover very

di�erent topics (see Figure 3.4). Therefore, for each query there is likely to be a clear

\winner" (generally INSPEC for the queries in TRACEINSPEC ). On the other hand,

INSPEC and COMPENDEX cover somewhat overlapping areas, thus yielding a lower

(0:9216) value for RInd
Best (see Figure 3.11), for example.



3.5. IND RESULTS 55

ChosenInd
Best Matching fIg fPg fI, Pg ;

fIg fI, Pg 2678 26 0 0
fIg fIg 2894 16 0 0
fPg fI, Pg 11 224 0 0
fPg fPg 5 34 0 0
fI, Pg fI, Pg 3 5 15 0
; ; 462 41 0 483

Figure 3.8: Results corresponding to DB = fINSPEC (I), PSYCINFO (P)g and Ind
as the estimator.

The values for RInd
Matching are lower in both the PSYCINFO and COMPENDEX

cases: this is not surprising since Ind chooses the most promising databases, not all

of the ones potentially containing matching documents. Therefore, some matching

databases may be missed. Section 3.6.2 introduces a di�erent estimator for GlOSS,

Bin, aimed at optimizing the case Right = Matching. Notice that RInd
Matching is par-

ticularly low (0:6022) for the pair fINSPEC, COMPENDEXg, since for most of the

queries, there are matching documents in both databases (see the rows of Figure 3.9

corresponding to Matching =fINSPEC, COMPENDEXg), and very rarely does Ind

choose more than one database, as explained above.

From Figure 3.10, P Ind
Best= 0.9187, showing that for each query, an average of

91:87% of the databases in ChosenInd are among the Best databases. So, for most

of the queries, ChosenInd � Best: from Figure 3.8, ChosenInd � Best for 6336

queries. In general, the values for P Ind
Best and P Ind

Matching are relatively high for both

pairs of databases, showing that in most cases ChosenInd consists only of matching

databases (high P Ind
Matching ) and in many of these cases, ChosenInd consists only of

\best" databases (high P Ind
Best). Furthermore, it is always the case that P Ind

Best (q;DB) �

P Ind
Matching (q;DB), since Best(q;DB) �Matching(q;DB).

Finally, note that the values of P Ind
MatchingI

andRInd
MatchingI

are higher for the fINSPEC,

PSYCINFOg pair than for the fINSPEC, COMPENDEXg pair: for the fINSPEC,

PSYCINFOg pair, INSPEC is almost always clearly the best database (see Fig-

ure 3.8), whereas this is true to a lesser extent for the fINSPEC, COMPENDEXg

pair (see Figure 3.9).



56 CHAPTER 3. GLOSS: BOOLEAN SOURCE DISCOVERY

ChosenInd
Best Matching fIg fCg fI, Cg ;

fIg fI, Cg 4053 247 0 0
fIg fIg 382 43 0 0
fCg fI, Cg 144 743 0 0
fCg fCg 23 100 0 0
fI, Cg fI, Cg 125 43 92 0
; ; 319 173 0 410

Figure 3.9: Results corresponding to DB = fINSPEC (I), COMPENDEX (C)g and
Ind as the estimator.

Right P Ind
Right RInd

Right

Matching 0.9240 0.7833
Best 0.9187 0.9910

MatchingI 0.8810 0.9607

Figure 3.10: Parameters P and R for DB =fINSPEC, PSYCINFOg and Ind as the
estimator.

Right P Ind
Right RInd

Right

Matching 0.9191 0.6022
Best 0.8624 0.9216

MatchingI 0.7482 0.8440

Figure 3.11: Parameters P and R for DB =fINSPEC, COMPENDEXg and Ind as
the estimator.



3.5. IND RESULTS 57

Reference [GGMT93] reports experimental results for all the pairs of databases

from fINSPEC, COMPENDEX, ABI, GEOREF, ERIC, PSYCINFOg. The two pairs

of databases analyzed in this section, fINSPEC, PSYCINFOg and fINSPEC, COM-

PENDEXg, are among the best and the worst, respectively, for Ind, among all pos-

sible pairs: in general, the more unrelated the subject domains of the two databases

considered were, the better Ind behaved in distinguishing the databases.

3.5.3 Evaluating Ind over Six Databases

In this section we report some results for the basic con�guration, as de�ned in Figure

3.6. Figure 3.12 summarizes the results corresponding to the three de�nitions of the

Right set of Section 3.4.3. This �gure shows that the same phenomena described in

Section 3.5.2 prevail, although in general the values are lower. For example, RInd
Matching

is much lower (0.4044), since Ind chooses only the most promising databases, not all

of the ones that might contain matching documents (see Section 3.6.2). Still, RInd
Best

is high (0:9010), showing Ind's ability to predict what the best databases are. Also,

P Ind
Matching and P Ind

Best are high (0:9126 and 0:8438, respectively), making Ind useful for

exploring some of the matching/best databases. This is particularly signi�cant for

Ind: ChosenInd(q;DB) will be non-empty as long as there is some database in DB

that contains some document matching query q.

Another interesting piece of information that we gathered in our experiments is

that for only 96 out of the 6897 TRACEINSPEC queries does ChosenInd consist of more

than one database. Furthermore, 95 out of these 96 queries are one-atomic-subquery

queries, for which ChosenInd = Best necessarily (this follows from Equations 3.1

and 3.2). So, revisiting the results of Figure 3.12, since RInd
Best=0.9010, for most of

the TRACEINSPEC queries not only does Ind narrow down the search space to one

database (out of the six available ones), but it also manages to select the best database

when there is one.



58 CHAPTER 3. GLOSS: BOOLEAN SOURCE DISCOVERY

Right P Ind
Right RInd

Right

Matching 0.9126 0.4044
Best 0.8438 0.9010

MatchingI 0.5966 0.7012

Figure 3.12: Parameters P and R for the basic con�guration of the experiments.

Right P Ind
Right RInd

Right

Matching 0.8960 0.4621
Best 0.8498 0.9384

MatchingE 0.5485 0.6876

Figure 3.13: Parameters P and R for the basic con�guration, but using the queries
in TRACEERIC .

3.5.4 Impact of Using Other Traces

So far, all of our experiments were based on the set of 6897 TRACEINSPEC queries.

To analyze how dependent the results are on the trace used, we ran our experiments

using a di�erent set of queries. Real users issued these queries to the ERIC database

from 3/28 to 4/10 in 1993. We processed the trace in the same way as the INSPEC

trace (see Section 3.4). The �nal set of queries, TRACEERIC , has 2404 queries, or

78:82% of the original 3050 query set.

Figure 3.13 shows the results for the di�erent instances of the P and R parameters,

for the basic con�guration (Figure 3.6) but using TRACEERIC . The de�nition of the

MatchingE set of databases is analogous to that ofMatchingI (see Equation 3.7), using

ERIC instead of INSPEC. The results obtained di�er only slightly from the ones in

Figure 3.12 for TRACEINSPEC . This suggests that our results are not sensitive to the

type of trace used.

3.6 Improving GlOSS

In this section we introduce variations to the de�nition of the ChosenEST and Best sets

in order to make them more 
exible (Section 3.6.1), and present two new estimators,

Min and Bin (Section 3.6.2).



3.6. IMPROVING GLOSS 59

3.6.1 Making ChosenEST and Best More Flexible

The de�nitions of ChosenEST and Best given by Equations 3.1 and 3.6 are some-

times too \rigid." Consider the following example. Suppose fdb1; db2g is our set of

databases, and let q be a query withGoodness(q; db1) = 1; 000, and Goodness(q; db2) =

1; 001. According to Equation 3.6, Best(q;DB) = fdb2g. But this is probably too

arbitrary, since both databases are almost identical regarding the number of matching

documents they have for query q. Also, if an estimator EST predicts that the two

databases contain a very similar number of documents satisfying a query, though not

exactly equal, it might be preferable to choose both databases as the answer instead

of picking the one with absolute highest estimated size.

In this section, we extend the de�nitions of ChosenEST and Best, through the

introduction of two parameters, �B and �C. Parameter �B will make the de�nition of

Best looser, by letting databases with a number of documents close but not exactly

equal to the maximum be considered as \best" databases also. Parameter �C changes

the \matching" function (Section 3.2.3) of an estimator EST by making it able to

choose databases that are close to the predicted optimal ones. The new de�nitions

for ChosenEST and Best are, for given �B; �C � 0:

ChosenEST (q;DB) = fdb 2 DBjEstimateEST (q; db) > 0 ^�����
EstimateEST (q; db)�me

me

����� � �Cg (3.8)

Best(q;DB) = fdb 2 DBjGoodness(q; db) > 0 ^�����
Goodness(q; db)�mg

mg

����� � �Bg (3.9)

where

me = max
db2DB

EstimateEST (q; db) and mg = max
db2DB

Goodness(q; db):

Therefore, the larger �B and �C , the more databases will be included in Best and

ChosenEST , respectively. Note that Equations 3.1 and 3.6 coincide with Equations

3.8 and 3.9 for �B = �C = 0. Also, if �C = 1, Ind becomes the Bin estimator described



60 CHAPTER 3. GLOSS: BOOLEAN SOURCE DISCOVERY

in Section 3.6.2: ChosenInd (q;DB) thus consists of all of the databases in DB that

might contain some matching documents for query q.

Figures 3.14 and 3.15 show the average values of the P and R parameters, respec-

tively, for the basic con�guration of the experiments (�C = 0), but for di�erent values

of �B. Thus, our Ind estimator remains �xed (since �C = 0) and so do Matching and

MatchingI , since they do not depend on the parameter �B. This is why the curves

corresponding to P Ind
Matching , R

Ind
Matching , P

Ind
MatchingI

, and RInd
MatchingI

are 
at. On the other

hand, the set of best databases, Best, varies as �B does. By varying �B alone, we are

leaving the estimator �xed, and we change the semantics of our evaluation criteria,

because we are modifying (i.e., making more 
exible) our Best \target" set.

In Figure 3.15 we see that parameter RInd
Best worsens as �B grows, since Best tends

to contain more databases, while ChosenInd remains �xed. This is exactly why P Ind
Best

(Figure 3.14) improves with higher values of �B. Note that for �B = 1, Best =

Matching, and so, P Ind
Matching and RInd

Matching coincide with P Ind
Best and RInd

Best , respectively.

As mentioned above, parameter �B is not a parameter of our estimator, but of

the semantics of the queries. The submitter of a query does not give an �B value to

GlOSS. Instead, higher values for �B yield more comprehensive Best sets. Therefore,

parameter �B should be �xed according to the desired \meaning" for Best. For exam-

ple, suppose that we are evaluating Ind for a user that wants to locate Best databases,

but is willing to search at sites that have 90% or more of the number of matching

documents than the overall Best sites have. Then, the experimental results that are

relevant to this user are those obtained for �B = 0:1.

Figures 3.16 and 3.17 show the average values of the P and R parameters, respec-

tively, for the basic con�guration of the experiments (�B = 0), but for di�erent values

of �C. Here, the Matching and MatchingI sets do not change (they do not depend on

�C), and neither does Best (since �B = 0). Ind is a�ected, since �C is variable. Since

ChosenInd tends to cover more databases as �C grows, RInd
Matching , R

Ind
Best , and R

Ind
MatchingI

improve for higher values of �C. For �C = 1, RInd
Matching= RInd

Best= RInd
MatchingI

= 1, since

ChosenInd contains all of the potentially matching databases: as mentioned above,

Ind becomes the Bin estimator (Section 3.6.2) for �C = 1. This is also why P Ind
Best and

P Ind
MatchingI

worsen as �C grows. Parameter P Ind
Matching remains basically unchanged for



3.6. IMPROVING GLOSS 61

0

0.2

0.4

0.6

0.8

1

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

P

�B

PMatching 3

3 3 3 3 3 3 3 3 3

PBest +

+ + + + + + + + +

PMatchingI 2

2 2 2 2 2 2 2 2 2

Figure 3.14: The average P parameters as a function of �B for the Ind estimator
(�C = 0).

higher values of �C , but worsens for �C close to one, for the same reasons P Ind
Best and

P Ind
MatchingI

get lower. Note that for �C = 1, P Ind
Best 6= P Ind

Matching , since Best and Matching

di�er (�B = 0).

From Figures 3.16 and 3.17 we can conclude that the value for �C should be

set according to whether precision or recall should be emphasized (in the sense of

Section 3.3). Users can set the value for �C to be used by Ind according to the

query semantics they are interested in: in general, higher values for �C make the R

parameters improve, while the P parameters worsen. However, when the Right set of

databases is equal to the Best set, �C = 0 is a good compromise to obtain both high

P and high R values, since RInd
Best is already high for �C = 0 (and so is P Ind

Best).

3.6.2 Other Estimators

So far, all of our experiments involved Ind as the estimator for GlOSS. In this section,

we consider two other estimators, and compare their performance with that of Ind.



62 CHAPTER 3. GLOSS: BOOLEAN SOURCE DISCOVERY

0

0.2

0.4

0.6

0.8

1

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

R

�B

RMatching 3

3 3 3 3 3 3 3 3 3

RBest +

+ +
+

+
+

+
+

+

+

RMatchingI 2

2 2 2 2 2 2 2 2 2

Figure 3.15: The average R parameters as a function of �B for the Ind estimator
(�C = 0).

0

0.2

0.4

0.6

0.8

1

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

P

�C

PMatching 3

3 3 3 3 3 3 3 3

3

PBest +

+ +
+

+
+

+
+

+

+

PMatchingI 2

2 2 2
2

2
2

2
2

2

Figure 3.16: The average P parameters as a function of �C for the Ind estimator
(�B = 0).



3.6. IMPROVING GLOSS 63

0

0.2

0.4

0.6

0.8

1

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

R

�C

RMatching 3

3
3

3
3

3
3

3

3

3

RBest +

+ + + + + + + + +

RMatchingI 2

2
2

2
2

2
2

2 2
2

Figure 3.17: The average R parameters as a function of �C for the Ind estimator
(�B = 0).

Ind is based upon the assumption that the occurrence of query keywords in doc-

uments follows independent and uniform probability distributions. We can build al-

ternative estimators by departing from this assumption. For example, we can adopt

the \opposite" assumption, and assume that the keywords that appear together in a

user query are strongly correlated. So, we de�ne another estimator for GlOSS, Min

(for \minimum"), by letting:

EstimateMin( t1 ^ : : : ^ tn; dbi) =
n

min
j=1

fij (3.10)

EstimateMin(q; dbi) is an upper bound of the actual result size of query q:

Goodness(q; dbi) � EstimateMin(q; dbi)

ChosenMin follows from the de�nition of EstimateMin, using Equation 3.1.

If our goal is to maximize REST
Matching , then we should be very conservative in drop-

ping databases from the ChosenEST set. With this motivation we de�ne another



64 CHAPTER 3. GLOSS: BOOLEAN SOURCE DISCOVERY

estimator for GlOSS, Bin (for \binary"):

EstimateBin( t1 ^ : : : ^ tn; dbi) =

8<
:

0 if 9j, 1 � j � n j fij = 0

1 otherwise
(3.11)

Again, ChosenBin follows from the de�nition of EstimateBin, using Equation 3.1. So,

we are guaranteed that RBin
Matching= RBin

Best= RBin
MatchingI

= 1 (at the expense of likely low

values for the P parameters).

Figures 3.18 and 3.19 show the results obtained for the basic con�guration (Figure

3.6) using the Min and Bin estimators, respectively. The results for Min are very

similar to the corresponding results for Ind, with no signi�cant di�erences. Note that

the de�nition of EstimateMin(q; db) does not depend on the size of the db database,

unlike the de�nition of EstimateInd(q; db). This does not seem to have played an

important role for the queries and databases we considered in the experiments, since

the results we obtained for Ind and Min are very similar.

As expected, although Bin gets much higher values for the R parameters (in fact,

RBin
Matching= RBin

Best= RBin
MatchingI

= 1), it performs much worse for the P parameters than

Ind and Min. For example, PBin
Best is very low: 0.2739. Note that PBin

MatchingI
is also low

(0.2494), since Bin tends to produce overly conservative ChosenBin sets, so as not to

miss any of the databases with matching documents.

Consequently, a user might indicate what the query semantics are to GlOSS.

GlOSS would then choose one of the estimators to answer the user query accordingly.

Thus, if the user is interested in high values of the P parameters, then the Ind

estimator would be used, whereas Bin would be the choice if high values of R are of

interest. If, on the other hand, the user wants both high values of P and R, then Ind

would be chosen for Right = Best, and Bin for Right = Matching.

3.7 GlOSS's Storage Requirements

In this section we study the space requirements of GlOSS and compare them with

those of a full index of the databases. (See [TGL+97] for a study of data structures

to maintain the GlOSS information e�ciently both for queries and for updates.) We



3.7. GLOSS'S STORAGE REQUIREMENTS 65

Right PMin
Right RMin

Right P Ind
Right RInd

Right

Matching 0.9077 0.4031 0.9126 0.4044
Best 0.8356 0.8938 0.8438 0.9010

MatchingI 0.6261 0.7316 0.5966 0.7012

Figure 3.18: The average P and R parameters for the basic con�guration with Min
as the estimator. The last two columns show the corresponding values for the basic
con�guration, using Ind as the estimator.

Right PBin
Right RBin

Right P Ind
Right RInd

Right

Matching 0.7757 1 0.9126 0.4044
Best 0.2739 1 0.8438 0.9010

MatchingI 0.2494 1 0.5966 0.7012

Figure 3.19: The average P and R parameters for the basic con�guration with Bin
as the estimator. The last two columns show the corresponding values for the basic
con�guration, using Ind as the estimator.

base our study on real index information about the INSPEC database. To keep the

GlOSS storage requirements low, we would like GlOSS not to store frequency infor-

mation for �eld designators like \subject," which are not \primitive" �eld designators

in INSPEC, but are instead derived from other �eld designators. However, the exper-

iments of Section 3.5 assume that GlOSS has frequency information corresponding

to such non-primitive indices. Hence, we start our analysis by studying experimen-

tally if the e�ectiveness of the Ind estimator for GlOSS is a�ected by not keeping

non-primitive frequency information (Section 3.7.2). After doing this, we are ready

to estimate the storage requirements of GlOSS (Section 3.7.4). To reduce the GlOSS

information further, we analyze the impact on the e�ectiveness of Ind of eliminating

information on low frequency words (Section 3.7.5). The experiments in this section

preceded those in Section 3.5, and used di�erent e�ectiveness metrics. We start our

storage discussion by describing these new metrics �rst (Section 3.7.1).

3.7.1 New Evaluation Parameters

This section describes the e�ectiveness metrics for the experiments of Sections 3.7.2

and 3.7.5. The motivation behind these metrics is that even if theGlOSS estimates are



66 CHAPTER 3. GLOSS: BOOLEAN SOURCE DISCOVERY

accurate, the correctness of an answer depends on the query semantics, as intended

by the user that issued the query. In particular, if the Right set of databases for a

query q is de�ned to be the Best set of databases for q (Section 3.4.3), then we can

de�ne the following two \right" ways of answering q:

� All-Best Search: We are interested in searching all of the Best databases for

q. By searching these databases we seek a compromise between two potentially

con
icting goals: obtaining an exhaustive answer to q (this would be guaranteed

if we searched all of the databases containing matching documents, not only

those containing the highest number of matching documents) and searching

databases that would deliver a signi�cant number of answers, to compensate

for access costs, for example. Thus, we say that ChosenInd satis�es criterion

CAB if:

CAB : Best � ChosenInd

So, we ensure that at least those databases having the highest payo� (i.e., the

largest number of matching documents) are searched.

� Only-Best Search: We are less demanding than with CAB: we are just interested

in searching (some of) the best databases for q. Our goal is to get a sample of

the documents that match the query q (we might be missing some of these best

databases), but we do not want to waste any time and resources by searching a

non-optimal database. So, we say that ChosenInd satis�es criterion COB if:

COB : ChosenInd � Best

The set ChosenInd will be said to strictly satisfy both criteria CAB and COB if

ChosenInd = Best.

Now, let C be either of the criteria above and Q be a �xed set of queries. Then,

Success(C; Ind) = 100 �
jfq 2 QjChosenInd satis�es Cgj

jQj
(3.12)



3.7. GLOSS'S STORAGE REQUIREMENTS 67

In other words, Success(C; Ind) is the percentage of Q queries for which Ind produced

the \right answer" under criterion C.

Following notions analogous to those used in statistics, we de�ne the Alpha and

the Beta errors of Ind for an evaluation criterion C as follows:

Alpha(C; Ind) = 100 � Success(C; Ind) (3.13)

Beta(C; Ind) = Success(C; Ind)�

100 �
jfq 2 QjChosenInd strictly satis�es Cgj

jQj
(3.14)

So, Alpha(C; Ind) is the percentage of queries in Q for which the estimator gives

the \wrong answer," that is, the ChosenInd set does not satisfy criterion C at all.

Beta(C; Ind) measures the percentage of queries for which the estimator satis�es the

criterion, but not strictly. For the Beta queries, the estimator yields a correct but

\overly conservative" (for CAB) or \overly narrow" (for COB) answer. For exam-

ple, consider an estimator, TRIV, that would always produce ; as the value for

ChosenTRIV . TRIVwould have Success(COB;TRIV ) = 100 (and Alpha(COB;TRIV ) =

0). However, Beta has a high value for conservative estimators: Beta(COB;TRIV )

would be quite high.

We now relate Success, Alpha, and Beta to the P and R parameters of Section 3.3.

Consider, for example, criterion CAB : Best � ChosenInd . Having RInd
Best(q;DB) = 1 is

equivalent to having Best(q;DB) � ChosenInd(q;DB). Therefore, Ind satis�es crite-

rion CAB for query q and set of databases DB if and only if RInd
Best(q;DB) = 1. This

is shown in Figure 3.20, in the \Success" row, under CAB. That is, Success(CAB; Ind)

gives the fraction of the queries for which the condition shown (RInd
Best= 1) is true.

Assume now that RInd
Best(q;DB) = 1 for some query q. Then, it is also the case

that P Ind
Best (q;DB) < 1 if and only if Best(q;DB) � ChosenInd(q;DB). Therefore,

given that q satis�es criterion CAB (or equivalently, RInd
Best (q;DB) = 1), q will add to

Beta(q;DB) if and only if P Ind
Best(q;DB) < 1.

Now, consider criterion COB : ChosenInd � Best. It follows from the de�ni-

tion of P Ind
Best that a query q will \contribute" to Success(COB; Ind) if and only if

P Ind
Best (q;DB) = 1. The conditions on P Ind

Best and RInd
Best for Beta are analogous to those



68 CHAPTER 3. GLOSS: BOOLEAN SOURCE DISCOVERY

CAB COB

Success RInd
Best= 1 P Ind

Best=1
Alpha RInd

Best< 1 P Ind
Best< 1

Beta RInd
Best= 1 and P Ind

Best< 1 P Ind
Best= 1 and RInd

Best< 1
Success �Beta RInd

Best= P Ind
Best= 1 P Ind

Best= RInd
Best= 1

Figure 3.20: Summary of the relationship between the Success, Alpha, and Beta
functions and P Ind

Best and RInd
Best , for criteria CAB and COB.

for CAB with the roles of P Ind
Best and RInd

Best interchanged.

As a �nal comment, notice that criterion CAB can be regarded as emphasizing

recall over precision: this criterion is satis�ed whenever Best is included in ChosenInd .

On the other hand, COB can be thought of as emphasizing precision over recall:

even when ChosenInd is not a \complete" answer, success is achieved if no \useless"

databases are included in ChosenInd .

3.7.2 Eliminating the \Subject" Index

To keep the GlOSS storage requirements low, we would like GlOSS not to store

frequency information for �eld designators like \subject," which are not \primitive"

�eld designators in the databases that we considered, but are instead derived from

other �eld designators. Therefore, before we compute the frequency information

size, we will analyze the way the \subject" index is treated in the six databases we

considered. In all of these databases, \subject" is a compound index, built from other

\primitive" indexes. For example, in the INSPEC database, the \subject" index is

constructed from the \title," \abstract," \thesaurus," \organization," and \other

subjects" indexes: a query subject computers is equivalent to the \or" query: title

computers _ abstract computers _ thesaurus computers _ organization computers _

other subjects computers.

All of the experiments we reported so far treated \subject" as a primitive index,

as though GlOSS kept the entries corresponding to the \subject" �eld designation

as part of the database frequency information. However, given that GlOSS has the

entries for the constituent indexes from which the \subject" index is formed, we could



3.7. GLOSS'S STORAGE REQUIREMENTS 69

attempt to estimate the entries corresponding to the \subject" index using the entries

for the primitive indexes. This way, we can save space by not having to store entries

for the \subject" index.

There are di�erent ways to estimate fij where tj =subject w for some keyword w,

given the primitive indexes l1, l2, : : :, ln that compose the \subject" index in database

dbi. One such way takes the maximum of the individual frequencies for the primitive

indexes:

fij � max
k=1;:::;n

fijk (3.15)

where tjk has �eld designation lk and keyword w. Note that this estimate constitutes

a lower bound for the actual value of fij.

Figure 3.21 shows the results obtained for the basic con�guration (Figure 3.6) but

estimating the \subject" frequencies as in Equation 3.15, with one di�erence: only

those indexes that actually appeared in TRACEINSPEC queries were considered. The

other indexes are seldom used so it does not make sense for GlOSS to keep statistics

on them. The indexes considered are the ones that are listed in Figure 3.22. For

example, we simply ignored the \other subjects" index for the INSPEC database.

The last column in Figure 3.21 shows the Success �gures for the basic con�guration,

using the exact frequencies for the \subject" index: there is very little change in

performance if we estimate the \subject" frequencies as in Equation 3.15 4. Therefore,

when we compute the size of the GlOSS frequency information in the next section,

we will assume that GlOSS does not store \subject" entries. Thus, we will consider

only primitive indexes that appear in TRACEINSPEC queries.



70 CHAPTER 3. GLOSS: BOOLEAN SOURCE DISCOVERY

Criteria Success Alpha Beta Success � Beta Success

CAB 88.23 11.77 6.93 81.30 88.95
COB 83.82 16.18 2.52 81.30 84.38

Figure 3.21: Evaluation criteria for the basic con�guration, but estimating the \sub-
ject" frequencies as the maximum of the frequencies of the primitive indexes. The last
column shows the Success values for the basic con�guration, using the exact \subject"
frequencies.

Full GlOSS
Field Designator Index (threshold=0)

# of postings # of entries

Author 4108027 311632
Title 10292321 171537
Publication 6794557 18411
Abstract 74477422 487247
Thesaurus 11382655 3695
Conference 7246145 11934
Organization 9374199 62051
Class 4211136 2962
Numbers (ISBN, ...) 2445828 12637
Report Numbers 7833 7508

Totals 130,340,123 1,089,614

Figure 3.22: Characteristics of the database frequency information kept by GlOSS
vs. those of a full index, for the INSPEC database.



3.7. GLOSS'S STORAGE REQUIREMENTS 71

3.7.3 Characteristics of the Database Frequency Information

and Full Indexes

As explained in Section 3.2.2, GlOSS needs to keep, for each database, the number

of documents that satisfy each possible keyword �eld-designation pair. Figure 3.22

was generated using information of the corresponding INSPEC indexes obtained from

Stanford's FOLIO library information retrieval system. The \# of entries" column

reports the number of entries required for each of the INSPEC indexes appearing

in the TRACEINSPEC queries. For example, there are 311; 632 di�erent author last

names appearing in INSPEC (�eld designation \author"), and each will have an

associated entry in the INSPEC frequency information. A total of 1; 089; 614 entries

will be required for the INSPEC database. Each of these entries will correspond to

a keyword �eld-designation pair and its associated frequency (e.g., <author Knuth,

47>, meaning that there are 47 documents in INSPEC with Knuth as the author). In

contrast, if we were to keep the complete inverted lists associated with the di�erent

indexes we considered, 130; 340; 123 postings would have to be stored in the full index.

3.7.4 Storage Cost Estimates

In the following, we will roughly estimate the space requirements of a full index vs.

those of the frequency information kept by GlOSS. We start our analysis with the

INSPEC database, and then consider all six databases. The �gures we will pro-

duce should be taken just as an indication of the relative order of magnitude of the

corresponding requirements.

Each of the postings of a full index will typically contain a �eld designation and a

document identi�er. If we dedicate one byte for the �eld designation and three bytes

for the document identi�er, we end up with four bytes per posting. Let us assume

that, after compression, two bytes su�ce per posting (compression of 50% is typical

for inverted lists).

4In [GGMT93] we explore an alternative estimate for the \subject" frequencies whose correspond-
ing experimental results were very similar to those for the Equation 3.15 estimate.



72 CHAPTER 3. GLOSS: BOOLEAN SOURCE DISCOVERY

Size of Full Index GlOSS/threshold=0

Vocabulary 3.13 MBytes 3.13 MBytes
Index 248.60 MBytes 2.60 MBytes

Total 251.73 MBytes 5.73 MBytes
% of Full Index 100 2.28

Figure 3.23: Estimated storage costs of a full index vs. the GlOSS frequency infor-
mation for the INSPEC database.

Each of the frequencies kept by GlOSS will typically contain a �eld designation,

a database identi�er, and the frequency itself. Regarding the size of the frequencies

themselves, only 1417 keyword �eld-designation pairs in INSPEC have more than 216

documents containing them. Therefore, in the vast majority of the cases, two bytes

su�ce to store these frequencies, according to the INSPEC data we have available.

We will thus assume that we dedicate two bytes per frequency. So, using one byte

for the �eld designation and two bytes for the database identi�er, we end up with

�ve bytes per frequency. Again, after compression we will assume that 2.5 bytes are

required per frequency. Using the data from Figure 3.22 and our estimates for the

size of each posting and frequency information entry, we obtain the index sizes shown

in Figure 3.23 (\Index" row).

The vocabulary for INSPEC 5, including only indexes that appear in TRACEINSPEC

queries, consists of 819; 437 words. If we dedicate four bytes to store each keyword

(see [GGMT93]), around 4 � 819; 437 bytes, or 3:13 MBytes are needed to store the

INSPEC vocabulary. This is shown in the \Vocabulary" row of Figure 3.23.

After adding the vocabulary and index sizes (\Total" row of Figure 3.23), the size

of the frequency information that GlOSS needs is only around 2:28% the size of the

corresponding full index, for the INSPEC database.

So far, we have only focused on the space requirements of a single database, namely

INSPEC. We will base the space requirement estimates for the six databases on the

�gures for the INSPEC database, for which we have reliable index information. To

do this, we multiply the di�erent values we calculated for INSPEC by a growth factor

5The �eld designators are stored with each posting and frequency, as described above.



3.7. GLOSS'S STORAGE REQUIREMENTS 73

G (see Figure 3.4):

G =

P
db2DB jdbj

jINSPECj
� 4:12

whereDB = fINSPEC, COMPENDEX, ABI, GEOREF, ERIC, PSYCINFOg. There-

fore, the number of postings required by a full index of the six databases is estimated

as G � INSPEC number of postings = 537; 001; 307 postings, or around 1024:25

MBytes. The number of frequencies required by GlOSS for the six databases is es-

timated as G � INSPEC number of frequencies = 4; 489; 210 frequencies, or around

10:70 MBytes (see the \Index" row of Figure 3.24).

The space occupied by the index keywords of the six databases considered will be

proportional to the size of their merged vocabularies. Using index information from

Stanford's FOLIO system, we can determine that the size of the merged vocabulary of

the six databases we considered is approximately 90% of the sum of the six individual

vocabulary sizes. Therefore, we estimate the size of the merged vocabulary for the

six databases as G � 0:90 � INSPEC vocabulary size = 3,038,472 words, or around

11:59 MBytes (see the \Vocabulary" row of Figure 3.24).

Figure 3.24 summarizes the storage estimates for GlOSS and a full index. Note

that the GlOSS frequency information is only 2:15% the size of the full index. This

is even less than the corresponding �gure we obtained above just for the INSPEC

database (2:28%). The reason for this is the fact that the merged vocabulary size is

only 90% of the sum of the individual vocabulary sizes. Although this 10% reduction

\bene�ts" both GlOSS and the full index case, the impact on GlOSS is higher, since

the vocabulary size is a much larger fraction of the total storage needed by GlOSS

than it is for the full index.

We have obtained the numbers of Figure 3.24 using some very rough estimates

and approximations, so they should be taken cautiously. However, we think they are

useful to illustrate the low space requirements of GlOSS: around 22.29 MBytes would

su�ce to keep the word frequencies for the six databases that we studied.



74 CHAPTER 3. GLOSS: BOOLEAN SOURCE DISCOVERY

Size of Full index GlOSS/threshold=0

Vocabulary 11.59 MBytes 11.59 MBytes
Index 1024.25 MBytes 10.70 MBytes

Total 1035.84 MBytes 22.29 MBytes
% of Full index 100 2.15

Success(CAB, ) 100 88.23
Success(COB, ) 100 83.82
Success(COB, ) {
Beta(COB, ) 100 81.30

Figure 3.24: Storage estimates for GlOSS and a full index for the six databases.
The entries for GlOSS in the last three rows correspond to the basic con�guration,
but estimating the \subject" frequencies as the maximum of the frequencies of the
primitive indexes.

3.7.5 Pruning the Word-Frequency Information

To further reduce the amount of information that we keep about each database, we

introduce the notion of a threshold. If a database dbi has fewer than threshold docu-

ments with a given keyword-�eld pair tj, then GlOSS will not keep this information.

Therefore, GlOSS will assume that fij is zero whenever this data is needed.

As a result of the introduction of threshold, the estimator may now conclude that

some database dbi does not contain any documents matching a query of the form

t1 ^ : : : ^ tn if fij is missing, for some j, while in fact dbi does contain documents

matching the query. This situation was not possible before: if fij was missing from the

information set of the estimator, then fij = 0, and so, there could be no documents

in dbi satisfying such a query.

To see if Ind's performance deteriorates by the use of this threshold, Figures 3.25

and 3.26 show some results for di�erent values of threshold, for the basic con�guration,

but estimating the \subject" index entries as in Equation 3.15. These �gures show

that the performance for the di�erent criteria is only slightly sensitive to (small) in-

creases in threshold. Ironically, the Success values for criterion COB tend to improve

for higher values of threshold. The reason for this is that ChosenInd does not in-

clude databases with EstimateInd = 0. By increasing threshold, the number of such

databases will presumably increase, thus making ChosenInd smaller, and more likely



3.8. CONCLUSIONS 75

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40

%

threshold

Success 3

333333 3 3 3 3 3

Alpha +

++++++
+ + + + +
Beta 2

222222 2 2 2 2 2

Success � Beta �

������ � � � � �

Figure 3.25: Criterion CAB, for di�erent values of threshold. The \subject" entries
are estimated as the maximum of the entries corresponding to the primitive indexes.

to satisfy COB : ChosenInd � Best.

The reason for introducing thresholds is to have to store less information for the

estimator. Figure 3.27 reports the number of entries that would be left, for di�erent

�eld designators, in the frequency information for the INSPEC database. Some �eld

designators (e.g., \thesaurus") are not a�ected much by this pruning of the smallest

entries, whereas the space requirements for some others (e.g., \author," \title," and

\abstract") are reduced drastically. Adding together all of the indexes, the number

of entries in the INSPEC frequency information kept by GlOSS decreases very fast as

threshold increases: for threshold=1, for instance, 508; 978 entries, or 46:71% of the

original number of entries, are eliminated. Therefore, the size of the GlOSS frequency

information can be substantially reduced beyond the already small size estimated in

Figure 3.24.

3.8 Conclusions

In this chapter we presented several estimators for GlOSS, a solution to the text-

source discovery problem. We also developed a formal framework for this problem

and de�ned di�erent \right sets" of databases for evaluating a user's query. We used



76 CHAPTER 3. GLOSS: BOOLEAN SOURCE DISCOVERY

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40

%

threshold

Success 3

333333 3 3 3 3 3

Alpha +

++++++ + + + + +

Beta 2

2222
22 2 2 2 2 2

Success � Beta �

������ � � � � �

Figure 3.26: Criterion COB, for di�erent values of threshold. The \subject" entries
are estimated as the maximum of the entries corresponding to the primitive indexes.

threshold
Field Designator 0 1 2 3 4 5

Author 311632 194769 150968 125220 107432 94248
Title 171537 85448 62759 51664 44687 40007
Publication 18411 11666 10042 9281 8832 8535
Abstract 487247 227526 163644 133323 115237 102761
Thesaurus 3695 3682 3666 3653 3641 3637
Conference 11934 10138 9887 9789 9702 9653
Organization 62051 34153 26518 22612 20121 18382
Class 2962 2953 2946 2937 2931 2926
Numbers (ISBN, ...) 12637 10199 10067 9946 9865 9779
Report Numbers 7508 102 37 22 14 12

Totals 1089614 580636 440534 368447 322462 289940
% 100 53.29 40.43 33.81 29.59 26.61

Success(CAB, Ind) 88.23 87.12 86.07 85.28 84.44 83.82
Success(COB, Ind) 83.82 84.24 84.53 84.65 84.76 84.79
Success(COB, Ind) {
Beta(COB, Ind) 81.30 80.64 79.85 79.15 78.44 77.85

Figure 3.27: Number of entries left for the di�erent thresholds and �eld designators
in the INSPEC database. The last three rows correspond to the basic con�guration,
but estimating the \subject" frequencies as the maximum of the frequencies of the
primitive indexes.



3.8. CONCLUSIONS 77

this framework to evaluate the e�ectiveness of the GlOSS estimators using real-user

query traces. The experimental results we obtained are encouraging. Furthermore,

we believe that our results are independent of the query traces we used, since we

obtained very similar results using two di�erent query traces.

The storage cost of GlOSS is relatively low: a rough estimate suggested that 22:29

MBytes would be enough to keep all the data needed for the six databases we studied.

In contrast, a full index of the six databases was estimated to require 1035.84 MBytes.

Given its low space requirement, we can replicate GlOSS to increase its availability.

Our approach to solving the text-source discovery problem could also deal with

information servers that charge for their use. Since we are selecting what databases

to search according to a quantitative measure of their \goodness" for a query (given

by EstimateEST ), we could easily incorporate this cost factor into the computation of

EstimateEST so that, for example, given two equally promising databases, a higher

value would be assigned to the less expensive of the two.

We have implemented a GlOSS server that keeps information on the 40+ col-

lections of computer science technical reports that are part of the NCSTRL project

(http://www.ncstrl.org). The GlOSS server is available on the World-Wide Web

at http://gloss.stanford.edu.



Chapter 4

gGlOSS: Vector-Space Source

Discovery

In Chapter 3 we described GlOSS , a centralized server that keeps meta-information

about databases supporting the Boolean model of document retrieval. Although the

Boolean model of document retrieval is widely used, it is a rather primitive one. One of

the most popular alternative models is the vector-space retrieval model [Sal89, SM83].

This model represents both the documents in a database and the queries themselves as

weight vectors. Given a query, the documents are ranked according to how \similar"

their corresponding vectors are to the given query vector.

In this chapter we present gGlOSS, a generalized and more powerful version of

GlOSS that also deals well with vector-space databases and queries. Like GlOSS,

gGlOSS periodically collects statistics on the underlying sources (this time including

summary word-weight information). We �rst determine the goodness of a database

for a query, and the ideal database rank for a query (i.e., the rank that gGlOSS should

try to produce for the query). Then, given a query and a desired goodness metric,

gGlOSS can rank the available sources.

Since gGlOSS produces estimates of the ideal database ranks, we need to compare

these estimates against the ideal ranks. For this, we evaluate the performance of

gGlOSS using real-user queries and 53 vector-space databases, in terms of how close

the gGlOSS ranks are to the ideal ones. Although we can estimate the size of the

78



4.1. RANKING DATABASES 79

gGlOSS information to be only around 2% of the size of a full index of the databases,

as we discussed in Chapter 3, its performance is good (Section 4.4), showing that

gGlOSS can closely approximate the ideal database ranks for the given queries.

We also present facilities for building hierarchies of gGlOSS servers. In this case,

hGlOSS, a high-level server, summarizes the contents of lower-level gGlOSS servers, in

much the same way as the gGlOSS servers summarize the contents of the underlying

databases. Given a query, the hGlOSS server suggests gGlOSS servers that might

index useful databases for the query. Because the storage requirements of the hGlOSS

server are much smaller than those of the gGlOSS servers, we can easily replicate the

hGlOSS server so that it does not become a performance bottleneck, thus distributing

the load for searching the system.

In what follows, Section 4.1 de�nes one \ideal" database rank for a query. Sec-

tion 4.2 shows how gGlOSS approximates the ideal database rank using partial in-

formation. Section 4.3 introduces the methodology for the experimental results of

Section 4.4. Section 4.5 discusses alternative de�nitions of the ideal database rank.

Section 4.6 shows how to build the higher-level hGlOSS servers. Finally, Section 4.7

reports experimental results for the Boolean GlOSS (Chapter 3) using the metrics

presented in this chapter and 500 text sources.

4.1 Ranking Databases

Given a query, we would like to rank the available vector-space databases according

to their usefulness, as in Section 3.4.3 for Boolean databases. This ranking should

capture the ideal order for searching the databases: we should �rst search the most

useful database(s), then the second most useful database(s), and so on, until we either

exhaust the rank, or become satis�ed with whatever documents we got up to that

point. This section presents one de�nition for the ideal database rank for vector-space

sources. The next section explores how gGlOSS will try to rank the databases as

closely as possible to this ideal rank.



80 CHAPTER 4. GGLOSS: VECTOR-SPACE SOURCE DISCOVERY

Determining the ideal database rank for a query is a hard problem. As in Sec-

tion 3.4.3, the de�nition of this section is based solely on the answers (i.e., the doc-

ument ranks and their scores) that each database produces when presented with the

query in question. This de�nition does not use the relevance [SM83] of the documents

to the end user who submitted the query. Using relevance would be appropriate for

evaluating the search engines at each database; instead, we are evaluating how well

gGlOSS can predict the answers that the databases return. In Section 4.5 we discuss

our choice further, and analyze some of the possible alternatives that we could have

used.

To de�ne the ideal database rank for a query q, we need to determine how good

each database db is for q. In this chapter we assume that all databases use the same

algorithms to compute weights and similarities. (See Chapter 2.) We consider that

the only documents in db that are useful for q are those with a similarity to q greater

than a given threshold l, as determined by db. Documents with lower similarity are

unlikely to be useful, and therefore we ignore them. Thus, we de�ne:

Goodness(l; q; db) =
X

d 2 Rank(l; q; db)

sim(q; d) (4.1)

where sim(q; d) is the similarity between query q and document d, and Rank(l; q; db) =

fd 2 dbjsim(q; d) > lg. The ideal rank of databases Ideal(l) is then determined by

sorting the databases according to their goodness for the query q.

Example 15: Consider two databases, db1 and db2, a query q, and the answers that

the two databases give when presented with query q:

db1 : (d11; 0:9); (d
1
2; 0:9); (d

1
3; 0:1)

db2 : (d21; 0:8); (d
2
2; 0:4); (d

2
3; 0:3); (d

2
4; 0:1)

In the example, db1 returns documents d11, d
1
2, and d

1
3 as its answer to q. Documents d11

and d12 are ranked the highest in the answer, because they are the \closest" to query

q in database db1 (similarity 0.9). To determine how good each of these databases



4.2. CHOOSING DATABASES 81

is for q, we use Equation 4.1. If threshold l is 0:2 (i.e., the user is willing to ex-

amine every document with similarity to q higher than 0.2), the goodness of db1 is

Goodness(0:2; q; db1) = 0:9 + 0:9 = 1:8, because db1 has two documents, d11 and d12,

with similarity higher than 0:2. Similarly,Goodness(0:2; q; db2) = 0:8+0:4+0:3 = 1:5.

Therefore, Ideal(0:2) is db1; db2.

The goodness of a database tries to quantify how useful the database is for the

user that issued the query. It does so by examining the document-query similarities

as computed by each local source. A problem with this de�nition is that these similar-

ities can depend on the characteristics of the collection that contains the document.

Therefore, these similarities are not \globally valid." For example, if a database db1

specializes in computer science, the word databases might appear in many of its doc-

uments. Then, this word will tend to have a low associated weight in db1 (e.g., if

db1 uses the tf�idf formula for computing weights [Sal89]). The word databases, on

the other hand, might have a high associated weight in a database db2 that is to-

tally unrelated to computer science and contains very few documents with that word.

Consequently, db1 might assign its documents a low score for a query containing the

word databases, while db2 assigns a few documents a high score for that query. The

Goodness de�nition of Equation 4.1 might then determine that db2 is better than db1,

while db1 is the best database for the query. In Section 4.5 we further discuss this

problem, together with alternative ways of de�ning Goodness.

4.2 Choosing Databases

gGlOSS helps users (and in particular, metasearchers) determine what databases

might be most helpful for a query. gGlOSS ranks the databases according to their

potential usefulness for a given query. To perform this task, gGlOSS keeps information

on the available databases, to estimate their goodness for the query. As in the Boolean

case, one option would be for gGlOSS to keep complete information on each database:

for each database db and word t, gGlOSS would know what documents in db contain

t, what weight t has in each of them, and so on. Although gGlOSS's answers would



82 CHAPTER 4. GGLOSS: VECTOR-SPACE SOURCE DISCOVERY

always be accurate (if this information is kept up to date), the storage requirements

of such an approach would be too high: gGlOSS needs to index many databases,

and keeping so much information on each of them does not scale. Furthermore, this

information might not be available for commercial databases, for example.

More reasonable solutions keep incomplete yet useful information on the databases.

In this chapter we explore some options for gGlOSS that require one or both of the

following matrices:

� F = (fij): fij is the number of documents in database dbi that contain word tj

� W = (wij): wij is the sum of the weight of word tj over all documents in

database dbi

In other words, for each word tj and each vector-space database dbi, gGlOSS needs

(at most) two numbers. The second of these numbers is the sum of the weight of

tj over all documents in dbi, as determined by the vector-space retrieval algorithm

that dbi uses. Typically, the weight of a word tj in a document d is a function of the

number of times that tj appears in d and the number of documents in the database

that contain tj [Sal89]. Although the information that gGlOSS stores about each

database is incomplete, it will prove useful to generate database ranks that resemble

the ideal database rank of Section 4.1, as we will see in Section 4.4.2. Furthermore,

this information is orders of magnitude smaller than that required by a full-text index

of the databases (Section 3.7).

To obtain the data that gGlOSS keeps about a database dbi, namely rows fi�

and wi� of the F and W matrices above, database dbi will have to periodically run

a collector program that extracts this information from the local indexes and sends

it to the gGlOSS server, or export this information using the STARTS protocol of

Chapter 2, for example.

Example 16: Consider a database db and the word computer. Suppose that the

following are the documents in db having the word computer in them, together with

the associated weights:

computer : (d1; 0:8); (d2; 0:7); (d3; 0:9); (d8; 0:9)



4.2. CHOOSING DATABASES 83

That is, document d1 contains the word computer with weight 0.8 (for some weight-

computation algorithm [SM83]), document d2, with weight 0.7, and so on. Database

db will not export all this information to gGlOSS: it will only tell gGlOSS that the

word computer appears in four documents in database db, and that the sum of the

weights with which the word appears in the documents is 0:8 + 0:7 + 0:9 + 0:9 = 3:3.

In our de�nitions below, we assume that a query q is expressed as a weight vector

Q = (q1; : : : ; qj; : : : ; qt) [SM83], where qj is the weight of word tj in query q. For

example, this weight can simply be the number of times that word tj appears in

the query. We also assume throughout this chapter that the vector-space databases

compute the similarity between a document and a query by taking the inner product

of the corresponding document and query weight vectors.

Since gGlOSS represents both the databases and the queries as vectors, gGlOSS

could compute similarities between these vectors analogously to how documents and

queries are compared. gGlOSS could use these similarities to rank the databases for

the given query. For example, gGlOSS could estimate the goodness of database dbi for

query q as the inner product w0
i� �Q, where w

0
i� = (w0

i1; : : : ; w
0
it) is the (normalized) row

ofW that corresponds to dbi. However, we are interested in �nding the databases that

contain useful documents for the queries, not those databases that are \similar" to

the given queries. The de�nitions of the gGlOSS ranks below re
ect this fact. Also,

note that the vectors with which gGlOSS represents each database can be viewed

as cluster centroids [Sal89], where each database is considered as a single document

cluster 1.

Because the information that gGlOSS keeps about each database is incomplete, it

has to make assumptions regarding the distribution of query keywords and weights

across the documents of each database. These assumptions allow gGlOSS to compute

better estimates. The following sections present two sets of assumptions that gGlOSS

will use to derive di�erent database ranks for a given query. These assumptions are

1An interesting direction to explore is to represent each database db as a set of (very few) cluster
centroids. Each of these centroids would summarize a set of closely related documents of db.



84 CHAPTER 4. GGLOSS: VECTOR-SPACE SOURCE DISCOVERY

arti�cial: very rarely would a set of databases and queries conform to them. However,

we use them because these type of assumptions proved themselves useful for Boolean

GlOSS to choose the \right" databases for a query (Chapter 3).

4.2.1 High-Correlation Scenario

To derive Max (l), the �rst database rank with which gGlOSS tries to match the

Ideal(l) database rank of Section 4.1, gGlOSS assumes that if two words appear

together in a user query, then these words will appear in the database documents

with the highest possible correlation:

Assumption 1: If query keywords t1 and t2 appear in fi1 and fi2 documents in

database dbi, respectively, and fi1 � fi2, then every dbi document that contains t1 also

contains t2.

Example 17: Consider a database dbi and the query q=computer science department.

For simplicity, let t1= computer, t2= science, and t3= department. Suppose that

fi1 = 2, fi2 = 9, and fi3 = 10: there are 2 documents in dbi with the word computer,

9 with the word science, and 10 with the word department.

gGlOSS assumes that the 2 documents with the word computer also contain the

words science and department. Furthermore, all of the 9 � 2 = 7 documents with

word science but not with word computer also contain the word department. Finally,

there is exactly 10 � 9 = 1 document with just the word department.

gGlOSS also needs to make assumptions on the weight distribution of the words

across the documents of a database:

Assumption 2: The weight of a word is distributed uniformly over all documents

that contain the word.

Thus, word tj has weight
wij

fij
in every dbi document that contains tj. This assumption

simpli�es the computations that gGlOSS has to make to rank the databases. We will

see in Section 4.4 that this unrealistic assumption is surprisingly e�ective.



4.2. CHOOSING DATABASES 85

Example 17: (cont.) Suppose that the total weights for the query words in database

dbi are wi1 = 0:45, wi2 = 0:2, and wi3 = 0:9. According to Assumption 2, each of the

two documents that contain word computer will do so with weight 0:45
2

= 0:225, each

of the 9 documents that contain word science will do so with weight 0:2
9
= 0:022, and

so on.

gGlOSS uses the assumptions above to estimate how many documents in a database

have similarity greater than some threshold l to a given query, and what the added

similarity of these documents is. These estimates determine the Max (l) database

rank.

Consider database dbi with its two associated vectors fi� and wi�, and query q,

with its associated vector Q. Suppose that the words in q are t1; : : : ; tn, with fia � fib

for all 1 � a � b � n. Assume that fi1 > 0. From Assumption 1, the fi1 documents

in dbi that contain word t1 also contain all of the other n � 1 query words. From

Assumption 2, the similarity of any of these fi1 documents to the query q is:

sim1 =
X

j=1;:::;n

qj �
wij

fij

Furthermore, these fi1 documents have the highest similarity to q among the doc-

uments in dbi. Therefore, if sim1 � l, then there are no documents in dbi with

similarity greater than threshold l. If, on the other hand, sim1 > l, then gGlOSS

should explore the fi2 � fi1 documents (Assumption 1) that contain words t2; : : : ; tn,

but not word t1. Thus, gGlOSS �nds p such that:

simp =
X

j=p;:::;n

qj �
wij

fij
> l, but (4.2)

simp+1 =
X

j=p+1;:::;n

qj �
wij

fij
� l (4.3)

Then, the fip documents having (at least) query words tp; : : : ; tn have an estimated

similarity to q greater than threshold l (Condition 4.2), whereas the documents having

only query words tp+1; : : : ; tn do not.



86 CHAPTER 4. GGLOSS: VECTOR-SPACE SOURCE DISCOVERY

Using this de�nition of p and the assumptions above, we give the �rst de�nition for

Estimate(l; q; dbi), the estimated goodness of database dbi for query q, that determines

the Max (l) database rank:

Estimate(l; q; dbi) =
X

j=1;:::;p

(fij � fi(j�1))� simj

= (
X

j=1;:::;p

qj � wij) + fip �
X

j = p+ 1; : : : ; n

qj �
wij

fij
(4.4)

where we de�ne fi0 = 0, and simj is the similarity between q and any document having

words tj; : : : ; tn, but not words t1; : : : ; tj�1. There are fij � fi(j�1) such documents

in dbi. This de�nition computes the added similarity of the fip documents estimated

to have similarity to q greater than threshold l. (See Conditions 4.2 and 4.3, and

Assumptions 1 and 2.)

Example 17: (cont.) Assume that query q has weight 1 for each of its three words.

According to Assumption 1, the two documents with the word computer also have the

words science and department in them. The similarity of any of these two documents

to q is, using Assumption 2, 0:45
2 + 0:2

9 + 0:9
10 = 0:337. If our threshold l is 0.2, then

all of these documents are acceptable, because their similarity to q is higher than

0.2. Also, there are 9� 2 = 7 documents with the words science and department but

not computer. The similarity of any of these 7 documents to q is 0:2
9 + 0:9

10 = 0:112.

Then these documents are not acceptable for threshold l = 0:2. There is 10 � 9 = 1

document with only the word department, but this document's similarity to q is even

lower. Consequently, p = 1. (See Conditions 4.2 and 4.3.) Then, according to the

Max (0:2) de�nition of Estimate, Estimate(0:2; q; dbi) = fi1 � (q1 �
wi1
fi1

+ q2 �
wi2
fi2

+

q3 �
wi3
fi3

) = 2 � (1� 0:45
2 + 1� 0:2

9 + 1 � 0:9
10 ) = 0:674.

4.2.2 Disjoint Scenario

To derive Sum(l), another rank that gGlOSS uses to approximate Ideal(l), gGlOSS

assumes that if two words appear together in a user query, then these words do not

appear together in any database document (if possible):



4.2. CHOOSING DATABASES 87

Assumption 3: The set of dbi documents with word t1 is disjoint with the set of

dbi documents with word t2, for all t1 and t2, t1 6= t2, that appear in query q.

Therefore, the words that appear in a user query are assumed to be negatively corre-

lated in the database documents. gGlOSS also needs to make Assumption 2, that is,

the assumption that weights are uniformly distributed.

Consider database dbi with its two associated vectors fi� and wi�, and query q,

with its associated vector Q. Suppose that the words in q are t1; : : : ; tn. For any

query word tj (1 � j � n), then the fij documents containing tj do not contain query

word tp, for all 1 � p � n, p 6= j (Assumption 3). Furthermore, the similarity of each

of these fij documents to q is exactly qj �
wij

fij
, if fij > 0 (from Assumption 2).

For rank Sum(l) we then de�ne Estimate(l; q; dbi), the estimated goodness of

database dbi for query q, as:

Estimate(l; q; dbi) =
X

j=1;:::;nj(fij>0)^(qj�
wij

fij
>l)

fij � (qj �
wij

fij
)

=
X

j=1;:::;nj(fij>0)^(qj�
wij

fij
>l)

qj �wij (4.5)

Example 18: Consider the data of Example 17. According to Assumption 3, there

are 2 documents containing the word computer and none of the other query words,

9 documents containing the word science and none of the other query words, and 10

documents containing the word department and none of the other query words. The

documents in the �rst group have similarity 0:45
2 = 0:225 (from Assumption 2), and

are thus acceptable, because our threshold l is 0.2. The documents in the second and

third groups have similarity 0:2
9

= 0:022 and 0:9
10

= 0:09, respectively, and are thus

not acceptable for our threshold. So, the only documents close enough to query q are

the two documents that contain word computer. Then, according to the Sum(0:2)

de�nition of Estimate, Estimate(0:2; q; dbi) = fi1 �
wi1
fi1

= 0:45.



88 CHAPTER 4. GGLOSS: VECTOR-SPACE SOURCE DISCOVERY

Notice the special case when the threshold l is zero. In this case, the Max (0) and

Sum(0) de�nitions of Estimate (Equations 4.4 and 4.5) become:

Estimate(0; q; dbi) =
X

j=1;:::;n

qj � wij

assuming that if fij = 0, then wij = 0. Then, Estimate(0; q; dbi) becomes the inner

product Q � wi�. To compute the Max (0) and Sum(0) ranks, gGlOSS does not need

the matrix F of document frequencies of the words; it only needs the matrix W of

added weights. 2 Therefore, the storage requirements for gGlOSS to compute the

database ranks may be much lower if l = 0. We pay special attention to these ranks

in our experiments of Section 4.4.2.

4.3 Comparing Database Ranks

In this section we analyze how we can compare gGlOSS's ranks (Section 4.2) to the

ideal one (Section 4.1). In the following section we report experimental results using

the comparison methodology of this section.

Let q be a query, and DB = fdb1; : : : ; dbsg be the set of available databases. Let

G = (dbg1; : : : ; dbgs0 ) be the database rank that gGlOSS generated for q, using one

of the schemes of Section 4.2. We only include in G those databases with estimated

goodness greater than zero: we assume that users ignore databases with zero esti-

mated goodness. Thus, in general, s0 � s. Finally, let I = (dbi1; : : : ; dbis00 ) be the ideal

database rank. We only include in I those databases with actual goodness greater

than zero. Our goal is to compare G against I, and quantify how close the two ranks

are.

One way to compare the G and I ranks is by using the Goodness metric that

we used to build I. We consider the top n databases in rank I, and compute in, the

accumulated goodness of these n databases for query q. Because rank I was generated

using this metric, the top n databases in rank I have the maximum accumulated

2We might need F , though, to compute the weight vector for the queries, depending on the
algorithm used for this.



4.3. COMPARING DATABASE RANKS 89

goodness for q that any subset of n databases of DB can have. We then consider

the top n databases in rank G, and compute gn, the accumulated goodness of these

n databases for q. Because gGlOSS generated rank G using only partial information

about the databases, in general gn � in. (If n > s0 (resp. n > s00), we compute gn

(in) by just taking the s0 (s00) databases in G (I).) We then compute:

Rn =

8<
:

gn
in

if in > 0

1 otherwise

This number gives us the fraction of the optimum goodness (in) that gGlOSS captured

in the top n databases in G, and models what the user that searches the top n

databases that gGlOSS suggests would get, compared to what the user would have

gotten by searching the top n databases in the ideal rank.

Example 19: Consider a query q, and �ve databases dbi, 1 � i � 5. Figure 4.1

shows I, the ideal database rank, and G and H, two di�erent gGlOSS database

ranks for q, for some de�nition of these ranks. For example, db1 is the top database

in the ideal rank, with Goodness(l; q; db1) = 0:9. Database db5 does not appear in

rank I, because Goodness(l; q; db5) = 0. gGlOSS correctly predicted this for rank G

(Estimate(l; q; db5) = 0 for G), and so db5 does not appear in G. However, db5 does

appear in H, because Estimate(l; q; db5) = 0:2 for H.

Let us focus on the G rank: db2 is the top database in G, with Estimate(l; q; db2) =

0:8. The real goodness of db2 for q is Goodness(l; q; db2) = 0:4. From the ranks

of Figure 4.1, R1 = 0:4
0:9: if we access db2, the top database from the G rank,

we obtain Goodness(l; q; db2) = 0:4, whereas the best database for q is db1, with

Goodness(l; q; db1) = 0:9. Similarly, R3 =
0:4+0:9+0:3
0:9+0:4+0:3 = 1. In this case, by accessing

the top three databases in the G rank we access exactly the top three databases in

the ideal rank, and thus R3 = 1. However, R4 = 0:4+0:9+0:3
0:9+0:4+0:3+0:2 = 0:89, since the

G rank does not include db4 (Estimate(l; q; db4) = 0), which is actually useful for q

(Goodness(l; q; db4) = 0:2).

Now consider the H rank. H includes all the databases that have Goodness> 0 in

exactly the same order as G. Therefore, the Rn metric for H coincides with that for



90 CHAPTER 4. GGLOSS: VECTOR-SPACE SOURCE DISCOVERY

I G H
db Goodness db Estimate db Estimate

db1 0.9 db2 0.8 db2 0.9
db2 0.4 db1 0.6 db1 0.8
db3 0.3 db3 0.3 db3 0.4
db4 0.2 db5 0.2

Figure 4.1: The ideal and gGlOSS database ranks for Example 19.

G, for all n. However, rank G is in some sense better than rank H, since it predicted

that db5 has zero goodness, as we mentioned above. H failed to predict this. The

Rn metric does not distinguish between the two ranks. This is why we introduce our

following metric.

As the previous example motivated, we need another metric, Pn, to distinguish

between gGlOSS ranks that include useless databases and those that do not. Given

a gGlOSS rank G for query q, Pn is the fraction of Topn(G), the top n databases

of G (which have a non-zero Estimate for being in G), that actually have non-zero

goodness for query q:

Pn =
jfdb 2 Topn(G)jGoodness(l; q; db) > 0gj

jTopn(G)j

(Actually, Pn = 1 if for all db, Estimate(l; q; db) = 0.) Note that Pn is independent

of the ideal database rank I: it just depends on how many databases that gGlOSS

estimated as potentially useful turned out to actually be useful for the query. A

ranking with higher Pn is better because it leads to fewer fruitless database searches.

Example 19: (cont.) In the previous example, P4 =
3
3 = 1 for G, because all of

the databases in G have actual non-zero goodness. However, P4 =
3
4
= 0:75 for H:

of the four databases in H, only three have non-zero goodness.



4.4. EVALUATING GGLOSS 91

4.4 Evaluating gGlOSS

In this section we evaluate di�erent gGlOSS ranking algorithms experimentally. We

�rst describe the real-user queries and databases that we used in the experiments.

Then, we report results for Max (l) and Sum(l), the two gGlOSS ranks of Section 4.2.

4.4.1 Queries and Databases

To evaluate gGlOSS experimentally, we used real-user queries and databases. The

queries that we used where pro�les that real users submitted to the SIFT Netnews

server developed at Stanford [YGM95b]. Users send pro�les in the form of Boolean or

vector-space queries to the SIFT server, which in turn �lters Netnews articles every

day and sends the articles matching the pro�les to the corresponding users. We used

the 6800 vector-space pro�les that were active on the server in December 1994.

To evaluate the gGlOSS performance using these 6800 queries, we used 53 news-

groups as 53 databases: we took a snapshot of the articles that were active at the

Stanford Computer-Science-Department news host on one arbitrary day, and used

these articles to populate the 53 databases. We selected all the newsgroups in

the comp.databases, comp.graphics, comp.infosystems, comp.security, rec.-

arts.books, rec.arts.cinema, rec.arts.comics, and rec.arts.theatre hierar-

chies that had active documents in them when we took the snapshot.

We indexed the 53 databases and evaluated the 6800 queries on them using the

SMART system (version 11.0) developed at Cornell University. To keep our ex-

periments simple, we chose the same weighting algorithms for the queries and the

documents across all of the databases. We indexed the documents using the SMART

ntc formula, which generates document weight vectors using the cosine-normalized

tf�idf product [Sal89]. We indexed the queries using the SMART nnn formula, which

generates query weight vectors using the word frequencies in the queries. The similar-

ity coe�cient between a document vector and a query vector is computed by taking

the inner product of the two vectors.

For each query and gGlOSS ranking algorithm we compared the ideal rank against

the gGlOSS rank using the methodology of Section 4.3. We evaluated each query at



92 CHAPTER 4. GGLOSS: VECTOR-SPACE SOURCE DISCOVERY

each of the 53 databases to generate its ideal database rank. For a �xed gGlOSS

ranking de�nition and a query, we computed the rank of databases that gGlOSS

would produce for that query: we extracted the (partial) information that gGlOSS

needs from each of the 53 databases. For each query word, gGlOSS needs the number

of documents in each database that include the word, and the sum of the weight of the

word in each of these documents. To extract all this information, we queried the 53

databases using each query word individually, which totaled an extra 18,213 queries.

We should stress that this is just the way we performed the experiments, not the

way a gGlOSS server will obtain the information it needs about each database: in a

real system, each database will periodically scan its indexes, generate the information

that gGlOSS needs, and export it to the gGlOSS server. (See Section 4.2.)

4.4.2 Experimental Results

In this section we experimentally compare the gGlOSS database ranks against the

ideal ranks in terms of the Rn and Pn metrics. We study which of the Max (l) and

Sum(l) database ranks is better at predicting ideal rank Ideal(l), and what impact the

threshold l has on the performance of gGlOSS. We also investigate whether keeping

both the F and W matrices of Section 4.2 is really necessary, since gGlOSS needs

only one of these matrices to compute ranks Max (0) and Sum(0) (Section 4.2.2).

Ideal database rank Ideal(0) considers any document with a non-zero similarity

to the query as useful. Ranks Max (0) and Sum(0) are identical to Ideal(0), and so

they have Rn = Pn = 1 for all n. Consequently, if a user wishes to locate databases

where the overall similarity between documents and the given query is highest and

any document with non-zero similarity is interesting, gGlOSS should use the Max (0)

(or, identically, Sum(0)) ranks and get perfect results.

To study the impact of higher rank thresholds, Figures 4.2 and 4.3 show results

for the Ideal(0:2) ideal rank. We show Rn and Pn for values of n ranging from 1

to 15. We do not report data for higher n's because most of the queries have fewer

than 15 useful databases according to Ideal(0:2) and hence, the results for high values

of n are not that signi�cant. Figure 4.3 shows that rank Sum(0:2) has perfect Pn



4.4. EVALUATING GGLOSS 93

(Pn = 1) for all n, because if a database db has Estimate(0:2; q; db) > 0 according to

the Sum(0:2) rank, then Goodness(0:2; q; db) > 0 according to Ideal(0:2). In other

words, rank Sum(0:2) only includes databases that are guaranteed to be useful. Rank

Max (0:2) may include databases not guaranteed to be useful, yielding higher Rn

values (Figure 4.2), but lower Pn values (Figure 4.3).

To decide whether gGlOSS really needs to keep both matrices F and W (Sec-

tion 4.2), we also use ranks Max (0) and Sum(0) to approximate rank Ideal(0:2).

gGlOSS needs only one of the two matrices to compute these ranks (Section 4.2.2).

Since ranks Max (0) and Sum(0) are always identical, we just present their data once

labeled Max (0)/Sum(0). Figure 4.2 shows that the Max (0) rank has the highest

values of Rn. This rank assumes a threshold l = 0, and thus it tends to include

more databases than its counterparts with threshold 0.2. This is also why Max (0)

has much lower Pn values (Figure 4.3) than Max (0:2) and Sum(0:2): it includes more

databases that have zero goodness according to Ideal(0:2).

In summary, if the users are interested in not missing any useful database, but

are willing to search some useless ones, then Max (0) is the best choice for gGlOSS,

and gGlOSS can do without matrix F . If the users wish to avoid searching useless

databases, then Sum(0:2) is the best choice. Unfortunately, Sum(0:2) also has low

Rn values, which means it can also miss some useful sources. As a compromise, a

user can haveMax (0:2), which has much better Pn values than Max (0) and generally

better Rn values than Sum(0:2). Also, note that in the special case where users are

interested in accessing only one or two databases (n = 1; 2) then Max (0:2) is the

best choice for the Rn metric. In this case, it is worthwhile for gGlOSS to keep both

matrices F and W .

To show the impact of the rank thresholds, Figures 4.4 and 4.5 show the Rn and

Pn values for the di�erent ranks and a �xed n = 3, and for values of the threshold

l from 0 to 0.4. For larger values of l, most of the queries have no database with

goodness greater than zero. For example, for ideal rank Ideal(0:6) each query has on

average only 0.29 useful databases. Therefore, we only show the data for threshold

0.4 and lower. At �rst glance one might expect theRn and Pn performance ofMax (0)

not to change as the threshold l varies, since the ranking it computes is independent



94 CHAPTER 4. GGLOSS: VECTOR-SPACE SOURCE DISCOVERY

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1 3 5 7 9 11 13 15

Rn

n

Max(0:2) 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Sum(0:2) 2

2

2
2
2
2 2 2 2 2 2 2 2 2 2 2

Max(0)=Sum(0) 4

4
4
4444444444444

Figure 4.2: Parameter Rn as a function of n, the number of databases examined
from the ranks, for the Ideal(0:2) ideal database ranking and the di�erent gGlOSS
rankings.

of the desired l. However, as l increases, the ideal rank Ideal(l) changes, and the

static estimate provided by Max (0) performs worse and worse for Pn. The Max (l)

and Sum(l) ranks do take into account the target l values, and hence do substantially

better. Our earlier conclusion still holds: strategy Sum(l) is best at avoiding useless

databases, while Max (0) provides the best Rn values (at the cost of low Pn values).

In summary, gGlOSS generally predicts fairly well the best databases for a given

query. Actually, the more gGlOSS knows about the users' expectations, the better

gGlOSS can rank the databases for the query. If high values of both Rn and Pn are of

interest, then gGlOSS should produce ranks based on the high-correlation assumption

of Section 4.2.1: rankMax (l) is the best candidate for rank Ideal(l) with l > 0. If only

high values of Rn are of interest, then gGlOSS can do without matrix F , and produce

ranks Max (0) or Sum(0). If only high values of Pn are of interest, then gGlOSS

should produce ranks based on the disjoint-scenario assumption of Section 4.2.2:

rank Sum(l) is the best candidate. For rank Ideal(0), ranks Max (0) and Sum(0)

give perfect answers.



4.4. EVALUATING GGLOSS 95

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15

Pn

n

Max(0:2) 3

3
3
3
3
3 3 3 3 3 3 3 3 3 3 3

Sum(0:2) 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Max(0)=Sum(0) 4

4

4
4
4
4
4444444444

Figure 4.3: Parameter Pn as a function of n, the number of databases examined
from the ranks, for the Ideal(0:2) ideal database ranking and the di�erent gGlOSS
rankings.

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

R3

l

Max(l) 3

3

3

3

3
3

Sum(l) 2

2

2

2

2

2

Max(0)=Sum(0) 4

4

4

4

4 4

Figure 4.4: Parameter R3 as a function of the threshold l, for ideal rank Ideal(l).



96 CHAPTER 4. GGLOSS: VECTOR-SPACE SOURCE DISCOVERY

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P3

l

Max(l) 3

3 3

3

3
3

Sum(l) 2

2 2 2 2 2

Max(0)=Sum(0) 4

4

4

4

4

4

Figure 4.5: Parameter P3 as a function of the threshold l, for ideal rank Ideal(l).

4.5 Alternative Ideal Ranks

Section 4.1 presented a way of de�ning the goodness of a database for a query, and

also showed a problem with its associated ideal database rank. In this section we

explore alternative ideal database ranks for a query, similarly as in Section 3.4.3 for

Boolean databases. (Even other possibilities are discussed in [GGM95b].)

We can organize the di�erent database ranks for a query into two classes, according

to whether the ranks depend on the number of relevant documents for the query in

each database or not (Section 3.4.3). The �rst two alternative ranks belong to the

�rst class.

The �rst rank, Rel All, simply orders the databases based on the number of rele-

vant documents they contain for the given query. By relevant we mean that the user

who submits q will judge these documents to be of interest. To see a problem with this

rank, consider a database db that contains, say, three relevant documents for some

query q. Unfortunately, it turns out that the search engine at db does not include any

of these documents in the answer to q. So, the user will not bene�t from these three

relevant documents. Thus, we believe it is best to evaluate the ideal goodness of a

database by what its search engine might retrieve, not by what potentially relevant

documents it might contain. Notice that a user might eventually obtain these relevant

documents by successively modifying the query. Our model would treat each of these

queries separately, and decide which databases are the best for each individual query.



4.5. ALTERNATIVE IDEAL RANKS 97

Our second rank, Rel Rank(l), improves on Rel All by considering only the relevant

documents in each database that have a similarity to q greater than a threshold l, as

computed by the individual databases. The underlying assumption is that users will

not examine documents with lower similarity in the answers to the queries, because

these documents are unlikely to be useful. This de�nition does not su�er from the

problem of the Rel All rank: we simply ignore relevant documents that db does not

include in the answer to q with su�ciently high similarity. However, in general we

believe that ranks based on end-user relevance are not appropriate for evaluating

schemes like gGlOSS. That is, the best we can hope for any tool like gGlOSS is that

it predicts the answers that the databases will give when presented with a query. If

the databases cannot rank the relevant documents high and the non-relevant ones low

with complete index information, it is asking too much that gGlOSS derive relevance

judgments with only partial information. Consequently, the database rankings that

are not based on document relevance seem a more useful frame of reference to evaluate

the e�ectiveness of gGlOSS. Hence, the remaining ranks that we consider do not use

relevance information.

The Global(l) rank is based on considering the contents of all the databases as a

single collection. The documents are then ranked according to their \global" simi-

larity to query q. We consider only those documents having similarity to q greater

than a threshold l. The Goodness metric associated with rank Global(l) would add

the similarities of the acceptable documents. The problem with this rank is related

to the problem with the Rel All rank: a database db may get high goodness values for

documents that do not appear (high) in the answer that the database produces for

q. Therefore, db is not as useful to q as the Goodness metric predicted. To avoid this

problem, the goodness of a database for a query should be based on the document

rank that the database generates for the given query.

The de�nition of Goodness of Section 4.1 does not rely on relevance judgments,

and is based on the document ranks that the databases produce for the queries.

Therefore, that de�nition does not su�er from the problems of the alternative ranks

that we considered so far in this section. However, as we mentioned in Section 4.1, a

problem is that the similarities computed at the local databases can depend on the



98 CHAPTER 4. GGLOSS: VECTOR-SPACE SOURCE DISCOVERY

characteristics of the collections, and thus they might not be valid globally. The next

de�nition attempts to compensate for this collection-dependent computations.

The next rank, Local(l), considers only the set of documents in db having scaled

similarity to q greater than a threshold l. We scale the similarities coming from

di�erent databases di�erently, to compensate for the collection-dependent way in

which these similarities are computed. Also, we should base the goodness of each

database on its answer to the query, to avoid the anomalies we mentioned above for

the Rel All and the Global ranks. One way to achieve these two goals is to multiply

the similarities computed by database db by a positive constant scale(q; db):

Goodness(l; q; db) = scale(q; db)�
X

d 2 Scaled Rank(l; q; db)

sim(q; d)

where scale(q; db) is the scaling factor associated with query q and database db, and

Scaled Rank(l; q; db) = fd 2 dbjsim(q; d)� scale(q; db) > lg.

The problem of how to modify the locally computed similarities to compensate for

collection-dependent factors in their computation has received attention recently in

the context of the collection-fusion problem. (See Chapter 5.) In general, determining

what scaling factor to use to de�ne the Local(l) ideal database rank is an interesting

problem. If we incorporated scaling into the Goodness de�nition, we should modify

gGlOSS's ranks to imitate this scaling.

In summary, none of the database ranking schemes that we have discussed is per-

fect, including the ones we used for our experiments. Each scheme has its limitations,

and hence, should be used with care.

4.6 Decentralizing gGlOSS

So far, we described gGlOSS as a centralized server that users query to select the

most promising sources for their queries. In this section we show how we can build a

more distributed version of gGlOSS using essentially the same methodology that we

developed in the previous sections.

Suppose that we have a number of gGlOSS servers G1; : : : ; Gs, indexing each a



4.6. DECENTRALIZING GGLOSS 99

set of databases as we described in the previous sections. (Each of these servers can

index the databases at one university or company, for example.) We will now build

a higher-level gGlOSS server, hGlOSS, that summarizes the contents of the gGlOSS

servers in much the same way as the gGlOSS servers summarize the contents of the

underlying databases. 3 The users will then query the hGlOSS server �rst, and obtain

a rank of the gGlOSS servers according to how likely they are to have indexed useful

databases. Later, the gGlOSS servers will produce the �nal database ranks. Although

the hGlOSS server is still a single entry point for users to search for documents, the

size of this server will be so small that it will be inexpensive to massively replicate

it, distributing the access load among the replicas. In this way, organizations will

be able to manage their own \traditional" gGlOSS servers, and will let replicas of a

logically unique higher-level gGlOSS, hGlOSS, concisely summarize the contents of

their gGlOSS servers.

The key point is to notice that hGlOSS can treat the information about a database

at a traditional gGlOSS server in the same way as the traditional gGlOSS servers treat

the information about a document at the underlying databases. The \documents"

for hGlOSS will be the database summaries at the gGlOSS servers.

To keep the size of the hGlOSS server small, the information that the hGlOSS

server keeps about a gGlOSS server Gr is limited. For example, hGlOSS keeps one or

both of the following matrices (see Section 4.2):

� H = (hrj): hrj is the number of databases in gGlOSS Gr that contain word tj

� D = (drj): drj is the sum of the number of documents that contain word tj in

each database in gGlOSS Gr

In other words, for each word tj and each gGlOSS server Gr, hGlOSS needs (at most)

two numbers, in much the same way as the gGlOSS servers summarize the contents

of the document databases (Section 4.2).

Example 20: Consider a gGlOSS server Gr and the word computer. Suppose that

the following are the databases in Gr having documents with the word computer in

3Although our discussion focuses on a 2-level hierarchy of servers, we can use the same principles
to construct deeper hierarchies.



100 CHAPTER 4. GGLOSS: VECTOR-SPACE SOURCE DISCOVERY

them, together with their corresponding gGlOSS weights and frequencies:

computer : (db1; 5; 3:4); (db2; 2; 1:8); (db3; 1; 0:3)

That is, database db1 has �ve documents with the word computer in them, and their

added weight is 3.4 for that word, database db2 has two documents with the word

computer in them, and so on. hGlOSS will only know that the word computer appears

in three databases in Gr, and that the sum of the number of documents for the word

and the databases is 5 + 2 + 1 = 8. hGlOSS will not know the identities of these

databases, or the individual document counts associated with the word and each

database.

We can now use the same methodology we used for gGlOSS in the previous sec-

tions: given a query q, we de�ne the goodness of each gGlOSS server Gr for the query:

for example, we can take the database rank that Gr produces for q, together with

the goodness estimate for each of these databases according to Gr, and de�ne the

goodness of Gr for q as a function of this rank. This computation is analogous to

how we computed the goodness of the databases in Section 4.1.

After de�ning what the goodness of each gGlOSS server is for query q, we de�ne

how hGlOSS is going to estimate this goodness given only partial information about

each gGlOSS server. hGlOSS will determine the Estimate for a gGlOSS server Gr

using the vectors hr� and dr� for Gr in a way analogous to how the gGlOSS servers

determine the Estimate for a database dbi using the fi� and wi� vectors. After de�ning

the Estimate for each gGlOSS server, hGlOSS ranks the gGlOSS servers so that the

users can access the most promising servers �rst, i.e., those most likely to index useful

databases.

To illustrate hGlOSS's potential, we brie
y describe one experiment. For this, we

divide the 53 databases of Section 4.4 into �ve randomly-chosen groups of around ten

databases each. Each of these groups corresponds to a di�erent gGlOSS server.

We assume that the gGlOSS servers approximate ideal rank Ideal(0) with the

Max (0) database rank. Next, we de�ne the goodness of a gGlOSS server Gr for a

query q as the number of databases indexed by Gr having a goodness Estimate for



4.7. LARGER SCALE EFFECTIVENESS EXPERIMENTS 101

n Rn Pn

1 0.985 1
2 0.991 1
3 0.994 1
4 0.998 1
5 1 1

Figure 4.6: The Rn and Pn metrics for hGlOSS and our sample experiment.

q greater than zero. This de�nition determines the ideal rank of gGlOSS servers.

To approximate this ideal rank, hGlOSS periodically receives the H matrix de�ned

above from the underlying gGlOSS servers. For query q with words t1; : : : ; tn and

gGlOSS server Gr, hr1; : : : ; hrn are the database counts for Gr associated with the

query words. (Word t1 appears in hr1 databases in gGlOSS server Gr, and so on.)

Assume that hr1 � : : : � hrn. Then, hGlOSS estimates the goodness of Gr for q as

hrn. In other words, hGlOSS estimates that there are hrn databases in Gr that have

a non-zero goodness estimate for q.

Figure 4.6 shows the di�erent values of the (adapted) Rn and Pn metrics for

the 6,800 queries of Section 4.4. Note that Pn = 1 for all n, because every time

hGlOSS chooses a gGlOSS server using the ranking described above, this server ac-

tually has databases with non-zero estimates. From the high values for Rn it follows

that hGlOSS is extremely good at ranking \useful" gGlOSS servers.

Our single experiment used a particular ideal ranking and evaluation strategy.

We can also use the other rankings and strategies we have presented adapted to the

hGlOSS level, and tuned to the actual user requirements. Also, the hGlOSS server will

be very small in size and easily replicated, thus eliminating the potential bottleneck

that the centralized gGlOSS architecture can su�er.

4.7 Larger Scale E�ectiveness Experiments

The database ranks produced by gGlOSS are incremental \plans" for evaluating a

query. In e�ect, we �rst contact the top database in the rank. If we are not sat-

is�ed with the answers retrieved, we contact the second database, and so on. The



102 CHAPTER 4. GGLOSS: VECTOR-SPACE SOURCE DISCOVERY

e�ectiveness metrics that we introduced in this chapter (Section 4.3) provide a way

of evaluating how good these incremental plans for a query are. In this section, we

revisit the Boolean version of GlOSS of Chapter 3 and evaluate it with these new

metrics. Also, to be sure that Boolean GlOSS would be useful as a large scale text

source discovery system, we scaled up the number of databases by about two orders

of magnitude from the six databases used in the experiments of Chapter 3. Thus,

this section uses the metrics of this chapter to demonstrate that Boolean GlOSS can

select relevant databases e�ectively from among a large set of candidates [TGL+97].

For our new Boolean GlOSS experiments, we used as data the complete set of

United States patents for 1991. Each patent issued is described by an entry that

includes various attributes (e.g., names of the patent owners, issuing date) as well as

a text description of the patent. The total size of the patent data is 3.4 gigabytes.

We divided the patents into 500 databases by �rst partitioning them into �fty groups

based on date of issue, and then dividing each of these groups into ten subgroups,

based on the high order digit of a subject-related patent classi�cation code. This

partitioning scheme gave databases that ranged in size by an order of magnitude, and

were at least somewhat di�erentiated by subject. Both properties are ones we would

expect to see in a real distributed environment.

For test queries, we used the real-user INSPEC queries of Chapter 3, excluding all

queries with �eld designators not applicable to the patent data. Although INSPEC is

not a patent database, it covers a similar range of technical subjects, so we expected

a fair number of hits against our patent data. Each query is a Boolean conjunction

of one or more words, e.g., microwave ^ interferometer. A document is considered to

match a query if it contains all the words in the conjunction.

To test GlOSS's ability to locate the databases with the greatest number of match-

ing documents, we compared the recommendations of its Ind estimator to those of

an \omniscient" database selection mechanism implemented using a full-text index

of the contents of our 500 patent databases, as in Chapter 3. For each query, we

found the exact number of matching documents in each database, using the full-text

index, and ranked the databases accordingly. We compared this ranking with the

ranking suggested by GlOSS by calculating, for various values of n, the Rn metric



4.8. CONCLUSION 103

n Rn

1 0.712
2 0.725
3 0.730
4 0.736
5 0.744
6 0.750
7 0.755
8 0.758
9 0.764
10 0.769

Figure 4.7: The average Rn metric for 500 text databases and the TRACEINSPEC
queries of Chapter 3.

of Section 4.3. The Goodness of a database for a query is the number of matching

documents for the query that the database contains.

Figure 4.7 shows the results of this experiment. Compared to an omniscient selec-

tor, GlOSS does a reasonable job of selecting relevant databases, on average �nding

over seventy percent of the documents that could be found by examining an equal

number of databases under ideal circumstances, with gradual improvement as the

number of databases examined increases. Using GlOSS gives a dramatic improve-

ment over randomly selecting databases to search, for a fraction of the storage cost

of a full-text index.

4.8 Conclusion

We have shown how to construct source-discovery servers for both vector-space text

databases and hierarchies of source-discovery servers. Based on compact collected

statistics, these servers can provide very good hints for �nding the relevant databases,

or �nding relevant lower-level servers with more information for a given query. An

important feature of our approach is that the same machinery can be used for both

types of servers, either the lower-level or the higher-level ones. Our experimental



104 CHAPTER 4. GGLOSS: VECTOR-SPACE SOURCE DISCOVERY

results show that gGlOSS and hGlOSS are quite promising and could provide useful

services in large, distributed information systems.



Chapter 5

The Result Merging Problem

Increasingly, sources on the Internet and elsewhere rank the objects in the results of

selection queries according to how well these objects match the original condition. For

such sources, query results are not 
at sets of objects that match a given condition.

Instead, query results are sorted starting from the top (best) object for the query at

hand. As we have seen in Chapter 4, a typical example of this kind of sources is a

source that indexes text documents and answers queries using some variation of the

vector-space model of document retrieval [Sal89].

Example 21: Consider a World-Wide Web search engine like Excite (http://www.-

excite.com). Given a query consisting of a series of words, like distributed databases,

Excite returns the matching documents sorted according to how well they match the

query. This way, Excite might return a given WWW page as the top match for the

query with a score of 82%, some other page as the second top match with a score of

80%, and so on.

Although text sources are probably the best known example, sources with multi-

media objects like images are also becoming common. Matches between query values

and objects in such sources are inherently \fuzzy" [NBE+93].

Example 22: Consider a World-Wide Web search engine for images like Image Surfer

(http://isurf.interpix.com/). Given an image of interest, Image Surfer returns a

105



106 CHAPTER 5. THE RESULT MERGING PROBLEM

rank of the images that are closest to the given one in terms of their color distribution.

The query results for such a source are inherently ranked. In e�ect, most users would

want to �nd images with a color distribution that is close, not identical, to that of a

given image.

Even sources with more \traditional" and structured data that rank their query

results are appearing on the Internet. These sources rank the highest those objects

that match the user's speci�cation the best.

Example 23: Consider a real-estate agent that accepts queries on the Location and

Price attributes of the available houses. This agent could treat query conditions

as if they were regular Boolean conditions. This way, the agent (or the user) could

determine an acceptable radius around the preferred location, and an acceptable price

range, and simply return all the houses with a location and price within these limits.

However, there could be too many matching houses, making the user's task of going

over them tedious. Also, houses with, say, a very good price but slightly outside of the

acceptable location area might be missed. Therefore, some on-line real-estate agents

already rank their query results (e.g., CyberHomes, at http://www.cyberhomes.-

com/). Thus, the top house returned to the user would be one that is closest to the

speci�ed location and is relatively inexpensive. As we will see, sources might choose

to weigh these two criteria for their rankings in di�erent ways.

As the popularity of this type of sources increases, so does the number of meta-

searchers. As we saw in Chapters 1 and 2, a key problem that a metasearcher has to

address is how to extract the top matches for a query from sources that might use

widely di�erent ranking algorithms:

Example 24: A service like SavvySearch (http://guaraldi.cs.colostate.edu:-

2000/) queries multipleWWW search engines at once, including Excite. It then com-

bines the results into a single ranked result. If a page p is returned only by Excite with

a score of 82%, and a page p0 is returned only by HotBot (http://www.hotbot.com/)

with the same score, then both pages would be judged by SavvySearch as equally good



107

for the query at hand. However, Excite and HotBot may use radically di�erent scor-

ing algorithms, so it is really not meaningful to merge the results based on the source

scores.

The solution is to have the metasearcher have its own scoring function that it

uses to rank and merge the retrieved objects. With this scheme, each page or object

retrieved is given a new target score, regardless of its source score, and these target

scores are used to merge the results. For this to work, the metasearcher needs to

retrieve enough information about the source objects to evaluate its target function

on them. As we discuss in Section 5.3, in some cases it is not possible to retrieve all

the necessary target scoring attributes, thus making it simply impossible to merge

the results in a reasonable way. However, even if the metasearcher can retrieve the

necessary attributes for each object, there is still the very important problem of

extracting the right source objects, i.e., of extracting the source objects that will

yield the highest target scores, without having to examine all of the source objects.

Example 25: Suppose that the score that the real-estate agent of Example 23 assigns

a house for a query is 0:1�l+0:9�p, where l is a number between 0 and 1 that indicates

how close the house is to the target location (higher values of l are better), and p is

a number between 0 and 1 that indicates how close the price of the house is to the

target price (higher values of p are better). Now, suppose that a metasearcher would

like to weigh location and price equally, and it does so by assigning houses a score of

0:5 � l + 0:5 � p.

Suppose that a user is looking for houses with preferred location in Palo Alto and

a target price of $100K. Furthermore, suppose that the agent has only one house in

Palo Alto, with l = 1 (perfect location) and p = 0:2 (high price). All the remaining

houses available to the agent are located in Mountain View, with l = 0:6 (not as good

a location) and p = 0:4 (moderate price).

Using the de�nitions above, the real-estate agent would assign a score of 0:1 � 1 +

0:9 � 0:2 = 0:28 to the Palo Alto house, whereas the metasearcher would assign such a

house a higher score of 0:5 � 1+ 0:5 � 0:2 = 0:6, since the metasearcher weighs location

and price equally. Also, the agent would assign a score of 0:1 � 0:6+0:9 � 0:4 = 0:42 to



108 CHAPTER 5. THE RESULT MERGING PROBLEM

any Mountain View house, whereas the metasearcher would assign any such house a

score of 0:5 � 0:6 + 0:5 � 0:4 = 0:5. Consequently, the answer to the user's query from

the metasearcher should be the Palo Alto house, because it has the highest score

for the query according to the metasearcher's scoring algorithm. However, the real-

estate agent, where the record of the Palo Alto house resides, ranks all of the other

houses, which are all Mountain View houses, higher than the Palo Alto house, so the

metasearcher would have to retrieve all of the agent's contents before extracting the

top house, i.e., the Palo Alto house.

Example 25 illustrates that it may be hard for a metasearcher to extract the best

objects from autonomous sources when they use scoring functions that are di�erent, or

even slightly di�erent, from the target function used by the metasearcher. This raises

some important questions. For example, for what types of source and target scoring

functions is it possible to retrieve results \e�ciently," without having to retrieve full

source contents? In these cases, what is the right strategy for obtaining and ranking

results? For instance, given an end-user query, what types of queries, and in what

order, should we submit to the sources? Also, how much does the metasearcher need

to know about the source scoring function? Turning to a negative scenario, are there

\uncooperative" source scoring functions for which there is no strategy whatsoever

that avoids an exhaustive full retrieval of the source contents?

In this chapter we address these and other related questions [GGM97]. We start

by proposing a searching and ranking model for sources with structured data (Sec-

tion 5.1). Within this model, we then precisely characterize the classes of source and

target functions that make retrieval \e�cient" or \exhaustive" (Section 5.4). In the

former case, we present an algorithm for searching sources and �nding the top-ranking

objects according to the metasearcher's target function (Section 5.2). We also describe

variations to our model, and their impact on search and ranking (Section 5.3).

Our goal in this chapter is to explore the fundamental complexity and limita-

tions of metasearchers. We believe that our results can guide implementors of search



5.1. OUR SEARCH MODEL FOR STRUCTURED SOURCES 109

engines, making it clear what scoring functions may make it hard for a client meta-

searcher to merge information properly, and making it clear how much the meta-

searcher needs to know about the scoring function. This last point is important since

typically search engine builders wish to keep their scoring function secret because it

is one of the things that di�erentiates them from other sources. At the metasearcher

end, we believe that our results can also be helpful in the design of the target scoring

function, and in distinguishing cases where merging results is meaningful and cases

where it is not.

5.1 Our Search Model for Structured Sources

The previous section presented examples of sources and metasearchers, and illustrated

some of the problems that metasearchers face when querying autonomous sources. In

this section we de�ne our searching model more precisely, and revisit the real-estate

agent example in light of the new de�nitions.

A source S contains a single relation RS with attributes A1; : : : ; An. S accepts

queries over RS. A query over S simply speci�es target values for some of the at-

tributes of RS. Thus, a query Q is an assignment of values v1; : : : ; vn to the attributes

A1; : : : ; An of RS. Some of the vi values might be don't care values (noted \*"). The

rest of the vi values are the signi�cant values in the query.

Given a query, source S responds with the objects (i.e., tuples) of RS that \best

match" the query values. The query results contain the values for A1; : : : ; An for

every object returned. (In Section 5.3 we discuss sources for which this property does

not hold.)

Property 1: Information in query results: The record for an object t in the query

results returned by a source S contains all the values t[1]; : : : ; t[n] for the attributes

A1; : : : ; An that can be used to formulate queries over S.

Each object t in the result for query Q is ranked according to the source score

Source(S;Q; t) that source S computes for Q and t. These scores range from 0 to

1. Since sources are autonomous, these scores could be computed in a completely



110 CHAPTER 5. THE RESULT MERGING PROBLEM

arbitrary way. However, we expect them to be a function of the signi�cant values of

Q, as discussed below.

Example 26: Consider the real-estate agent S of Example 25. This agent hosts

relation RS(Location, Price). As mentioned above, a query to this agent may specify

a target location L = Palo Alto and some target price P = $100K, for example. In

other words, such a query Q = (L;P ) asks for houses located close to Palo Alto, and

with a price not too much higher or lower than $100K.

The answers that the agent gives the user are the objects of RS ranked according

to S's source score for Q 1. This source score is arbitrary, as mentioned above. For

example,

Source(S; (L;P ); t) =

8>>><
>>>:

l if P = �

p if L = �

0:1 � l + 0:9 � p otherwise

where l is some number between 0 and 1 that is inversely proportional to the distance

between t and the preferred location L, and p is some number between 0 and 1 that

is inversely proportional to the distance between the price of t and P , as mentioned

above.

A metasearcher receives a user query Q and returns the top objects for Q that

appear in any of the available sources, according to the target score. The target score

Target(Q; t) for query Q and object t is some known function of the signi�cant values

in Q. The values of Target range from 0 to 1.

Example 26: (cont.) Continuing with the example above, we can de�ne:

Target((L;P ); t) =

8>>><
>>>:

l if P = �

p if L = �

0:5 � l + 0:5 � p otherwise

1In the remainder of the chapter, we refer to both source S and its relation RS as source S, for
simplicity.



5.1. OUR SEARCH MODEL FOR STRUCTURED SOURCES 111

Consequently, Target is quite similar to Source: these two functions just di�er in

the weight that they assign to each of the two query attributes when they are both

signi�cant.

To extract the objects for a query Q with the highest Target scores (i.e., the top

Target objects), a metasearcher queries multiple sources that hold di�erent instances

of the same relation R and that use di�erent source score functions. The metasearcher

extracts from each source S all of the objects t with Source(S;Q; t) � g, for some score

0 � g � 1. (We will discuss how to �nd g in Section 5.2.) The metasearcher then

computes the Target score of these objects without accessing the objects themselves,

using the attribute values returned in the query results (Property 1). Finally, the

metasearcher returns the top Target objects for the query.

Example 26: (cont.) Consider the top result that source S returns for the query

Q above:

Location: Mountain View; Price: $150K; Source score: 0.42

The metasearcher can then simply discard the Source score for this house, and com-

pute the Target score using its own algorithm. The metasearcher does this for all

of the objects extracted from the sources, and returns the objects with the highest

Target scores.

The Source and Target scores for a query may vary widely, as we have seen. The

following de�nition captures those Source scores that are reasonably close to a given

Target score. This de�nition will be useful later to characterize the sources for which

we can extract the top Target objects e�ciently.

De�nition 1: A query Q is manageable at source S if there is a constant 0 � � < 1

such that

Source(S;Q; t) � Target(Q; t)� �

for all possible objects t. In other words, a query is manageable at a source if the

Source scores for this query are not too much lower than the corresponding Target

scores.



112 CHAPTER 5. THE RESULT MERGING PROBLEM

Example 27: A query Q for the real-estate agent specifying both a Location and a

Price is manageable at S for the Target and Source scores de�ned in Example 26. In

e�ect, we can take � = 0:4:

Target(Q; t)� � = 0:5 � l + 0:5 � p � 0:4

= 0:1 � l + 0:4 � (l � 1) + 0:5 � p

� 0:1 � l + 0:9 � p

= Source(S;Q; t)

Example 28: Consider the following Target score for the real-estate scenario:

Target((L;P ); t) =

8>>><
>>>:

l if P = �

p if L = �

maxfl; pg otherwise

and the following Source score:

Source(S; (L;P ); t) =

8>>><
>>>:

l if P = �

p if L = �

minfl; pg otherwise

Then, a query Q specifying both a Location and a Price is not manageable at S, if

l and p can assume arbitrary values between 0 and 1. In e�ect, consider an object t

with l = 1 and p = 0. (Such a house has a perfect location according to the user's

speci�cation, but an exorbitant price.) Then, Source(S;Q; t) = minf1; 0g = 0 <

Target(Q; t)� � = maxf1; 0g � � = 1� �, 80 � � < 1. Consequently, there is no value

of � that will satisfy the condition in De�nition 1.

Intuitively, Q is not manageable at S because top objects for Target can have

arbitrarily low scores for Source. Therefore, we would have to retrieve all of the

objects in S to �nd the top objects for Target, and this is exactly what we are trying



5.1. OUR SEARCH MODEL FOR STRUCTURED SOURCES 113

to avoid.

Source S is autonomous, and the metasearcher might not know S's Source func-

tion. However, in this section we assume that the metasearcher knows whether a

query Q is manageable at S. (Section 5.3 relaxes this property and considers sources

where it does not hold.)

Property 2: Information about source manageability: Given a query Q and

a source S, the metasearcher knows whether Q is manageable at S. Furthermore, in

case it is, the metasearcher knows a value for � as in the de�nition of manageability

(De�nition 1).

De�nition 2: Let Q be a query with a signi�cant value vj for attribute Aj. Then,

the single-attribute query Qj for Q and Aj is the query that results from Q by setting

the value for vi to \*" (\don't care") for all i 6= j.

To deal with sources like the one in Example 28, we introduce the notion of a

cover for a query 2:

De�nition 3: A set of single-attribute queries over di�erent attributes C = fQ1; : : : ;

Qmg is a cover for a query Q if 90 � g1; : : : ; gm; G < 1 such that 8 object t:

Target(Qi; t) � gi; i = 1; : : : ;m) Target(Q; t) � G

Intuitively, we will later use the single-attribute queries in a cover to extract a set

of objects from a source that includes the top Target objects. This way, we will be

able to work with sources at which a given query is not manageable (Example 28),

or that would otherwise require potentially ine�cient executions (Example 26).

Example 29: Let Q1 be the single-attribute query for Q and the Location attribute,

and Q2 be the single-attribute query for Q and the Price attribute. Consider the

2The notion of cover is related to that of a complete set of atomic conditions in [CG96]. (See
Section 7.4.)



114 CHAPTER 5. THE RESULT MERGING PROBLEM

Target and Source scores of Example 26. Then, the set fQ1g is a cover for Q. In

e�ect, for any 0 � g < 1, we can de�ne G = 0:5 � (g + 1). Thus, if an object t is

such that Target(Q1; t) � g, then Target(Q; t) � 0:5 � g + 0:5 � p � 0:5 � (g + 1) = G.

Similarly, the sets fQ2g and fQ1; Q2g are also covers for Q.

Example 30: Consider Example 28, using the min and max functions for Source

and Target, respectively. The set fQ1g is not a cover for Q. In e�ect, an object

t with Target(Q1; t) = 0 might still have Target(Q2; t) = 1, making Target(Q; t) =

maxf0; 1g = 1. Therefore, for no G < 1 will the de�nition of cover hold. Similarly,

fQ2g is not a cover for Q. However, fQ1; Q2g is a cover.

The main property of sources that we investigate in the rest of the chapter is

de�ned next. As we will see, if a source satis�es this property for a query, then there

are cases where we do not need to extract the entire contents of the source to �nd

the top Target objects for the query. Furthermore, we will show that if a source does

not satisfy this property, then we always need to extract its entire contents.

De�nition 4: A source S is tractable for a query Q if there is a cover C for Q that

consists only of queries that are manageable at S (i.e., if there is a manageable cover

for Q at S, in short).

Example 30: (cont.) Although Q is not manageable at source S, as shown above,

there is a manageable cover for it, namely fQ1; Q2g. (Qi is manageable at S because

Target(Qi; t) = Source(S;Qi; t) 8 object t, i = 1; 2.) Therefore, S is tractable for Q.

5.2 Extracting Top Objects from a Tractable Source

In this section we present an algorithm to extract the top Target objects for a query

from a tractable source (Section 5.2.1), and then we analyze its performance experi-

mentally (Section 5.2.2). Since we will deal with a single source, and to simplify our

notation, we sometimes omit mentioning the source explicitly. For example, we use

Source(Q; t) as shorthand for Source(S;Q; t).



5.2. EXTRACTING TOP OBJECTS FROM A TRACTABLE SOURCE 115

Algorithm 1 Top
Input: A query Q and a source S that is tractable for Q.
Method:
(1) Pick a manageable cover C = fQ1; : : : ; Qmg for Q at S.
(2) for i = 1 to m
(3) De�ne �i for Qi as in De�nition 1.
(4) Pick 0 � g1; : : : ; gm; G < 1 for cover C as in De�nition 3.
(5) for i = 1 to m
(6) Retrieve all objects t with Source(Qi; t) � Gi = gi � �i.
(7) Compute Target(Q; t) for all objects t retrieved.
(8) if 9i such that Gi � 0 then

/* We have retrieved all objects in S */
(9) Go to Step (14).
(10)if 8t retrieved, Target(Q; t) � G then
(11) Find new 0 � g01; : : : ; g

0
m; G

0 < 1 for C
as in De�nition 3 such that:

* g0i � gi 8i = 1; : : : ;m.
* 9j such that either g0j = 0 or g0j � gj � �, for some

arbitrary, prede�ned constant � > 0.
(12) Replace gi by g0i (i = 1; : : : ;m) and G by G0.
(13) Go to Step (5).
(14)Output those objects retrieved that have the highest Target score.

Figure 5.1: Algorithm to retrieve the top Target objects for a query from a tractable
source.

5.2.1 Algorithm Top

Consider a queryQ and a source S that is tractable forQ. The algorithm in Figure 5.1,

which we refer to as Top, extracts the top Target objects for Q from S 3.

Example 31: Consider the real-estate agent and the scenario of Example 26. Then,

Algorithm Top can choose fQ1; Q2g as the cover for query Q (Step (1)). Since Target

and Source agree on single-attribute queries, it follows that �1 = �2 = 0 (Steps (2)

3Algorithm Top reduces the problem of �nding the top Target objects for Q in S to the problem
of �nding all objects t in S with Target(Q; t) > G, for some G. [CG96] uses a similar strategy for
processing queries over a multimedia repository.



116 CHAPTER 5. THE RESULT MERGING PROBLEM

and (3)). We can use any 0 � g1; g2 < 1 and G = 0:5 � (g1 + g2) in the de�nition

of cover (De�nition 3). Suppose that Algorithm Top then picks, say, g1 = g2 = 0:8

with G = 0:8 (Step (4)). Then, the algorithm retrieves from S all objects t with

Source(Q1; t) � 0:8 or Source(Q2; t) � 0:8 (Steps (5) and (6)). There is only one

such house, the Palo Alto house, that matches the �rst condition, and no house that

matches the second condition.

At this point, the algorithm has extracted all objects t with Target(Q1; t) � 0:8+

�1 = 0:8 or with Target(Q2; t) � 0:8 + �2, because Q1 and Q2 are manageable for

S (see below). If a house t has not been retrieved, then Target(Q1; t) < 0:8 and

Target(Q2; t) < 0:8. Because fQ1; Q2g is a cover, then Target(Q; t) � G = 0:8. The

Target score for Q for the Palo Alto house is 0:6 � 0:8 (Step (7)), as discussed above.

Consequently, the algorithm goes to Step (11) and lowers g1 to, say, 0.7, and g2 to,

say, 0.45, assuming � = 0:1, for example.

No new objects are retrieved in Steps (5) and (6), since all of the Mountain View

houses have a Source score for Q1 of 0.6 (6� g1 = 0:7) and a Source score for Q2 of

0.4 (6� g2 = 0:45). The Palo Alto house is retrieved again, of course. Since G for g1

and g2 is now 0:575, which is less than 0.6, the Target score for the Palo Alto house

for Q, then the algorithm stops (Step (14)) and returns the object with the highest

score found so far, i.e., the Palo Alto house.

Theorem 1: Let Q be a query and S a source that is tractable for Q. Then, Algorithm

Top extracts the top Target objects for Q from S.

Proof: The algorithm terminates, since the original gi values are decreased (Step

(11)) either to zero, in which case the algorithm stops after Steps (8) and (9), or by

at least �, for a constant � > 0.

If the algorithm stops because there is some Gi � 0, then it has extracted all

objects t with Source(Qi; t) � 0, i.e., all of the objects in S. In particular, it has

retrieved the top Target objects.

If when the algorithm stops Gi > 0 8i = 1; : : : ;m, then it has extracted all objects

t with Target(Qi; t) � gi. Also, it has retrieved an object t0 with Target(Q; t0) > G

(Step (10)). Consequently, from the fact that C is a cover for Q and the choice of G,



5.2. EXTRACTING TOP OBJECTS FROM A TRACTABLE SOURCE 117

it follows that any object t that has not been retrieved has Target(Q; t) � G. Object

t0 is already better for Q than any unretrieved object. Hence, the top Target objects

are among the objects already extracted from S.

Consider a source S that is tractable for a query Q. We cannot guarantee that

Algorithm Top never extracts all the objects in S. As a trivial example, consider the

case when there is only one object t in S, and t is such that Target(Q; t) = 1. The

algorithm then necessarily extracts all the objects in S, namely, object t.

Nevertheless, in many cases Algorithm Top is much more e�cient than this. In

particular, if Q has a manageable cover with high associated gi values (De�nition 3)

and low associated �i values (De�nition 1), then the algorithm might stop after ex-

amining just a few of the objects in S. (See Section 5.2.2.) Furthermore, as the

following theorem shows, we can always de�ne the contents of S in such a way that

the algorithm stops without retrieving all of these objects from S.

Theorem 2: Let Q be a query and S a source that is tractable for Q. Assume

that there is a manageable cover C = fQ1; : : : ; Qmg for Q such that gi � �i > 0

8i = 1; : : : ;m (�i and gi are as in De�nitions 1 and 3, respectively). Then, there exist

instances of S where Algorithm Top might �nd the top Target objects from Q before

extracting all of the objects in S.

Proof: We will \populate" S in such a way that Algorithm Top stops (correctly,

from Theorem 1) before examining all the objects in S.

De�ne the contents of S as just two objects, t and t0. Object t is such that

Target(Q; t) > G, for some G that is suitable for g1; : : : ; gm. Consequently, from the

de�nition of cover, Target(Qj; t) > gj for some j. Therefore, from the choice of �j,

Source(Qj; t) > gj��j = Gj . Now, de�ne object t0 in such way that Source(Qi; t
0) < Gi

8i = 1; : : : ;m.

Let AlgorithmTop choose cover C in Step (1), and g1; : : : ; gm; G in Step (4). Then,

the algorithm would retrieve t in Step (6), since Source(Qj; t) � Gj for some j, and

it would not retrieve t0, since Source(Qj; t) < Gi 8i. Furthermore, Target(Q; t) > G.

Consequently, the algorithm stops after checking that the condition in Step (10) is

false and executing Step (14), without ever extracting object t0.



118 CHAPTER 5. THE RESULT MERGING PROBLEM

5.2.2 Performance of Algorithm Top

For some sources, Algorithm Top retrieves most of their objects to �nd the top Target

objects for a query. However, for an important class of sources this algorithmmanages

to extract only a few objects. In this section, we show a preliminary analysis of the

e�ciency of Algorithm Top. (A more exhaustive analysis is part of our future work

in this area.) For this analysis, we focus on two important Target functions:

� Target(Q; t) = minfTarget(Q1; t); : : : ;Target(Qn; t)g, and

� Target(Q; t) = maxfTarget(Q1; t); : : : ;Target(Qn; t)g.

To analyze the behavior of Algorithm Top for a source S and a query Q, we de�ne

certain options that the algorithm leaves open. In particular, for the Target = min

case we will choose an arbitrary single-attribute query Qi and take fQig as the cover

in Step (1). For the Target = max case we choose all single-attribute queries and take

fQ1; : : : ; Qng as the cover in Step (1). Furthermore, we let g1 = : : : = gn = G0 for

some arbitrary 0 � G0 < 1 in Step (4). To simplify our discussion, we will also assume

that �1 = : : : = �n = �, for some arbitrary 0 � � < 1. In other words, we assume that

all single-attribute queries behave equally in terms of the relationship between their

associated Source and Target scores. Finally, Algorithm Top decrements the value of

G (and hence, the gi values) by a �xed � in Step (11).

To estimate the number of objects retrieved by Top, we start by studying the

number of objects retrieved in one iteration of the algorithm. For this, we assume

that source S accepts a single-attribute query Qi and a score G, and returns all

objects with a Source score no less than G for Qi. If we contact S twice with the

same query Qi but with scores G1 and G2, G1 > G2, then the answer for G2 includes

all the objects returned for G1. Thus, S does not accept requests for the next best

unretrieved objects with a certain minimum score, for example. Considering such

sources is part of our future work.



5.2. EXTRACTING TOP OBJECTS FROM A TRACTABLE SOURCE 119

For a given value of G, and for each single-attribute query Qi in the cover of Step

(1), Top retrieves an expected R(G) objects:

R(G) =
X
t2S

Pr(Source(Qi; t) � G� �) � 1

If we focus on the class of sources S such that the Source scores for Qi in S are

uniformly distributed, then Pr(Source(Qi; t) � g) = 1 � g for all objects t 2 S.

Consequently, Top retrieves an expected (1�G+�) �N objects for Qi, where N is the

number of objects in S. Then, in one iteration, Top retrievesR(G) = (1�G+�)�m�N

objects, where m is the number of single-attribute queries in the cover of Step (1).

For the Target = min case, m = 1. For the Target = max case, m = n.

Given a value for G, Algorithm Top might not �nd the top Target objects for Q

in this iteration (i.e., the condition in Step (10) is satis�ed). This is the case if and

only if there is no object t 2 S with Target(Q; t) > G. Thus, the algorithm will not

stop in this �rst iteration with probability F (G):

F (G) = Pr(8t 2 S : Target(Q; t) � G)

= �t2SPr(Target(Q; t) � G)

As with the Source scores, we will restrict our analysis to sources where the Target

scores for the Qi queries are uniformly distributed 4. Then, for the Target = min case

we have:

F (G) = �t2SPr(
n

min
i=1

fTarget(Qi; t)g � G)

= �t2SPr(91 � i � njTarget(Qi; t) � G)

= �t2S(1� Pr(81 � i � n : Target(Qi; t) > G))

= �t2S(1��n
i=1Pr(Target(Qi; t) > G))

4Our analysis in this section focuses on sources for which both the Target and Source scores
for single-attribute queries are uniformly distributed. Hence, although these scores might di�er for
particular objects, the overall distributions are the same. This is not a fundamental limitation of
our analysis, and we will consider other distributions as part of our future work.



120 CHAPTER 5. THE RESULT MERGING PROBLEM

= (1��n
i=1(1�G))N

= (1� (1�G)n)N

On the other hand, for the Target = max case we have:

F (G) = �t2SPr(
n

max
i=1

fTarget(Qi; t)g � G)

= �t2SPr(81 � i � n : Target(Qi; t) � G)

= �t2S(�
n
i=1Pr(Target(Qi; t) � G))

= (�n
i=1G)

N

= Gn�N

We now estimate the expected number of objects retrieved during all iterations

of Algorithm Top. In e�ect, the algorithm starts with some value G0 for G. If the

algorithm successfully �nds the top Target objects (with probability 1�F (G0)) then

it stops. Otherwise, the algorithm lets G1 = G0 � �, and continues until it reaches

Gk = 0 or the condition in Step (10) is not satis�ed. (k is the smallest value for which

Gk�1 � � � 0.) Consequently, the expected total number of objects retrieved by Top

when it starts with score G0, T (G0), is:

T (G0) = R(G0) + F (G0) � T (G1jG0)

= R(G0) + F (G0) � (R(G1) + F (G1jG0) � T (G2jG1))

= R(G0) + F (G0) �R(G1) + F (G0) � F (G1jG0) � T (G2jG1)

= R(G0) + F (G0) �R(G1) + F (G0 ^G1) � T (G2jG1)

= R(G0) + F (G0) �R(G1) + F (G1) � T (G2jG1)

= � � �

= R(G0) + (
k�1X
i=1

F (Gi�1) �R(Gi)) + F (Gk�1) � T (GkjGk�1)

= R(G0) + (
k�1X
i=1

F (Gi�1) �R(Gi)) + F (Gk�1) �m �N

where:



5.2. EXTRACTING TOP OBJECTS FROM A TRACTABLE SOURCE 121

Parameter Description
G0 Initial score used by Top
� Value by which the initial score is

decreased in each iteration of Top
� Bound on how much lower Source scores

might be than Target scores
N Number of objects in source
n Number of signi�cant attributes in query
m Number of single-attribute queries in cover

Figure 5.2: The main parameters in our experiments for Algorithm Top.

� T (Gi+1jGi) is the expected number of objects retrieved when Top starts with

score Gi+1, given that 8t 2 S : Target(Q; t) � Gi.

� F (Gi+1jGi) is Pr(8t 2 S : Target(Q; t) � Gi+1j8t 2 S : Target(Q; t) � Gi).

� F (Gi ^ Gi+1) is Pr((8t 2 S : Target(Q; t) � Gi+1) ^ (8t 2 S : Target(Q; t) �

Gi)).

� T (GkjGk�1) = T (0jGk�1) = m �N , because Gk = 0.

For our experiments, we use the expressions above to numerically compute the

total number of objects that Algorithm Top is expected to retrieve. We assume that

� = 0:01 (G decreased in steps of 0.01), n = 4 (four signi�cant attributes in query

Q), and N = 10; 000 (10,000 objects in source S). Figure 5.2 summarizes the main

parameters in our experiments.

To see the impact of the initial score G0 used by Top, we set � to 0 (i.e., the Source

scores for single-attribute queries are never lower than the corresponding Target

scores), and vary G0. Figure 5.3 shows the percentage of the source objects that

Top is expected to retrieve (i.e., the expected value of T (G0)�100
N

). For Target = max,

the best values for G0 are quite high: 1 and 0.99. The reason is that the probability

that Top does not stop after one iteration, F (G0), is quite low even for G0 = 0:99.

Therefore, the best strategy for Target = max is to start with a high value for G0,

and stop after one iteration, with high probability. In this case, only around 4% of

the objects in the source are expected to be retrieved. For Target = min, the best



122 CHAPTER 5. THE RESULT MERGING PROBLEM

0

20

40

60

80

100

120

140

160

0.60.70.80.91

%
ob
je
ct
s
re
tr
ie
ve
d

G0

� = 0; Target = max 3

33
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

� = 0; Target = min 2

222222
2
2
2
2
222222222

2222
2222

2222
2222

2222
22

Figure 5.3: The percentage of objects retrieved by Algorithm Top as a function of
the initial score G0 used (� = 0).

value for G0, G0 = 0:87, is lower than that for Target = max. The reason is that the

probability that there is an object t with Target(Q; t) > G0 is lower: such an object

needs high Target scores for all attributes in Q, not just for one attribute as is the case

for Target = max. Consequently, by starting with a lower value of G0, Top does not

retrieve several times those objects with high Source scores for the single-attribute

query being used. Then, only around 14% of the objects in the source are expected

to be retrieved. Note that to take advantage of these \good" values for G0, we need

to know that Target and Source scores follow reasonably uniform distributions.

To check the e�ect of higher values of � on the above �gures, Figure 5.4 also shows

results for � = 0:10. The curves for � = 0 are the same as in Figure 5.3. As we see

from this �gure, the shape of the curves for both Target = max and Target = min is

quite similar to that of the corresponding curves for � = 0. However, more objects are

retrieved in both cases. More speci�cally, exactly � �m �N more objects are retrieved

in each iteration of the algorithm, where m = n for Target = max, and m = 1 for

Target = min.



5.2. EXTRACTING TOP OBJECTS FROM A TRACTABLE SOURCE 123

0

20

40

60

80

100

120

140

160

180

200

0.60.70.80.91

%
ob
je
ct
s
re
tr
ie
ve
d

G0

� = 0; Target = max 3

333
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33

� = 0:10; Target = max +

+

++
++

++
++

++
++

++
++

++
++

++
++

++
++

++
++

++
++

++
++

� = 0; Target = min 2

2222222
2
2
2222222222

22222
22222

22222
22222

22

� = 0:10; Target = min ��
�
�
�
�
�
�
�
�
�
�
�����������

�������
�������

�����

Figure 5.4: The percentage of objects retrieved by Algorithm Top as a function of
the initial score G0 used (� = 0 and � = 0:10).

Finally, to study the impact of higher values of �, we �x G0 to the best values

(0.99 and 0.87 for Target = max and Target = min, respectively), and vary �. As

expected, Figure 5.5 shows that the number of objects retrieved increases steadily

as � increases. For high values of �, Algorithm Top retrieves more than N objects.

For such values, a better strategy than to use Algorithm Top is to just retrieve all

of the N objects in S directly. Interestingly, the case Target = max is a�ected more

strongly, because the expected number of iterations of Top does not vary with �, and

in each iteration, the algorithm retrieves n times more objects for Target = max than

it does for Target = min, as discussed above.

The experiments above are preliminary. However, they give evidence that for an

important family of sources Algorithm Top manages to �nd the top Target objects by

inspecting only a small fraction of the objects in the sources. However, in some cases

(e.g., when � is high), our algorithm does worse than just retrieving all of the sources'

contents. In such cases, there is probably no good way to answer the queries. These

results complement Theorem 2 (Section 5.2.1), which shows that source tractability,

together with the assumption in the theorem that 8i, gi � �i > 0, forms a su�cient



124 CHAPTER 5. THE RESULT MERGING PROBLEM

0

20

40

60

80

100

120

140

160

180

0 0.1 0.2 0.3 0.4

%
ob
je
ct
s
re
tr
ie
ve
d

�

G0 = 0:99; Target = max 3

33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
3

G0 = 0:87; Target = min 2

22222
22222

22222
22222

2222
2222

2222
2222

22222

Figure 5.5: The percentage of objects retrieved by Algorithm Top as a function of �
(G0 = 0:87 for min and G0 = 0:99 for max).

condition for being able to sometimes extract a top Target object from a source

without accessing all of its objects. As we will see in Section 5.4, source tractability

is also a necessary condition: if a source is not tractable for a query, we must always

access all of its contents to extract the top Target objects for the query.

5.3 Varying Source Types

Section 5.2 presented an algorithm to extract top objects from sources that satis�ed a

number of properties. However, the sources that a metasearcher has to deal with are

intrinsically autonomous and heterogeneous. Some sources reveal how they process

queries, while others conceal this. Some sources return quite complete information

together with their query results, while others just provide quite basic data. In this

section we revisit the properties of Section 5.2 and see in what cases we can adapt

Algorithm Top for sources where these properties do not hold.



5.3. VARYING SOURCE TYPES 125

Property 1: Information in Query Results

Algorithm Top requires that sources return the values of the objects for those at-

tributes with signi�cant values in a query. In e�ect, Step (7) of the algorithm com-

putes the Target scores for the objects retrieved using these values. However, some

sources might return just object ids, or just a few of these attribute values in the

query results. In such a case, a possibility for Algorithm Top is to access each object

retrieved in its entirety to obtain all the information needed for the Target scores,

which could be quite time consuming.

Alternatively, if the metasearcher knows how to map Source scores into Target

scores for single-attribute queries (like in the real-estate agent scenario of Exam-

ple 26), then it might compute the Target scores for the original query without ac-

cessing the actual attribute values for each object. This requires, of course, that

the sources report their Source scores. If these scores are not available, then the

metasearcher needs the attribute values.

Example 32: Consider the real-estate agent of Example 26. In this case, the Target

function for our metasearcher coincides with the agent's Source function for single-

attribute queries. Consider a query Q with signi�cant values for both the Location

and Price attributes. Then, if an object t is retrieved by both the single-attribute

queries for Location and Price with Source scores s1 and s2, respectively, then the

metasearcher can compute Target(Q; t) as 0:5 � s1+ 0:5 � s2. However, if t is retrieved

by only one of these queries, then the metasearcher cannot compute the Target score

this way, and it has to obtain the missing attribute value for t.

Property 2: Information about Source Manageability

Algorithm Top requires that a metasearcher know what single-attribute queries are

manageable at a source. Furthermore, a metasearcher needs to know the � values

(De�nition 1) that bound how much lower than the Target scores the Source scores

might be (Steps (2) and (3)). All this information can be derived from the Source

scoring function of a source. Unfortunately, this function might not be publicly

known, as the sources view it as their competitive advantage.



126 CHAPTER 5. THE RESULT MERGING PROBLEM

If the Source function for a source is not known, and Property 2 does not hold

either (i.e., the metasearcher does not know whether an attribute is manageable or

not, or the � values), then a metasearcher can only try to guess all this information by

issuing sample queries to the sources. However, whatever conclusion the metasearcher

draws about a Source function would only be a statistical guess, since there is no way

to guarantee (unless more information is available) that the corresponding source

would not behave di�erently in the future, for example. Thus, users would still get

ranked query results from the metasearcher, but they should be warned that high

ranking objects might be missing from these results.

Example 33: Consider the real-estate agent of Example 26. Suppose that a meta-

searcher does not know whether a single-attribute query on Location is manageable

at the source. Suppose that the metasearcher, o�-line, issued a series of single-

attribute queries on Location to the source and computed, for each such query Li,

ei = maxt retrievedfTarget(Li; t)�Source(Li; t)g. Based on the ei values retrieved, the

metasearcher might then decide that indeed such single-attribute queries are always

manageable at the source, with associated � = maxf0;maxifeigg. In particular, in

our real-estate scenario, � would be determined to be zero, which is the right decision.

To proceed as in the example above, a metasearcher needs the Source scores for each

object retrieved. If a source does not even report these scores, then a metasearcher

would have to resort to other forms of \guessing" for the � values.

Other Implicit Properties of the Source Behavior

Algorithm Top asks sources for all objects with Source score Gi or higher for a single-

attribute query and for arbitrary values of Gi (Steps (5) and (6)). However, a source

interface might fail to allow this in several ways.

First, a source might not accept a single-attribute query for a particular attribute.

For example, the real-estate agent of Example 26 might not accept queries that spec-

ify a target Price but not a target Location. In this case, we can rede�ne cover

(De�nition 3) to allow for multiple-attribute queries.



5.3. VARYING SOURCE TYPES 127

Example 34: Consider a source S and a query Q over attributes A1, A2, and A3.

Suppose that S does not accept single-attribute queries on A1. However, S accepts

multi-attribute query Q1;2, which is the restriction of Q to A1 and A2, and S also

accepts single-attribute query Q3. Assume that 90 � g1;2; g3; G < 1 such that 8

object t, if Target(Q1;2; t) � g1;2 and Target(Q3; t) � g3 then Target(Q; t) � G. Then,

C = fQ1;2; Q3g is a cover for Q if we now allow multi-attribute queries like Q1;2 in a

cover.

Thus, if we can �nd a manageable cover using multiple-attribute queries, then

Algorithm Top might proceed as before. Otherwise, the metasearcher will not be

able to extract the top Target objects from the source (Section 5.4).

As a second problem that a metasearcher might have with a source, the source

might only return the top objects for a query, without including the Source scores

for the objects returned. In such a case, a metasearcher does not know if it has

retrieved all the objects with a Source score of at least Gi or not, and Step (6) needs

this information. Unfortunately, the de�nition of manageability does not allow us to

infer much about the Source score of an object given its Target score. For example,

consider a source that assigns most objects a Source score of 1 for a given query.

Then, the top k Source objects for that query might not include any of the top Target

objects. Therefore, to work with such a source a metasearcher would need to know

some bound on how di�erent the Source and Target scores might be.

Finally, a source might always return a �xed maximum of, say, 200 objects per

query, for e�ciency reasons or to prevent users from downloading all the source's

valuable contents, for example. In such a case, a metasearcher that wants all objects

t with Source(Qi; t) � Gi might retrieve only those objects with Source(Qi; t) � G0
i,

for some higher G0
i. If these higher values (and their associated G0, as in De�nition 3)

are not low enough to make the condition in Step (10) false, then the metasearcher

cannot guarantee that it has obtained the top Target objects from the source, and

will have to return only approximate results.

In summary, ranking objects from autonomous sources is a di�cult problem. For

Algorithm Top to work, the sources need to provide a query interface that permits



128 CHAPTER 5. THE RESULT MERGING PROBLEM

\powerful enough" searches based on scores, and the sources must return \su�cient"

information on the matching objects so that the metasearcher can compute its Target

scores. Finally, the metasearcher needs to know some \fundamental properties" of

the source scoring functions.

Given all that is needed by our algorithm, one may wonder if there could be some

other algorithms that require less source functionality or less knowledge of the sources.

In the next section, we show how under some very broad assumptions, essentially there

is no algorithm that can rank results in a meaningful way for a source that is not

tractable for a given query.

5.4 Source Tractability as a Necessary Condition

In this section, we will see that if our source is not tractable, then any strategy to

extract the top Target objects from the source using single-attribute queries must

always retrieve all the objects. To prove this, we need to make some assumptions

about the Source and Target scoring functions. We believe that these assumptions

are not restrictive, and all reasonable scoring functions that we can think of meet

these criteria. These assumptions are in addition to the properties in Section 5.2.

Our �rst assumption about the Source scores for a query is that these scores can

take values ranging all the way from 0 to 1. Using this assumption we rule out

\constant" Source score functions.

Assumption 4: Variability of Source: Let Q be a query. Then, 9t1, t2 objects such

that Source(Q; t1) = 0 and Source(Q; t2) = 1.

Our second assumption a�ects both the Target and Source scores for a query Q.

In essence, these scores must only depend on the attributes corresponding to the

signi�cant values in Q. Thus, the attribute values for \don't care" attributes are

irrelevant for Target and Source.

Assumption 5: Locality of Source and Target: Let Q be a query and A1; : : : ; Am

the attributes with signi�cant values in Q. Let t and t0 be two objects such that



5.4. SOURCE TRACTABILITY AS A NECESSARY CONDITION 129

t[Ai] = t0[Ai] for i = 1; : : : ;m (i.e., t and t0 agree on all the signi�cant attributes in

Q). Then, Target(Q; t) = Target(Q; t0) and Source(Q; t) = Source(Q; t0).

Our �nal assumption a�ects the Target scores for a query Q, and is related to

Assumption 5. If we \improve" an object t for Q by changing its value for Aj so

that it is better for Qj, for some j, then Target(Q; t) should not decrease. Also, this

assumption bounds the e�ect of a change in Target(Qj; t) over Target(Q; t).

Assumption 6: Monotonicity of Target: Let Q be a query and A1; : : : ; Am the

attributes with signi�cant values in Q. Let t and t0 be two objects such that t[Ai] =

t0[Ai] for i = 1; : : : ;m, i 6= j for some j. Also, Target(Qj; t) � Target(Qj; t
0)� �, for

some � � 0. Then, Target(Q; t) � Target(Q; t0)� �.

Next, we de�ne the class of executions for a query Q that we analyze in this

section. In short, these executions follow the methodology of Algorithm Top in that

they query the source using single-attribute queries for Q, until they have obtained

\enough" objects and, hopefully, the top Target objects for Q. These executions

decide when they have retrieved enough objects based only on the objects that they

retrieve. They do not, for example, have any \magic" information about the unseen

contents of the source.

De�nition 5: Let S be a source, Q a query, and C = fQ1; : : : ; Qmg a set of single-

attribute queries for Q. Then, a partial retrieval for Q and S using C is a set of objects

ft 2 SjSource(Qi; t) > gi; for some i = 1; : : : ;mg, with 0 < gi < 1, i = 1; : : : ;m 5.

The gi values are determined based on the objects retrieved, and not on the rest of the

source contents.

To prove the main result of this section, we �rst need the following lemma, which

identi�es a condition that implies manageability.

5This de�nition excludes executions that request all objects with a non-zero Source score for Qi,
since gi has to be greater than zero. However, this is not a limitation for most sources, where Source
scores have �nite precision.



130 CHAPTER 5. THE RESULT MERGING PROBLEM

Lemma 1: Let Q be a query and S a source for which 90 < x � y < 1 such that

8 object t, either Source(Q; t) > x or Target(Q; t) < y. Then, Q is manageable at

source S.

Proof: We need to �nd 0 � � < 1 such that 8 object t, Source(Q; t) � Target(Q; t)��.

Let � = maxf1�x; yg. (� > 0, since � � y > 0, and � < 1, since 1�x < 1 and y < 1.)

Consider an object t. From the assumptions, it follows that either Source(Q; t) > x

or Target(Q; t) < y:

1. Source(Q; t) > x:

Source(Q; t) > x � Target(Q; t)� 1 + x = Target(Q; t)� (1� x)

because Target(Q; t) � 1.

Furthermore, 1� x � �. Then, Source(Q; t) � Target(Q; t)� �.

2. Target(Q; t) < y:

Target(Q; t) < y � �

Then, Target(Q; t) � � < 0. Consequently, Source(Q; t) � Target(Q; t) � �,

because Source(Q; t) � 0.

We are now ready for our main result. Consider a partial retrieval for a query Q

and a source S that is not tractable for Q and that has no objects with a Target score

of 1. The following theorem shows that such a partial retrieval might miss objects

that are better than any object retrieved. In fact, we can always build better objects

and \include" them in the source. These objects would not be retrieved, because

the execution that built the partial retrieval at hand would see exactly the same

top Source objects for each single-attribute query. Thus, this execution would stop at

exactly the same point as before for each of the single-attribute queries (De�nition 5),

hence missing the (new) top Target objects. Consequently, such a partial retrieval

might always be incorrect, leaving no alternative but to extract the entire source

contents to obtain the top Target objects for Q.



5.4. SOURCE TRACTABILITY AS A NECESSARY CONDITION 131

Theorem 3: Consider a query Q and a minimal cover C = fQ1; : : : ; Qmg for Q.

Assume that 9j such that Qj is not manageable at source S, and Qi is manageable

at source S, 8i 6= j. Consider a partial retrieval for Q and S using C, and let

G = maxt retrievedfTarget(Q; t)g. Assume that G < 1. Then, we can build an object

l not in the partial retrieval such that Target(Q; l) > G.

Proof: Let 0 < gi < 1, i = 1; : : : ;m, be the values used by the partial retrieval

for Q and S using C (De�nition 5). For every i 6= j, pick an object ti such that

Source(Qi; ti) � gi. (Such objects exist from Assumption 4.) From the choice of ti

and the de�nition of partial retrieval, it follows that ti is not retrieved by query Qi.

Let ai = Target(Qi; ti) (0 � ai � 1).

From the minimality of C it follows that C � fQjg is not a cover for Q. Then,

there is an object l0 such that Target(Qi; l0) � ai 8i 6= j and Target(Q; l0) > G.

Otherwise, C � fQjg would be a cover for Q. (If m = 1, just pick any object l0 with

Target(Q; l0) > G.) Furthermore, Target(Qi; l0) � ai = Target(Qi; ti) 8i 6= j.

We now build an object l1 using the tis and l0:

l1[i] =

8<
:

ti[i] if i = 1; : : : ;m, i 6= j

l0[i] otherwise

From the choice of l1 it follows that:

� i = 1; : : : ;m, i 6= j: Target(Qi; l1) = Target(Qi; ti), because l1[i] = ti[i] and

using Assumption 5. Furthermore, Target(Qi; ti) = ai � Target(Qi; l0).

� Otherwise: Target(Qi; l1) = Target(Qi; l0), because l1[i] = l0[i] and using As-

sumption 5.

Then, Target(Qi; l1) � Target(Qi; l0), 8i. Hence, from Assumption 6, it follows that

Target(Q; l1) � Target(Q; l0) > G. Also, for i = 1; : : : ;m, i 6= j, Source(Qi; l1) =

Source(Qi; ti) � gi. Hence l1 is not retrieved by any of the Qi queries, i 6= j.

Next, we build another object l2. We will use l1 and l2 to construct the �nal object

l that we need for our proof. Let 0 < � < Target(Q; l1) � G. Now, let x = gj and

y = maxfx;Target(Qj; l1)��g. (Then, 0 < x � y < 1.) SinceQj is not manageable at



132 CHAPTER 5. THE RESULT MERGING PROBLEM

S, from Lemma 1 it follows that there is an object l2 such that Source(Qj; l2) � x and

Target(Qj; l2) � y. Then, Source(Qj; l2) � gj and Target(Qj; l2) � Target(Qj; l1)� �.

Finally, let us de�ne object l by letting l[i] = l1[i] 8i 6= j and l[j] = l2[j]. Then,

� i 6= j: Target(Qi; l) = Target(Qi; l1).

� Otherwise: Target(Qj; l) = Target(Qj; l2) � Target(Qj; l1)� �.

Then, fromAssumption 6 it follows that Target(Q; l) � Target(Q; l1)�� > Target(Q; l1)�

Target(Q; l1) +G = G. Also,

� i = 1; : : : ;m, i 6= j: Source(Qi; l) = Source(Qi; l1) � gi.

� Otherwise: Source(Qj; l) = Source(Qj; l2) � gj .

Thus, we have constructed an object l that satis�es the conditions in the theorem.

Corollary 1: Let C = fQ1; : : : ; Qmg be a (not necessarily minimal) cover for the

query Q of Theorem 3 such that it does not contain any manageable cover for Q.

Then, we can still build an object l as in Theorem 3 for any partial retrieval for Q

and S using C.

Proof: Let Qi1; : : : ; Qir be all the manageable queries in C. Since they do not

constitute a cover for Q, we can still build object l1 as in Theorem 3. Then, we \�ll"

each of the values for each Qj that is not manageable in exactly the same way as we

did for l1, using the fact that Qj is not manageable and Lemma 1.

Note that the main results of this section only cover algorithms that work via

multiple single-attribute queries. We believe that this is not a restriction for most

sources, since we expect the Source scores to match the Target scores for single-

attribute queries more often than for multi-attribute queries. Consequently, our result

has broad applicability, and points out the fundamental properties that are required

for extracting the top objects for a query across multiple autonomous sources.



5.5. CONCLUSION 133

5.5 Conclusion

Many sources rank the objects in query results according to how well these objects

match the original query. In this environment, metasearchers usually query multiple

autonomous, heterogeneous sources that might use varying result-ranking strategies.

In this chapter we have studied two crucial problems that a metasearcher faces: guar-

anteeing that it has extracted all the top objects for a user query from the underlying

sources, and re-ranking these objects according to its own criterion. These are di�-

cult problems, and our goal is to characterize the sources where we have some hope

of dealing with these problems e�ciently. We have presented necessary properties

that any source should satisfy, under broad assumptions. If a source does not verify

these properties, then a metasearcher might miss top objects from the source, unless

all of the source's contents are retrieved. We have also described a simple algorithm

to extract the top objects from a source where our properties hold.

The results in this chapter, and Algorithm Top in particular, do not guarantee

e�cient executions. If not implemented carefully, Algorithm Top might retrieve large

portions of a source when searching for top Target objects. We touched on the ef-

�ciency of Top in Section 5.2.2. However, the experiments in that section are still

preliminary. We will conduct a more exhaustive experimental analysis of the algo-

rithm in the near future. Another interesting open issue is the optimization of queries

over multiple sources, perhaps using statistics on the sources' contents. A promising

direction is to adapt the work in [CG96] and [Fag96] to our distributed, heterogeneous

scenario. Another interesting issue is how to deal with sources that do not satisfy

the properties and assumptions that our results need. We discussed this issue in Sec-

tion 5.3, but we need to explore further, for example, how to deal with sources that

return no more than, say, 200 objects per query. These characteristics also impact

the optimization of queries over these sources.



Chapter 6

dSCAM: A Non-Traditional

Metasearcher

In a renowned 1995 case [Den95], an author, who we will refer to as Mr. X for legal

reasons, plagiarized several technical reports and conference papers, and resubmitted

them under his own name to other conferences and journals. Unfortunately, most of

these papers (nearly 18) passed undetected through the paper review process and were

accepted to these conferences and journals. The topics of these papers ranged from

Steiner routing in VLSI CAD, to massively parallel genetic algorithms, complexity

theory, and network protocols. Mr. X also plagiarized papers from the database �eld,

notably a paper in DAPD by Tal and Alonso [TA94] on three-phase locking, a paper

in VLDB '92 by Ioannidis et al. [INSS92] on parametric query optimization, and a

paper in ICDE '90 by Leung and Muntz [LM90] on temporal query processing. The

Stanford Copy Analysis Mechanism (SCAM) [SGM95, SGM96] played an important

role in identifying the papers that Mr. X had plagiarized. (See [Den95] for further

details.)

SCAM is a registration server mechanism that helps 
ag document-copyright vi-

olations in Digital Libraries. The target is not simply academic plagiarism, but any

type of copying that can �nancially hurt authors and commercial publishers. SCAM

is also useful for removing duplicates and near-duplicates in information retrieval sys-

tems [YGM95a]. Essentially, SCAM keeps a large database of documents along with

134



135

indices to support e�cient retrieval of stored documents that are \potential copies."

SCAM attempts to �nd not just identical copies, but also cases of \substantial" over-

lap. For example, if a document contains several paragraphs or sections that were

copied from a registered document, it should be 
agged as a potential copy even if

there are also signi�cant portions where the documents di�er. Documents 
agged by

SCAM have to be checked manually for actual violations since the copying may have

been legal and since SCAM may produce some false positives.

The basic SCAM system requires a database of registered documents. In the

future, publishers may indeed establish such \copyright registration servers" [Kah92],

and these servers can then automatically check public sources such as netnews articles

and WWW/FTP sites for copies of the registered documents. However, if there

are multiple registration servers, and one has a suspicious document to check, then

the distributed copy detection problem is essentially a metasearching problem, as

described in Chapter 1. In e�ect, we �rst have to decide what servers to check, since

it may be impractical to go to all of them. Furthermore, we may also want to include

in our search databases that may not be running a SCAM system. In this case, not

only do we have to identify these databases, but we also need to pull out candidate

documents so that SCAM can analyze them.

This is precisely what we had to do in Mr. X's case. Initially, we only had the ab-

stracts of the papers that Mr. X had \written," i.e., we had the suspicious documents.

Then we proceeded as follows:

1. First we selected existing databases that we thought were likely to contain

the matching registered documents. Based on the contents of the suspicious

documents we decided that the INSPEC and NCSTRL databases were the most

appropriate. (As we mentioned before, INSPEC is a commercial database of

electrical engineering and computer science abstracts; NCSTRL is an emerging

digital library of computer science technical reports, see http://www.ncstrl.-

org.)

2. We manually chose some keywords from Mr. X's abstracts, and issued queries

such as VLSI _ Steiner _ Routing against the above databases.



136 CHAPTER 6. DSCAM: A NON-TRADITIONAL METASEARCHER

3. We retrieved the abstracts (about 35,000 overall) that matched the above queries,

registered them in SCAM, and then tested the suspicious documents against

them. In this way we found a total of 14 cases of plagiarism, most of them

previously unknown.

In this chapter we develop dSCAM, a metasearcher that automates the entire

copy search process. Automating this process is crucial as the number of document

databases grows and as publishers rely more on digital publishing. As a matter of

fact, appropriate safeguards for intellectual property rights are essential in a large

scale public digital library, and an automated dSCAM can be one of the tools.

� Text Source Discovery: We present the dSCAM mechanism that, given many

databases and a suspicious document, e�ciently identi�es the databases that

may contain documents that SCAM would consider copies. This problem is

fundamentally di�erent from a conventional text source discovery problem (e.g.,

from that of Chapters 3 and 4): dSCAM has to 
ag a database even if it contains

a single document that overlaps signi�cantly with the suspicious document.

� Query Translation: We present the dSCAM strategies for automatically gener-

ating queries from the underlying databases that retrieve potential copies for

subsequent analysis by SCAM.

For the source discovery phase, we build on the GlOSS approach of Chapters 3

and 4. The idea is to collect in advance \metainformation" about the candidate

databases. This can include, for example, information on how frequently terms appear

in documents at a particular database. This metainformation is much smaller than a

full index of the database or than what SCAM would actually need to detect copies.

Then, based on this information, dSCAM can rule out databases that do not contain

documents that SCAM would consider copies.

Notice that while dSCAM is structurally similar to GlOSS, there is a fundamental

di�erence. GlOSS attempts to discover databases that satisfy a given query (Boolean

or vector space). The GlOSS problem is a simpler one since all we need to know

is that the candidate database contains the necessary terms. However, for dSCAM,



137

�nding documents that have similar terms to those of the suspicious document is

not enough. For example, if the suspicious document only contains a subset that is

a copy, then there are terms in the non-copy portion that are not relevant. Thus,

simply treating the suspicious document as a GlOSS query will not lead us to the

right databases.

Instead, dSCAM will need to keep more sophisticated statistics than GlOSS does,

enough to let it identify sites that may have even a single copy, not just documents

that are \similar" to the suspicious one in an information retrieval sense. The key

challenge is to collect as little information as possible in dSCAM to be able to perform

this di�cult discovery task. Section 6.6 reports experiments that indeed show that

our techniques are successful at isolating the databases with potential copies, with

relatively few false positives.

In this chapter we consider two types of discovery techniques: conservative and

liberal ones. Conservative techniques only rule out a database if it is certain that

SCAM would not consider any document there a potential copy. The clear advantage

of conservative techniques is that they do not miss potential copies. In contrast, liberal

techniques might in principle miss databases with potential copies. However, this is

rarely the case, as we will see, and the liberal techniques search fewer unnecessary

databases. In practice, the choice between conservative and liberal depends on the

application: how exhaustive the search must be and what resources are available.

For the query translation problem (i.e., the problem of generating queries to re-

trieve the potential copies from a database), a naive solution is to simply query each

database (identi�ed in the discovery phase) for all documents containing any of the

terms in the suspicious document. That is, if the suspicious document contains words

w1; : : :wN , we could submit the query w1 _ : : : _wN (or alternatively, request all the

documents with w1, then all the ones with w2, and so on). Clearly, any potential

copy would be extracted in this way. However, our goal here is to extract all the

potential copies without having to perform such a massive query. Thus, to solve this

problem we show how to �nd the minimal query, under two di�erent cost metrics,

that can extract all the desired documents. For example, one of our cost measures

is the number of words in the submitted query. We will see that we can reduce such



138 CHAPTER 6. DSCAM: A NON-TRADITIONAL METASEARCHER

a number drastically by bounding the maximum \contribution" of every word to a

potential copy.

We start in Section 6.1 by giving an overview of SCAM. In Section 6.2 we describe

the data that dSCAM keeps about the databases. We use this data in Section 6.3 to

de�ne the conservative copy discovery schemes for dSCAM, while in Section 6.4 we

relax these schemes to make them liberal. In Section 6.5 we present the extraction

(query translation) mechanisms. Finally, in Section 6.6 we discuss an experimen-

tal evaluation of our techniques, using a collection of 50 databases and two sets of

suspicious documents [GMGS96].

6.1 Using SCAM for Copy Detection

Given a suspicious document s and a registered document d, SCAM detects whether

d is a potential copy of s by deciding whether they overlap signi�cantly. We have

explored [SGM95, SGM96] a variety of overlap measures. For example, we can say

that s and d overlap if they contain at least some fraction of common sentences. A

problem with this scheme is that it is often hard to detect sentence boundaries (e.g.,

periods in abbreviations get confused with the end of sentences). Also, it cannot

detect partial-sentence overlaps.

A di�erent measure we have studied uses similarity, in the information retrieval

(IR) sense, as a starting point. Traditionally, two documents are said to be similar

if the frequency with which words occur is correlated. If the distribution of word

frequencies between s and d is identical, we say that the similarity is maximal at

1. As the distributions di�er, the similarity decreases. This measure does not work

for copy detection because the matching documents can have portions that are very

di�erent causing the word frequency distributions to di�er signi�cantly. However,

this measure can be modi�ed for copy detection as we will explain in this section. In

this chapter we will use this modi�ed IR measure as the basis for dSCAM because our

experimental results show it works best, at least for the relatively small documents

found on the Internet.

To evaluate s and d using this modi�ed IR measure, SCAM �rst focuses on



6.1. USING SCAM FOR COPY DETECTION 139

the words that appear a similar number of times in s and d, and ignores the rest

of the words. More precisely, given a �xed � > 2, the closeness set for s and d,

c(s; d), contains the words wi with a similar number of occurrences in the two docu-

ments [SGM95]:

wi 2 c(s; d),
Fi(s)

Fi(d)
+
Fi(d)

Fi(s)
< �

where Fi(d) is the frequency of word wi in document d. If either Fi(s) or Fi(d) are

zero, then wi is not in the closeness set. Given �, s determines a range of frequencies

Accept(wi; Fi(s)) such that wi is in the closeness set for s and d if and only if Fi(d) 2

Accept(wi; Fi(s)).

The intuition behind this is as follows. If s and d share a substantial portion of

identical text, then there ought to be a set of words unique to that text that will

occur with similar frequencies. Focusing on words in the closeness set diminishes the

e�ects of unrelated portions of text.1

Example 35: Consider a suspicious document s and a database db with two docu-

ments, d1 and d2. There are four words in these documents, w1, w2, w3, and w4. The

following table shows the frequency of the words in the documents.

Document F1 F2 F3 F4

s 1 3 3 9

d1 1 3 0 0

d2 0 8 5 0

For example, w3 appears three times in s (F3(s) = 3), �ve times in d2 (F3(d2) = 5),

and it does not appear in d1 (F3(d1) = 0). Assuming � = 2:5 (a value that worked well

in the experiments in [SGM95]), Accept(w3; F3(s)) = Accept(w3; 3) = [2; 5]. Thus, w3

is in c(s; d2), the closeness set for s and d2, because F3(d2) = 5 is in Accept(w3; F3(s)).

Although F3(d2) is higher than F3(s), these two values are su�ciently close for � =

2:5. In e�ect, F3(s)
F3(d2)

+ F3(d2)
F3(s)

= 3
5 +

5
3 = 2:27 < � = 2:5. For the remaining cases,

1It also helps to ignore altogether words that occur frequently across documents [SGM96]. Our
experiments of Section 6.6 use the stop words in [SGM96].



140 CHAPTER 6. DSCAM: A NON-TRADITIONAL METASEARCHER

Accept(w1; F1(s)) = [1; 1], Accept(w2; F2(s)) = [2; 5], and Accept(w4; F4(s)) = [5; 17].

Then, c(s; d1) = fw1; w2g, and c(s; d2) = fw3g.

After �nding the closeness set for s and d, SCAM computes the similarity sim(s; d)

between the two documents. We would like to use traditional IR similarity measures

(using only words in the closeness set), but this does not work because those measures

give low values when s is a subset of d or vice versa. Instead we compute two measures,

one for the case where s might be a subset of d and one for the reverse case, and

take the maximum. In the former we ignore the norm (see below) of d since it

could be a much larger document; in the latter we ignore the norm of s. That is,

sim(s; d) = maxfsubset(s; d); subset(d; s)g where:

subset(d1; d2) =
X

wi2c(d1;d2)

Fi(d1)

jd1j
� Fi(d2)

(jdj =
PN

i=1 F
2
i (d) is the norm of document d and N is the number of terms.) If

sim(s; d) > T , for some user-speci�ed threshold T , then SCAM 
ags document d as

a potential copy of the suspicious document s.

Example 35: (cont.) Continuing with our example above, jsj = F 2
1 (s) + F 2

2 (s) +

F 2
3 (s) + F 2

4 (s) = 12 + 32 + 32 + 92 = 100. Similarly, jd1j = 10 and jd2j = 89. To

compute the similarity sim(s; d2) we just consider w3, the only word in the closeness

set for s and d2. Then,

sim(s; d2) = maxfF3(d2) �
F3(s)

jsj
;
F3(d2)

jd2j
� F3(s)g

= maxf5 �
3

100
;
5

89
� 3g = 0:17

Similarly, sim(s; d1) = 1, because SCAM regards d1 as a strict \subdocument" of s.

So, for T = 0:80, SCAM would not consider d2 to be a potential copy of s. However,

SCAM would �nd d1 suspiciously close to s.

Even though the SCAM similarity does not take into account word sequencing, the

experiments in [SGM95, SGM96] show that it detects potential copies relatively well.



6.2. THE DSCAM INFORMATION ABOUT THE DATABASES 141

In these experiments, conducted with 50,000 netnews articles, false positives were

very rare: the similarity measure 
agged unrelated documents as copies (because

they shared common vocabulary) in only 0:01% of the cases. False negatives were

more common but still only 5% of the cases tested: in these cases, documents with

relatively small overlap were not detected. Overall, the similarity measure performed

better than the sentence overlap measure described earlier.

6.2 The dSCAM Information about the Databases

dSCAM needs information to decide whether a database db has potential copies of

a suspicious document s. This information should be concise, but also su�cient to

identify any such database. dSCAM keeps the following statistics (or a subset of

them) for each database db and word wi, where dbi is the set of documents in db that

contain wi:

� fi(db) = mind2dbi Fi(d): fi(db) is the minimum frequency of word wi in any

document in db that contains wi

� Fi(db) = maxd2dbi Fi(d): Fi(db) is the maximum frequency of word wi in any

document in db that contains wi

� ni(db) = mind2dbi jdj: ni(db) is the minimum norm of any document in db that

contains wi

� Ri(db) = maxd2dbi
Fi(d)
jdj

: Ri(db) is the maximum value of the ratio Fi(d)
jdj

for any

document d 2 db that contains wi

� di(db) is the number of documents in db that contain word wi

Example 35: (cont.) The following table shows the dSCAM metadata for our

sample database db. Note that there are no entries for w4, since it does not appear

in any document in db.



142 CHAPTER 6. DSCAM: A NON-TRADITIONAL METASEARCHER

Statistics w1 w2 w3

fi 1 3 5

Fi 1 8 5

ni 10 10 89

Ri
1
10

3
10

5
89

di 1 2 1

As mentioned earlier, db has two documents, d1 and d2. Document d1 contains w2

three times, and document d2, eight times. Therefore, f2(db) = minf3; 8g = 3 and

F2(db) = maxf3; 8g = 8. Also, jd1j = 10 and jd2j = 89, so n2(db) = minf10; 89g = 10.

Finally, R2(db) = maxf 3
10
; 8
89
g = 3

10
, and d2(db) = 2, since w2 appears in both d1 and

d2.

Notice that the table above is actually larger than our earlier table that gave the

complete word frequencies. This is just because our sample database contains only

two documents. In general, the information kept by dSCAM is proportional to the

number of words or terms appearing in the database, while the information needed by

SCAM is proportional to the number of words times the number of times the words

appear in di�erent documents. In a real database, many words appear in hundreds or

thousands of documents, and hence the SCAM information can be much larger than

the dSCAM information. We will return to this issue in Section 6.6. To obtain the

necessary statistics, dSCAM periodically polls each potential source database, which

then extracts the data from its index structures.

6.3 The Conservative Approach

Given a set of databases, a suspicious document s, and a threshold T , dSCAM selects

all databases with potential copies of s, i.e., all the databases with at least one doc-

ument d with sim(s; d) > T . To identify these databases, dSCAM uses the metadata

of Section 6.2. In this section we focus on conservative techniques that never miss

any database with potential copies. In other words, dSCAM cannot produce any false

negatives with the techniques of this section. However, dSCAM might produce false



6.3. THE CONSERVATIVE APPROACH 143

positives, and consider that a database has potential copies when it actually does not.

In Section 6.6 we report experimental results that study how often the latter takes

place.

The information described in Section 6.2 can be used by dSCAM in a variety of

ways. We present two alternatives, starting with the simplest. The more sophisticated

technique will be less conservative: it will always identify the databases with potential

copies of a document, but it will have fewer false positives than the simpler technique.

Given a database db, a suspicious document s, and a technique A, dSCAM com-

putes an upper bound UpperA(db; s) on the similarity of any document in db and

s. In other words, UpperA(db; s) � sim(s; d) for every document d 2 db. Thus,

if UpperA(db; s) � T , then there are no documents in db close enough to s as de-

termined by the threshold T , and we can safely conclude that database db has no

potential copies of s. The two strategies below di�er in how they compute this upper

bound.

The Range Strategy

Consider a word wi in s. Suppose that wi appears in some document d in db. We

know that d contains wi between fi(db) and Fi(db) times. Also, wi is in the closeness

set for s and d if and only if Fi(d) 2 Accept(wi; Fi(s)). So, wi is in the closeness set

for s and d if and only if Fi(d) 2 [mi;Mi] = [fi(db); Fi(db)]\Accept(wi; Fi(s)). If this

range is empty, then wi is not in the closeness set for s and d, for any document d 2 db,

and therefore wi does not contribute to sim(s; d) for any d. If the range [mi;Mi] is

not empty, then wi can be in the closeness set for s and d, for some document d. For

any such document d, Fi(d) � Mi. We then de�ne the maximum frequency of word

wi 2 s in any document of db, Mi(db; s), as:

Mi(db; s) =

8<
:

Mi if [mi;Mi] 6= ;

0 otherwise

Putting everything together, we de�ne the upper bound on the similarity of any



144 CHAPTER 6. DSCAM: A NON-TRADITIONAL METASEARCHER

document d in db and s for technique Range as:

UpperRange (db; s) = maxfUpper1Range (db; s);Upper2Range (db; s)g

where:

Upper1Range (db; s) =
NX
i=1

Mi(db; s) �
Fi(s)

jsj
(6.1)

Upper2Range (db; s) =
NX
i=1

Mi(db; s)

ni(db)
� Fi(s) (6.2)

Note that since ni(db) � jdj for every d 2 db that contains wi, then:

UpperRange (db; s) � sim(s; d)

for every d 2 db. Also note that the Range technique does not use the Ri statistics.

Example 35 : (cont.) Consider the db statistics and the suspicious document

s. We have already computed Accept(w1; F1(s)) = [1; 1], Accept(w2; F2(s)) = [2; 5],

Accept(w3; F3(s)) = [2; 5], and Accept(w4; F4(s)) = [5; 17]. Also, dSCAM knows,

for example, that word w2 appears in db with in-document frequencies between

[f2(db); F2(db)] = [3; 8]. Then, the interesting range of frequencies of w2 in db is

[m2;M2] = [3; 8] \ [2; 5] = [3; 5]. The maximum such frequency is M2(db; s) = 5.

(Notice that there is no document d in db with F2(d) = 5. M2(db; s) is in this case

a strict upper bound for the frequencies of w2 in db that are in Accept(w2; F2(s)).)

Similarly,M1(db; s) = 1, M3(db; s) = 5, and M4(db; s) = 0. Therefore,

Upper1Range (db; s) = 1 �
1

100
+ 5 �

3

100
+ 5 �

3

100
= 0:31

Upper2Range (db; s) =
1

10
� 1 +

5

10
� 3 +

5

89
� 3

= 1:77

UpperRange (db; s) = 1:77



6.4. THE LIBERAL APPROACH 145

Therefore, if our threshold T is, say, 0.80, we would search db. This is of course the

right decision since d1 in db is indeed a potential copy.

The Ratio Strategy

This technique is similar to the previous one, but uses the Ri statistics. Thus,

UpperRatio(db; s) = maxfUpper1Range (db; s);Upper2Ratio(db; s)g

where:

Upper2Ratio(db; s) =
X

ijMi(db;s) 6=0

minf
Mi(db; s)

ni(db)
; Ri(db)g � Fi(s) (6.3)

It is immediate from the de�nition above that UpperRatio(db; s) � UpperRange (db; s)

for every database db and query document s. Therefore, Ratio is a less conserva-

tive technique than Range, and will tend to have fewer false positives than Range.

Nevertheless, Ratio will always detect databases with potential copies of s, because

sim(s; d) � UpperRatio(db; s) for every d 2 db.

Example 35: (cont.) We have already computed Upper1Range (db; s) = 0:31. Now,

Upper2Ratio(db; s) =
1

10
� 1 +

3

10
� 3 +

5

89
� 3

= 1:17

which is lower than Upper2Range (db; s).

6.4 The Liberal Approach

The techniques of Section 6.3 are conservative: they never fail to identify a database

with potential copies of a suspicious document (i.e., these techniques have no false

negatives). A problem with these techniques is that they usually produce too many

false positives. (See Section 6.6.) Consequently, we now introduce liberal versions of



146 CHAPTER 6. DSCAM: A NON-TRADITIONAL METASEARCHER

the Range and Ratio techniques. In principle, the new techniques might have false

negatives. As we will see, false negatives occur rarely, while the number of false

positives is much lower than that for the conservative techniques.

We modify the techniques of Section 6.3 in two di�erent ways. First, we allow these

techniques to focus only on the \rarest" words that occur in a suspicious document,

instead of on all its words (or on all the words that SCAM uses). (See Section 6.4.1.)

This way dSCAM can prune away databases where these rare words do not appear,

thus reducing the search space. Second, we allow these techniques to use probabilities

to estimate (under some assumptions) how many potential copies of a suspicious doc-

ument each database is expected to have. (See Section 6.4.2.) Thus, the probabilistic

techniques no longer compute upper bounds, again reducing the search space.

6.4.1 Counting Only Rare Words

The techniques of Section 6.3 considered every word in a suspicious document s (i.e.,

every word that SCAM uses) to decide which databases to search for potential copies

of s. Alternatively, dSCAM can just focus on the rarest words in s, i.e., on the words

in s that appear in the fewest number of databases. dSCAM then decides to search

a database only if at least a few of these rare words appear in it. If dSCAM uses

enough of the rare words in s, any potential copy of s will tend to contain a few of

these words. Furthermore, since these words appear in only a few databases, they

will help dSCAM dismiss a signi�cant fraction of the databases, thus reducing the

number of false positives.

One speci�c way to implement these ideas is as follows. Given a suspicious doc-

ument s, dSCAM just considers k percent of its words. These are the k% words in

s that appear in the fewest available databases. dSCAM can tell which words these

are from the metadata about the databases (Section 6.2). The remaining words in s

are simply ignored.

Example 35: (cont.) Consider suspicious document s, with words w1, w2, w3, and

w4. Suppose that w1 appears in 1 database, w2 in 2, w3 in 70, and w4 in 20 databases.

If dSCAM uses only 50% of the words in s (k = 50), it chooses w1 and w2, and ignores



6.4. THE LIBERAL APPROACH 147

w3 and w4.

As we mentioned before, dSCAM now ignores words in s that SCAM uses for

copy detection. Therefore, dSCAM might in principle miss a database with potential

copies of s. However, as we will see in Section 6.6, we can �nd values for k for which

dSCAM has very few false negatives, while producing much fewer false positives than

with the conservative techniques of Section 6.3.

Given k, we adapt the UpperRange and UpperRatio bounds of Section 6.3 (Equa-

tions 6.1, 6.2, and 6.3) to sum only over the k% rarest words in s. We refer to the

new values as SumRange and SumRatio, because they are no longer upper bounds on

the similarities of the documents in the databases and s.

As we use fewer words in s (i.e., only k% of them), we need to adjust the threshold

T (Section 6.1) for dSCAM accordingly. We refer to the adjusted threshold as T k.

For example, if we are just considering 10% of the words in s, we could compensate by

reducing the threshold T 10 = 0:10�T . We explore di�erent values for T k in Section 6.6.

If SumRange (db; s) (respectively, SumRatio(db; s)) is higher than T k, dSCAM will search

db for potential copies of s.

Example 35: (cont.) In Section 6.3 we computed UpperRange(db; s) = 1:77. Now, if

dSCAM only considers the 50% rarest words in s (i.e., w1 and w2), only those words

are counted, and we have:

Sum1Range (db; s) = 1 �
1

100
+ 5 �

3

100
= 0:16

Sum2Range (db; s) =
1

10
� 1 +

5

10
� 3 = 1:6

SumRange (db; s) = 1:6

The original SCAM threshold was T = 0:80. Since we are now considering only half

of the words, we could scale down T to, say, T 50 = 0:5 � T = 0:40. At any rate, we

would still search db, because 1:6 > 0:4. This is the right decision, since d1 in db is

indeed a potential copy.



148 CHAPTER 6. DSCAM: A NON-TRADITIONAL METASEARCHER

6.4.2 Using Probabilities

So far, the techniques for dSCAM compute the maximum possible contribution of

each word considered, and add these contributions. However, it is unlikely that any

document in a database will contain all of these words with this maximum contri-

bution. In this section, we depart from this \deterministic" model, and, given a

database db, try to bound the probability that db has potential copies of a suspicious

document. If this probability is high enough, dSCAM will search db.

Our goal is to bound the probability that a document in db has a similarity with

s that exceeds the adjusted threshold T k. For this, we de�ne two random variables

XRange1 and XRange2 (corresponding to Sum1Range and Sum2Range , respectively).

These variables model the similarity of the documents in db and s. Then,

ProbRange = maxfP (XRange1 > T k); P (XRange2 > T k)g

If ProbRange �
1
jdbj

, dSCAM will search db for potential copies of s, since there is at

least one expected document that exceeds the adjusted threshold T k.

Actually, instead of computing P (XRange1 > T k) and P (XRange2 > T k), we use

an upper bound for these values as given by Chebyshev's inequality. This bound is

based on the expected value and the variance of XRange1 and XRange2.

We now de�ne random variable XRange1, following the de�nition of Sum1Range .

(Random variable XRange2 is analogous, using the de�nition of Sum2Range .) The

XRange1 is actually a sum of random variables: XRange1 = XRange1i1 + : : : +

XRange1is where wi1; : : : ; wis are the k% rarest words in s. Random variable XRange1i

corresponds to word wi:

XRange1i =

8<
:

Mi(db; s) �
Fi(s)
jsj

with probability di(db)
jdbj

0 with probability 1� di(db)
jdbj

This variable models the occurrence of word wi in the documents of database db.

Word wi occurs in di(db) documents in db, so the probability that it appears in a

randomly chosen document from db is di(db)
jdbj

. To use Chebyshev's inequality and



6.5. SEARCHING THE DATABASES WITH POTENTIAL COPIES 149

compute the variance of XRange1 and XRange2, we assume that words appear in

documents following independent probability distributions. We de�ne ProbRatio in a

completely analogous way.

6.5 Searching the Databases with Potential Copies

Once dSCAM has decided that a database db might have potential copies of a sus-

picious document s, it has to extract these potential copies from db. If database db

happens to run a local SCAM server, dSCAM can simply submit s to this server and

get back exactly those documents that SCAM considers potential copies. However,

if db does not run a SCAM server, we need an alternative mechanism to extract the

potential copies automatically. For this, we will assume that db can answer Boolean

\or" queries, which most commercial search engines support. For example, we can

retrieve from db all documents containing the words \copyright" or the word \SCAM"

by issuing the query copyright _ SCAM. (Alternatively, if some search engine does

not support \or" queries, we could issue a sequence of queries, and then merge the

sequence of results.)

Let w1; : : : ; wN be the words in s. In principle, we could issue the query w1_ : : :_

wN to db and obtain all documents that contain at least one of these words. However,

such a query is bound to return too many documents that are not potential copies of

s. In this section, we study how to choose a smaller set of words fwi1 ; : : : ; wing that

will not miss any potential copy from db. Furthermore, the resulting queries will tend

not to extract documents that are not potential copies of s.

To choose a set of words to query, we de�ne themaximum contribution Ci(db; s) of

word wi in db as an upper bound on the amount that wi can add to sim(s; d), for any

d 2 db. We give two de�nitions of this maximum contribution, each corresponding

to a technique of Section 6.3. The �rst of these is more conservative but uses less

information. The other is less conservative but uses more information.



150 CHAPTER 6. DSCAM: A NON-TRADITIONAL METASEARCHER

Ci(db; s) =

8<
:

maxfMi(db; s) �
Fi(s)
jsj

; Mi(db;s)
ni(db)

� Fi(s)g for Range

maxfMi(db; s) �
Fi(s)
jsj

; minfMi(db;s)
ni(db)

; Ri(db)g � Fi(s)g for Ratio

Now, let C(db; s) =
PN

i=1 Ci(db; s), and let T be the SCAM similarity threshold

that the users speci�ed. Then, any set of words fwi1 ; : : : ; wing with the following

property is su�cient to extract all the potential copies of s from db:

nX
j=1

Cij(db; s) � C(db; s)� T (6.4)

To see why it is enough to use the query wi1 _ : : : _ win , consider a document

d 2 db that does not contain any of these n words. Then, sim(s; d) � C(db; s) �
Pn

j=1Cij (db; s) � T . Therefore, the similarity of d and s can never exceed the required

threshold T . This approach is conservative: we cannot miss any potential copy of a

document by choosing the query words as above. Alternatively, we explored a liberal

approach that would retrieve all potential copies most of the time, and has much

fewer \false positives." We do not describe this liberal technique further, but we

report some experimental results in Section 6.6.

To choose among all sets of words that satisfy Condition 6.4, we associate a cost

pi with each word wi. We then choose a set of words fwi1; : : : ; wing that satis�es

Condition 6.4 and minimizes
Pn

j=1 pij . We consider two di�erent cost models for a

query:

The WordMin Cost Model

In this case we minimize the number of words that will appear in the query. Thus,

pi = 1 for all i. Then, our problem reduces to �nding the smallest set of words that

satis�es Condition 6.4, which we can do optimally with a simple greedy algorithm.



6.6. EXPERIMENTS 151

The SelMin Cost Model

In this case we consider the selectivity of each word wi that will appear in the query,

i.e., the fraction of the documents in the database that contain word wi. Thus,

pi = Sel(wi; db). By minimizing the added selectivity we will tend to minimize the

number of documents that we retrieve from db.

We will �nd an optimal solution for this problem by reducing it to the 0-1 knapsack

problem [CLR91]. The new formulation of the problem is as follows. A thief robbing

a store �nds N items (the words). The ith item is worth pi dollars (the selectivity of

word wi) and weighs Ci(db; s) pounds (the maximum contribution of wi). The thief

wants to maximize the value of the load, but can only carry up to T pounds. The

problem is to �nd the right items (words) to steal. This formulation of the problem

actually �nds the words that will not appear in the �nal query, and maximizes the

added selectivity of these words. The weight of the words is at most T . Therefore,

the words that are not chosen weigh at least C(db; s)� T , satisfy Condition 6.4, and

have the lowest added selectivity among the sets satisfying Condition 6.4. Assuming

that T , the Ci's, and the pi's have a �xed number of signi�cant decimals, we can use

dynamic programming to solve the problem in O(T �N) time, where N is the number

of words in the suspicious document [CLR91].

6.6 Experiments

This section presents experimental results for dSCAM. We focus on three sets of

issues: How many false positives do the dSCAM techniques report, how many false

negatives do the liberal dSCAM techniques produce, and how e�ective is the document

extraction step?

For the registered-document databases, our experiments used a total of 63,350

ClariNet news articles. We split these articles evenly in 50 databases so that each

database consists of 1,267 documents.

For the suspicious documents, our experiments used two di�erent document sets.

The �rst set, which we refer to as Registered, contains 100 documents from the 50



152 CHAPTER 6. DSCAM: A NON-TRADITIONAL METASEARCHER

0

10

20

30

40

50

60

70

80

90

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
D
B
s

T k

k = 1 3

333 3 3 3

k = 5 +

+
++ + + +

k = 10 2

2

2
2 2 2 2

k = 25 �

�

�

�

�
� �

k = 50 4

444

4

4

4

k = 100 ?

?? ? ? ? ?

Figure 6.1: The percentage of the 50 databases that are searched as a function of the
adjusted similarity threshold T k (Registered suspicious documents; SumRatio strategy;
T = 1).

databases. Therefore, each suspicious document has at least one perfect copy in some

database. (There could be more copies due to crosspostings of articles.) The second

set, which we refer to as Disjoint, contains 100 later articles that do not appear in any

of the 50 databases. This set models the common case when the suspicious documents

are actually new documents that do not appear anywhere else.

Our �rst experiments are for the SumRatio technique, which proved to work the

best among the dSCAM techniques, as we will see later. Figures 6.1 through 6.4

show di�erent interesting metrics as a function of the adjusted threshold T k, and for

di�erent values of k. In all of these plots, the SCAM threshold T is set to 1. For

example, the curves for k = 10 correspond to considering only 10% of the words (the

rarest ones) in the suspicious documents. Note that for k = 100 all of the words in the

suspicious documents are used. In this case, SumRatio coincides with the conservative

technique UpperRatio.

One way to evaluate the dSCAM strategies is to look at d(s), the percentage of

databases returned by dSCAM for a suspicious document s. Figure 6.1 shows the

average d(s) (averaged over all s in the Registered set), as a function of T k. The more

words dSCAM considers from the suspicious documents (i.e., the higher k), the more

databases are searched: dSCAM considers the words as ordered by how rare they

are. Therefore, when dSCAM starts considering \popular" words, more databases



6.6. EXPERIMENTS 153

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
ec
al
l

T k

k = 1 3

3

3
3 3 3 3

k = 5 +

+

+

+
+ + +

k = 10 2

2
2

2

2

2 2

k = 25 �

���

�

�

�

k = 50 4

444 4 4

4k = 100 ?

?? ? ? ? ?

Figure 6.2: The average recall as a function of the adjusted similarity threshold T k

(Registered suspicious documents; SumRatio strategy; T = 1).

0
10
20
30
40
50
60
70
80
90
100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re
ci
si
on

T k

k = 1 33

33 3 3 3

k = 5 +

+

+

+
+ + +

k = 10 2

2

2

2

2
2 2

k = 25 �

�
�
�

�

�

�

k = 50 4

444 4

4

4

k = 100 ?

?? ? ? ? ?

Figure 6.3: The average precision as a function of the adjusted similarity threshold
T k (Registered suspicious documents; SumRatio strategy; T = 1).



154 CHAPTER 6. DSCAM: A NON-TRADITIONAL METASEARCHER

0

10

20

30

40

50

60

70

80

90

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
D
B
s

T k

k = 1 3

333 3 3 3

k = 5 +

+
++ + + +

k = 10 2

2

2
2 2 2 2

k = 25 �

�

�

�

� � �

k = 50 4

444
4

4

4

k = 100 ?

?? ? ? ? ?

Figure 6.4: The percentage of the 50 databases that are searched as a function of the
adjusted similarity threshold T k (Disjoint suspicious documents; SumRatio strategy;
T = 1).

will tend to exceed the similarity threshold T k. Also, for a �xed k, the higher T k,

the fewer databases that dSCAM searches, since only databases that exceed T k are

searched. For low values of k, dSCAM searches very few databases. For example, for

k = 10 and T k = 0:05, less than 10% of the databases are searched.

As we know, SumRatio may produce false negatives for k < 100, i.e., it may tell

us not to search databases where SCAM would �nd potential copies. It is interesting

to study what percentage of the databases with potential copies dSCAM actually

searches (or equivalently, what percentage of these databases are not false negatives).

Let Right(s;DB) be the set of databases in DB with potential copies of s according to

SCAM, and let Chosen(s;DB) be the set of databases that dSCAM searches. Then,

the recall of the technique used by dSCAM is the average value of:

100 � jChosen(s;DB) \ Right(s;DB)j

jRight(s;DB)j

over our suspicious documents s, as in Section 3.3.

Figure 6.2 shows the recall values for SumRatio as a function of the adjusted thresh-

old T k. This �gure is very similar to Figure 6.1: the more databases a technique

searches, the higher its recall tends to be. Note, however, that some techniques have

very few false negatives, while they search a low percentage of the databases. For



6.6. EXPERIMENTS 155

example, for k = 10 and T k = 0:05, recall is above 90%, meaning that for the aver-

age suspicious document, 90% of the databases with potential copies are chosen by

dSCAM. As we have seen, just under 10% of the databases are searched for this value

of k and T k.

As we mentioned above, dSCAM produces false positives. We want to measure

what percentage of the databases selected by dSCAM actually contains potential

copies. The precision of the technique used by dSCAM is the average value of:

100 � jChosen(s;DB) \ Right(s;DB)j

jChosen(s;DB)j

over our suspicious documents s. Figure 6.3 shows the precision values for SumRatio as

a function of the adjusted threshold T k. As expected, the more databases a technique

searches, the lower its precision tends to be. For k = 10 and T k = 0:05, precision

is over 40%, meaning that for the average suspicious document, over 40% of the

databases that dSCAM searches have potential copies of the document. Actually,

this choice of values for k and T k is a good one: dSCAM searches very few databases

while achieving high precision and recall values.

We are evaluating dSCAM in terms of how well it predicts the behavior of SCAM

at each database. However, SCAM can sometimes be wrong. For example, SCAM

can wrongly 
ag a document d in db as a copy of a suspicious document s. dSCAM

might then also 
ag db as having potential copies of s. However, we do not \penalize"

dSCAM for this \wrong" choice: the best dSCAM can do is to predict the behavior

of SCAM, and that is why we de�ne precision and recall as above. It would be

unreasonable to ask a system like dSCAM, with very limited information about the

databases, to detect copies more accurately than a system like SCAM, which has

complete information about the database contents. (See Section 3.4.3.)

To illustrate the storage space di�erences between dSCAM and SCAM, let us

consider the data that we used in our experiments. In this case, there are around 4

million word-document pairs, which is the level of information that a SCAM server

needs, whereas there are only around 791,000 word-database pairs, which is the level

of information that a dSCAM server needs. As the databases grow in size, we expect



156 CHAPTER 6. DSCAM: A NON-TRADITIONAL METASEARCHER

this di�erence to widen too, since the dSCAM savings in storage come from words

appearing in multiple documents. For example, if we consider our 50 databases

as a single, big database, dSCAM needs only 138,086 word-database pairs, whereas

the SCAM data remains the same. Therefore, dSCAM has just around 3:36% as

many entries as SCAM. We are considering alternatives to reduce the size of the

dSCAM data even further. As an interesting direction for future work, dSCAM can

store information on, say, only the 10% rarest words. Most of the time, the 10%

rarest words that appear in a suspicious document will be among these 10% overall

rarest words, so dSCAM can proceed as usual. With this scheme, the dSCAM space

requirements would be cut further by an order of magnitude.

Figure 6.4 shows results for the Disjoint set of suspicious documents, again for the

SumRatio technique and T = 1. There are no potential copies of these documents in

any of the 50 databases. Therefore, recall is always 100%, and precision is 0% if some

database is selected. It then su�ces to report the percentage of databases chosen for

these documents (Figure 6.4). These values tend to be lower in general than those

for the Registered suspicious documents of Figure 6.1, which is the right trend, since

no database contains potential copies of the suspicious documents. For example, for

k = 10 and T k = 0:05, less than 5% of the databases are searched.

So far we have presented results just for the SumRatio technique. Figures 6.5

through 6.7 show results also for SumRange , ProbRange , and ProbRatio, as a function of

the SCAM threshold T . In all of these plots, we have �xed k = 10 and T k = 0:05 �T ,

which worked well for both the Registered and theDisjoint suspicious documents when

T = 1. In Figure 6.5, ProbRange and ProbRatio search fewer databases than SumRange

and SumRatio , at the expense of signi�cantly lower recall values (Figure 6.6). SumRange

and SumRatio have very high recall values (above 95% for all values of T ). Precision is

also relatively high, especially for the SumRatio strategy (Figure 6.7). From all these

plots, SumRatio appears as the best choice for dSCAM, because of its high recall and

precision, and low percentage of databases that it searches. Also, note that SumRatio

does not need the di statistics, resulting in lower storage requirements than those of

ProbRatio , for example. However, if we want to be conservative, and be sure that we do

not miss any potential copy of a document, then the best choice is also SumRatio, but



6.6. EXPERIMENTS 157

5

6

7

8

9

10

11

12

13

14

0.5 0.6 0.7 0.8 0.9 1

%
D
B
s

T

SumRange 3

3

3

3
3 3 3

SumRatio +
+

+

+
+

+ +

ProbRange 2

2

2

2
2

2
2

ProbRatio ��

�

�
�

�
�

Figure 6.5: The percentage of the 50 databases that are searched as a function of the
SCAM threshold T (Registered suspicious documents; k = 10; T k = 0:05 � T ).

65

70

75

80

85

90

95

100

0.5 0.6 0.7 0.8 0.9 1

R
ec
al
l

T

SumRange 3

3 3
3 3 3

3

SumRatio +

+ +
+ +

+ +

ProbRange 2

2

2

2

2

2 2

ProbRatio �

�

�

�

�
� �

Figure 6.6: The average recall as a function of the SCAM threshold T (Registered
suspicious documents; k = 10; T k = 0:05 � T ).

with k = 100 and T k = T . (This technique coincides with the conservative UpperRatio

technique of Section 6.3.)

To determine whether the results above will still hold for larger databases, we

performed the following experiment. Initially we have a single database with 1,267

documents (one of the databases that we used in this section). dSCAM decides

whether this database should be searched or not for each of the Disjoint suspicious

documents, with T = 1, the SumRatio strategy, k = 10, and T k = 0:05. The answer

should be \no" for each of these documents, of course. Figure 6.8 shows that dSCAM

decides to search this database for less than 10% of the tested documents. This



158 CHAPTER 6. DSCAM: A NON-TRADITIONAL METASEARCHER

26

28

30

32

34

36

38

40

42

44

0.5 0.6 0.7 0.8 0.9 1

P
re
ci
si
on

T

SumRange 3

3

3

3
3 3

3

SumRatio +

+

+

+
+

+
+

ProbRange 22
2

2

2
2

2

ProbRatio �
� �

�

�
�

�

Figure 6.7: The average precision as a function of the SCAM threshold T (Registered
suspicious documents; k = 10; T k = 0:05 � T ).

corresponds to a 0:10 probability of false positives. Then, we keep enlarging our only

database by progressively adding the documents from our original databases, until

the database consists of all 63,350 documents. As we see from Figure 6.8, after an

initial deterioration, dSCAM stabilizes and chooses to search the database around

25% of the time. These important results show that dSCAM scales relatively well

to larger databases. That is, the probability of false positives is relatively insensitive

(after an initial rise) to database size. Notice, incidentally, that the 25% false-positive

probability can be made smaller by changing the T k and k values (at a cost in false

negatives). So the key observation from this �gure is simply that the value is 
at as

the database size grows.

Our �nal set of experiments is for the results of Section 6.5. In that section we

studied how to choose the query for each database that dSCAM selects. These queries

retrieve all potential copies of the suspicious documents. There are many such queries,

though. We presented two cost models, and showed algorithms to pick the cheapest

query for each model.

Under our �rst cost model, WordMin, we minimize the number of words in the

queries that we construct. Thus, we choose a minimum set of words for our query

from the given suspicious document. Figure 6.9 shows the percentage of words in

the suspicious document that are chosen to query the databases, for the Registered

documents and for di�erent values of T . The number of words in the queries decreases



6.6. EXPERIMENTS 159

0

20

40

60

80

100

10 20 30 40 50

%
C
h
os
en

Size of DB (� 1267 documents)

SumRatio 3

3
3
33
33 3 3 3 3

Figure 6.8: The average number of times that dSCAM (incorrectly) chooses to search
the (growing) database, as a function of the size of the database (Disjoint suspicious
documents; SumRatio strategy).

as T increases. In e�ect, Condition 6.4 in Section 6.5 becomes easier to satisfy for

larger values of T . For example, for T = 0:80 and Ratio, we need on average 9:99% of

the suspicious-document words for our queries. If a particular database cannot handle

so many words in a query, we should partition the query into smaller subqueries, and

take the union of its results. As expected, the number of words chosen using the

SelMin cost model is higher, because this cost model focuses on the selectivity of the

words, and not on the number of words chosen.

While our second cost model, SelMin, uses the word selectivities, the WordMin

cost model ignores these selectivities. Therefore, we analyze the selectivity for the

queries to know what fraction of each database we will retrieve with such queries.

Figure 6.10 shows the average value of this selectivity for the Registered suspicious

documents.

The number of query words and the added selectivity of the query words are

relatively high. However, if all a database has is a Boolean-query interface, we have

no choice but to ask the right queries to the database to extract all the potential

copies of a suspicious document. The results above show that we can do substantially

better than the brute-force approach (i.e., when we use all the words in the suspicious

document to build a big \or" query) by writing the queries as in Section 6.5.

We have also explored liberal techniques to extract the potential copies from a



160 CHAPTER 6. DSCAM: A NON-TRADITIONAL METASEARCHER

5

10

15

20

25

30

35

40

0.5 0.6 0.7 0.8 0.9 1

%
W
or
d
s

T

WordMin 3

3

3
3 3

3 3

SelMin +

+

+
+

+
+ +

Figure 6.9: The percentage of words of the suspicious documents that are included
in the query to extract the potential copies from the databases (Registered suspicious
documents; Ratio strategy).

database. These liberal techniques might have false negatives (i.e., they might miss

some potential copies) and they have much fewer false positives (i.e., they retrieve

fewer documents that are not potential copies). Although we do not describe these

techniques here, we report some numbers for T = 1 to give an idea of the promising

results that we obtained. For example, we queried the databases using only the 10%

rarest words in the suspicious documents. These queries had an average selectivity

of 0:49% (i.e., these \or" queries retrieved on average less than 1% of the database

documents), and an average recall of 94% (i.e., these queries retrieved on average 94%

of the potential copies). In contrast, theWordMin queries for T = 1 have fewer words

on average (around 8% of the words), but their selectivity is much higher (around

16%). The SelMin queries for T = 1 have over 20% of the document words in them,

and their average selectivity is still higher than that of the liberal technique (over

5%). Of course, recall is perfect for WordMin and SelMin, while this is not the case

for the liberal techniques.

6.7 Conclusion

Discovering a potential copy that might exist in one of many databases is a funda-

mentally di�cult problem. One might say that it is harder than �nding a \needle in



6.7. CONCLUSION 161

4
6
8
10
12
14
16
18
20
22
24
26

0.5 0.6 0.7 0.8 0.9 1

S
el
ec
ti
v
it
y

T

WordMin 3
3

3

3
3 3 3

SelMin +
+

+
+

+

+
+

Figure 6.10: Average selectivity of the queries used to extract the potential copies
from the databases, as a function of the SCAM threshold T (Registered suspicious
documents; Ratio strategy).

a haystack:" the haystack is distributed across the Internet, we do not want similar

items (e.g., a nail), and we also want to �nd any piece of the needle if it exists. It

is a harder problem than simply �nding similar items, as in traditional information

retrieval. Given this di�culty it is somewhat surprising that dSCAM performs as

well as we have found, especially when one considers the relatively small amount of

index information it maintains. It is true that dSCAM can miss some potential copies

or can lead us to sites without copies, but with the right algorithm and parameter

settings, these errors can be made tolerable. For example, we found that dSCAM can

miss fewer than 5% of the sites with potential copies, and for the sites it does lead us

to, they actually have a potential copy roughly half the time.

dSCAM performs best when it only considers about 10% of the words in the

suspicious document, those that are the \rarest." Intuitively, these rare words act

as a \telltale signature" that makes it easier to pick out the target databases. We

believe that this is the main reason that dSCAM performs better than one would

expect, given the di�culty of the problem at hand. Some pirates may make it harder

for dSCAM to detect these signatures by changing these rare words, but this is not

a signi�cant problem since our goal is to prevent widespread and direct copying of

documents.



162 CHAPTER 6. DSCAM: A NON-TRADITIONAL METASEARCHER

We believe that copy discovery will be an important service in distributed infor-

mation systems. It will not prevent people from making illegal copies, but having

e�ective discovery mechanisms (together with copy tracing schemes) may dissuade

people from large scale duplication.



Chapter 7

Related Work

This chapter reviews the literature that is relevant to this thesis. Section 7.1 starts by

describing how existing metasearchers address the key metasearching issues that we

identi�ed in Chapter 1. Then, Section 7.2 reviews protocols relevant to our STARTS

work of Chapter 2. Section 7.3 discusses di�erent approaches to solving the text-

source discovery problem of Chapters 3 and 4. Section 7.4 focuses on work on the

result merging problem of Chapter 5, most notably on relevant work from the infor-

mation retrieval �eld. Finally, Section 7.5 gives an overview of work related to the

distributed copy detection problem of Chapter 6.

7.1 Metasearchers

Several metasearchers already exist on the Internet for querying multiple World-

Wide Web indexes. However, not all of them support the three major metasearch

tasks described in Chapter 1 (i.e., selecting the best sources for a query, querying

these sources, and merging the query results from the sources). Examples of meta-

searchers include MetaCrawler [SE95] (http://www.metacrawler.com), SavvySearch

(http://guaraldi.cs.colostate.edu:2000/), and ProFusion [GW96]. Also, the

Stanford InfoBus, designed within the Digital Library project [PCGM+96, RBC+97],

hosts a variety of metasearchers. In [BCGP97a, BCGP97b], we discuss a metadata

architecture for the InfoBus. This architecture is based on the requirements of the

163



164 CHAPTER 7. RELATED WORK

InfoBus services, and uses the STARTS information that sources should export.

MetaCrawler, SavvySearch, and Profusion support the three metasearch tasks

above to some degree. First, they provide some sort of source selection. For example,

SavvySearch ranks its accessible sources for a given query based on information from

past searches and estimated network tra�c. Second, they support a uni�ed query

interface for accessing the underlying sources, although this interface tends to be the

least common denominator of that of the underlying sources. For query features that

are not supported uniformly by the underlying sources, a post-�ltering step is required

for the metasearcher to locally implement the missing functionality. For instance,

MetaCrawler processes phrase searches in the \veri�cation mode." Third, these meta-

searchers re-rank the documents in the query results. Speci�cally, MetaCrawler re-

ranks the documents by actually retrieving and analyzing them. SavvySearch simply

reports the documents according to the originating sources, and using the source rank

mentioned above. Profusion re-ranks each documents by scaling its score with the

con�dence factor for the source where the document originates. These con�dence

factors measure how useful each source was for a set of 25 sample queries.

7.2 Protocols

The most relevant standards e�ort in terms of shared goals is the Z39.50-1995 stan-

dard [Org95], which provides most of the functionality we have described for STARTS.

For instance, its Explain facility requires the Z39.50 servers to export their \source

metadata" so that the clients can dynamically con�gure themselves to match indi-

vidual servers, thus providing the option to support more than the least common

denominator of the servers. The standard also speci�es query languages such as the

type-101 query language, which we used in Section 2.3.1. In addition, the Scan service

allows the clients to access the sources' contents incrementally.

While similar in functionality, our STARTS proposal is much simpler than Z39.50,

and keeping it simple was one of our main concerns. Moreover, as our proposal

is speci�cally tailored to facilitate metasearching, we require some information not

exported in Z39.50. For example, we need the term and document statistics as part



7.2. PROTOCOLS 165

of the query results to help in merging multiple document ranks. However, we do see

our proposal as a step toward bridging the gap between the library community where

Z39.50 has been widely used and the Internet search community. As we mentioned

in Chapter 2, there are currently e�orts under way to de�ne a simple pro�le of the

Z39.50 standard based on STARTS [Z3997].

In addition to the Z39.50 standard e�ort, other projects focus on providing a

framework for indexing and querying multiple document sources. One such project,

Harvest [BDH+94], includes a set of tools for gathering and accessing information on

the Internet. The Harvest gatherers collect and extract indexing information from

one or more sources. Then, the brokers retrieve this information from one or more

gatherers, or from other brokers. The brokers provide a querying interface to the

gathered information. A project related to Harvest is Netscape's RDM (Resource

Description Messages) [Har96], which focuses on indexing and accessing structured

metadata descriptions of information objects. Our work complements Harvest and

RDM in that we de�ne the information and functionality that sources should export

to help in metasearching. Thus, the Harvest brokers (or RDM clients) could act as

metasearchers, and bene�t from the STARTS information that sources export.

Other related e�orts focus on de�ning attribute sets for documents and sources.

As discussed in Chapter 2, we have built on some of these e�orts in de�ning our

protocol. Relevant attribute sets for documents include the Z39.50 Bib-1 attribute

set [Age95], the Dublin Core [WGMJ95], and the Warwick Framework [LLJ96]. The

Bib-1 attribute set registers a large set of bibliographic attributes that have been

widely adopted in library cataloging. On the other hand, the focus of the Dublin Core

is primarily on developing a simple yet usable set of attributes to describe the essen-

tial features of networked documents (e.g., World-Wide Web documents), which is

also the intention of our \Basic-1" set. The Warwick Framework proposes a container

architecture as a mechanism for incorporating attribute values from di�erent sets in a

single information object. In contrast, we chose to support only a simple, \
at" doc-

ument model, albeit with the ability to mix di�erent attribute models [GCGMP96].

Regarding source-metadata attribute sets, the most notable e�orts include the Z39.50

Exp-1 attribute set [Org95] and the GILS pro�le [Chr97], upon which we based our



166 CHAPTER 7. RELATED WORK

\MBasic-1" attribute set (Section 2.3.3).

7.3 Text-Source Discovery

Many solutions have been presented recently for the text-source discovery problem, or,

more generally, for the resource-discovery problem: the text-source discovery problem

is a subcase of the resource-discovery problem, since the latter generally deals with a

larger variety of types of information [ODL93, SEKN92].

One solution to the text-source discovery problem is to let the database selection

be driven by the user. Thus, the user will be aware of and an active participant in

this selection process. Di�erent systems follow di�erent approaches to this: one such

approach is to let users \browse" through information about the di�erent resources.

A typical example of this paradigm is Yahoo! (http://www.yahoo.com). As another

example, the Prospero File System [Neu92] lets users organize information available in

the Internet through the de�nition (and sharing) of customized views of the di�erent

objects and services available to them.

A di�erent approach is to keep a database of \meta-information" about the avail-

able databases and have users query this database to obtain the set of databases to

search. For example, WAIS [KM91] provides a \directory of servers." This \master"

database contains a set of documents, each describing (in English) the contents of

a database on the network. The users �rst query the master database, and once

they have identi�ed potential databases, direct their query to these databases. One

disadvantage is that the master-database documents have to be written by hand to

cover the relevant topics, and have to be manually kept up to date as the underlying

database changes. However, freeWAIS [FW+93] automatically adds the most fre-

quently occurring words in an information server to the associated description in the

directory of servers. Another drawback is that in general, databases containing rele-

vant documents might be missed if they are not chosen during the database-selection

phase. [DS94] shows sample queries for which very few of the existing relevant servers

are found by querying the WAIS directory of servers (e.g., only 6 out of 223 relevant

WAIS servers).



7.3. TEXT-SOURCE DISCOVERY 167

Reference [Sch90] follows a probabilistic approach to the resource-discovery prob-

lem, and presents a resource-discovery protocol that consists of two phases: a dis-

semination phase, during which information about the contents of the databases is

replicated at randomly chosen sites, and a search phase, where several randomly

chosen sites are searched in parallel. Also, sites are organized into \specialization

subgraphs." If one node of such a graph is reached during the search process, the

search proceeds \non-randomly" in this subgraph, if it corresponds to a specialization

relevant to the query being executed. See also [Sch93].

In Indie (shorthand for \Distributed Indexing") [DLO92], information is indexed

by \Indie brokers," each of which has associated, among other administrative data,

a Boolean query (called a \generator rule"). Each broker indexes (not necessarily

local) documents that satisfy its generator rule. Whenever a document is added to

an information source, the brokers whose generator rules match the new document

are sent a descriptor of the new document. The generator objects associated with

the brokers are gathered by a \directory of servers," which is queried initially by the

users to obtain a list of the brokers whose generator rules match the given query.

See also [DANO91]. [BC92], [OM92], and [SA89] are other examples of this type of

approach in which users query \meta-information" databases.

A \content-based routing" system is used in [SDW+94] to address the resource-

discovery problem. The \content routing system" keeps a \content label" for each

information server (or collection of objects, more generally), with attributes describing

the contents of the collection. Users assign values to the content-label attributes in

their queries until a su�ciently small set of information servers is selected. Also, users

can browse the possible values of each content-label attribute.

The WHOIS++ directory service (http://www.ucdavis.edu/whoisplus) orga-

nizes the WHOIS++ servers into a distributed \directory mesh" that can be searched:

each server automatically generates a \centroid" listing the words it contains (for the

di�erent attributes). Centroids are gathered by index servers, that in turn must gen-

erate a centroid describing their contents. The index server centroids may be passed

to other index servers, and so on. A query that is presented to an index server is

forwarded to the (index) servers whose centroids match the query.



168 CHAPTER 7. RELATED WORK

In [FY93], every site keeps statistics about the type of information it receives

along each link connecting to other sites. When a query arrives in a site, it is for-

warded through the most promising link according to these statistics. References

[MDT93], [ZC92], and [MTD92] follow an expert-systems approach to solving the

related problem of selecting online business databases.

A complementary approach to GlOSS is taken by Chamis [Cha88]. Brie
y, the

approach this paper takes is to expand a user query with thesaurus terms. The

expanded query is compared with a set of databases, and the query terms with exact

matches, thesauri matches, and \associative" matches are counted for each database.

Each database is then ranked as a function of these counts. We believe that this

approach is complementary in its emphasis on thesauri to expand the meaning of a

user query.

Reference [CLC95] has applied inference networks (from information retrieval)

to the text-source discovery problem. Their approach summarizes databases using

document-frequency information for each term (the same type of information that

GlOSS keeps about the databases), together with the \inverse collection frequency"

of the di�erent terms. An inference network then uses this information to rank the

databases for a given query.

Two interesting alternative approaches are Pharos and the Information Manifold.

The Pharos system [DADA96] combines browsing and searching for resource discov-

ery. This system keeps information on the number of objects that each source has

for each category of a subject hierarchy like the Library of Congress's LC Classi�ca-

tion System. Alternatively, the Information Manifold system [KLSS95, LRO96] uses

declarative, hand-written descriptions of the sources' contents and capabilities. These

descriptions are useful to prune the search space for evaluating user queries e�ciently.

7.4 Result Merging

The problem of merging document ranks from multiple sources has been studied in

the information retrieval �eld, where it is often referred to as the collection fusion

problem. Given a query, the goal is to extract as many of the relevant documents as



7.4. RESULT MERGING 169

possible from the underlying document collections. As with our problem of Chapter 5,

key decisions include how far \down" each document rank to explore, and how to

translate Source scores (local similarity measures) into Target scores (usually global

similarity measures). An approach to address these problems is to learn from the

results of training queries. Given a new query, the closest training queries are used to

determine how many documents to extract from each available collection, and how to

interleave them into a single document rank [VGJL95, VT97]. Another approach is

to calibrate the document scores from each collection using statistics about the word

distribution in the collections [CLC95]. One important di�erence between this line of

work and ours is that we want to guarantee that metasearchers extract the top Target

objects from the sources and return these objects ordered according to their Target

scores. In contrast, the work on the collection fusion problem develops heuristics or

techniques for placing relevant documents (a subjective notion) as high as possible

in the combined document ranks for a query, sometimes using the Source scores as

indicators of relevance.

For document collections, it is particularly hard to compute the Target score

for a document from the query results that are typically returned by text search

engines. In e�ect, these results do not include entire documents, and have very little

information other than the Source scores. To address this problem, the STARTS

protocol proposal that we described in Chapter 2 speci�es what information should

accompany the query results that a text search engine returns so that document

rank merging is facilitated. A metasearcher can then use this information to merge

multiple document ranks by computingTarget scores without accessing the documents

themselves.

A closely related problem is how to query a repository of complex, multimedia

objects. These objects might have attributes like images and text. Thus, the matches

between query values and such multimedia attributes are inherently fuzzy, and the

objects are ranked according to how well they match the query values. The work

in [CG96] and [Fag96] studies how to query such repositories e�ciently. In particular,

[Fag96] studies upper and lower bounds on the number of objects that we need to

extract from a repository so that the overall top objects are retrieved and returned



170 CHAPTER 7. RELATED WORK

to the user that issued a query. [CG96] addresses the cost-based optimization of

queries over such repositories. This work assumes that a single repository handles

all attributes of an object. Therefore, there is no need to \calibrate" the scores

that an object gets for a particular attribute, for example. Using our terminology,

all single-attribute queries are manageable with � = 0. (See Section 5.5 for further

discussion.)

Finally, there has been a signi�cant amount of work on querying multiple hetero-

geneous sources. In Chapter 5 we assume that all sources export a uniform interface

so they can all answer queries over the same set of attributes. We can use the tech-

niques in [FK93, PGMGU95], for example, to build wrappers around the sources and

provide the illusion of such a uniform interface.

7.5 Distributed Copy Detection

Protecting digital documents from illegal copying has received a lot of attention re-

cently. Some systems favor the copy prevention approach, for example, by physically

isolating information (e.g., by placing information on stand-alone CD-ROM systems),

by using special-purpose hardware for authorization [PK79], or by using active doc-

uments (e.g., documents encapsulated by programs [Gri93]). We believe such pre-

vention schemes are cumbersome, and may make it di�cult for honest users to share

information. Furthermore, such prevention schemes can be broken by using software

emulators [BDGM95] and recording documents. Instead of placing restrictions on the

distribution of documents, another approach to protecting digital documents (one we

subscribe to) is to detect illegal copies using registration server mechanisms such as

SCAM [SGM95, SGM96] or COPS [BDGM95]. Once we know a document to be an

illegal copy, it is sometimes useful to know the originator of the illegal copy. There

have been several proposals [BLMO94, CMPS94] to add unique \watermarks" to

documents (encoded in word spacing or in images) so that one can trace back to the

original buyer of that illegal document.

A variety of mechanisms have been suggested for registration servers. In [MW94],

a few words in a document are chosen as anchors and checksums of a following window



7.5. DISTRIBUTED COPY DETECTION 171

of characters are computed. \Similar" �les can then be found by comparing these

checksums that are registered into a database. This tool is mainly intended for �le

management applications, and detection of �les that are very similar, but not for

detecting small text overlaps. The COPS and SCAM registration servers however

were developed to detect even small overlaps in text.

dSCAM builds on work in the resource-discovery area. (See Section 7.3.) This

work usually focuses on �nding the \best" sources for a query, where the best sources

are usually those with the largest number of \relevant" documents for the query.

These schemes are not tuned to choose databases with a potential copy of a suspicious

document, in the sense of Section 6.1. The distributed copy detection problem requires

that we identify databases even if they contain a single document that overlaps a

suspicious document signi�cantly.



Chapter 8

Future Work

Users should be able to express their information needs and receive the relevant

data even when �nding this data requires accessing multiple, heterogeneous sources,

or sources that do not cooperate by exporting content summaries. Furthermore,

users should receive this data ordered starting from those objects that are poten-

tially most useful, because the number of objects that match a query might be very

large. This thesis has addressed some of the issues involved in building sophisticated

metasearchers. In particular, we speci�ed a protocol, STARTS, that sources should

support to make all metasearching tasks easier (Chapter 2). Then, we developed a

system, GlOSS, that relies on the STARTS content summaries provided by coopera-

tive sources for text-source discovery, an important task that metasearchers perform

(Chapters 3 and 4). We also studied the result merging problem, and characterized

what sources are \good" with respect to result merging (Chapter 5). Finally, we

designed dSCAM, a metasearcher for a novel application: distributed copy detection,

with challenging speci�c requirements for text-source discovery and query translation

(Chapter 6). However, many problems still need to be solved before we can pro-

vide users with sophisticated, seamless, and transparent access to the large number

and variety of Internet sources. Below is a description of some of these problems,

which range from improving systems that already exist (e.g., WWW search engines

for HTML documents), to dealing with sources that are currently largely ignored

by WWW search engines (e.g., \uncooperative," non-HTML text sources, relational

172



173

databases, image repositories).

Smart Query Processing over World-Wide Web Documents

Current WWW search engines generally do a poor job at ranking pages for a given

user query. Typically, these engines rank the available WWW pages for the query

based on the pages' contents. These page ranks are computed by following variants

of the vector-space and probabilistic retrieval models developed over the years by

the information retrieval community. The number of WWW pages and the wide

di�erence in their quality and scope make this approach inappropriate in many cases:

users are overwhelmed with large numbers of highly ranked, low quality pages that

happen to include the query words many times.

Departing from more traditional approaches, the BackRub search engine devel-

oped by Larry Page and others at Stanford (http://backrub.stanford.edu) ex-

ploits the HTML link information to rank pages for queries. The more times a page

is cited, the more important this page is considered by this system. Furthermore, if

an \important" page points to another page, the latter inherits part of the former's

importance. Citation information has also been used, together with other factors,

in [YL96].

A fascinating research issue is how to use all the information available on the

WWW to do a better job at ranking pages for queries. The page citations, coupled

with additional knowledge available on the WWW, contain valuable nuggets of infor-

mation to be mined. For example, we can map every WWW page to a location based

on where its hosting site resides. Then, we can consider the location of all the pages

that point to, say, the Palo Alto Weekly home page 1. By examining the distribution

of these pointers we can conclude that the Palo Alto Weekly home page is of interest

mainly to residents of the San Francisco Bay Area. This information can then be used

to answer queries. For example, if a midwest user requests home pages of periodicals,

then the Palo Alto Weekly should be ranked low for that user. However, the New

1Citations from pages hosted on national access providers like America On Line would be ignored
in this process, unless we can map these citations to the physical location of their creator.



174 CHAPTER 8. FUTURE WORK

York Times home page might be ranked high for such a user: although this page does

not reside in the midwest, it is cited all across the USA, and will therefore be judged

relevant for our user.

The example above illustrates the kind of more sophisticated query processing

strategies that are possible if we start exploiting all the information available on

the WWW. A key challenge in mining all this information for query processing is

e�ciency, since the volume of the information at hand is extremely large, and growing

fast. Other sources of information to employ include available query logs, response

times, user feedback, and quality reports. For example, initial work on mining query

logs tries to predict what pages are likely to be useful to users based on their browsing

behavior [Lie95], and that of previous users [YJGMD96].

Source Discovery over Uncooperative Text Sources

Metasearchers choose the best sources to evaluate queries by using summaries of each

source's contents, assuming that they can extract these summaries with the sources'

cooperation by using the STARTS protocol of Chapter 2, for example. Alternatively,

a metasearcher can follow the WWW crawlers' model, and extract the entire full text

contents of the sources by following HTML links, if possible. Once the metasearcher

has the full text contents of a source, it might choose to index or summarize it in any

way. Unfortunately, sometimes uncooperative text sources are hidden behind search

interfaces, and o�er little more to users than a sophisticated query interface (e.g.,

the Internet Movie Database, at http://www.imdb.com). A WWW crawler will not

index the text contents of such a source, because the crawler cannot download the

source's contents by following links, and neither will any metasearcher, because the

source does not export content summaries.

To summarize the contents of such a source with no further help, a metasearcher

might resort to periodically querying the source using a reasonably small set of care-

fully chosen queries. By interpreting the answers to these queries, the metasearcher

might decide if the source is likely to be useful when it receives a user query. An

interesting direction to design this small set of queries is to use the Latent Semantic



175

Indexing technique (LSI) [FDD+88, BDO94, Dum94]. LSI is used in the information

retrieval community for document retrieval. LSI constructs compact representations

of the sources' contents. These representations could in turn be approximated by

carefully choosing a limited set of queries to issue to the sources. This way, we could

approximate a sensible representation of the contents of a source by just querying the

source a small number of times, instead of relying on the source to directly export

content summaries.

Source Discovery over Overlapping Text Sources

Knowing how sources' contents overlap is especially important on the Internet, where

mirroring of sources is commonplace. The Information Manifold system developed

at AT&T Bell Laboratories [KLSS95] uses description logic to summarize the source

contents. Such descriptions can express when a source has complete information for a

query, thus making other sources redundant for the query at hand. As an alternative

to human-generated descriptions, GlOSS uses automatically generated summaries to

rank the sources for the given queries. Unfortunately, this ranking of the sources does

not take into account how sources might overlap. In fact, the source ranks for a query

could be radically di�erent in the presence of overlap information.

Example 36: Consider a query q that asks for documents with the word \mining" in

their title. Suppose that GlOSS has three sources available, S1, S2, and S3. To rank

these sources for q, GlOSS knows how many documents match q at each collection.

For example,GlOSS knows that S1 has a total of 100 documents that contain the word

\mining" in their title, S2 has 60 such documents, and S3 also has 60 such documents.

GlOSS will suggest S1 as the best source for the query (100 matching documents),

and S2 and S3 as the next best sources (60 matching documents). Assume that

sources S2 and S3 are disjoint, that 50 documents in S2 matching q are also in S1,

and that 50 documents in S3 matching q are also in S1. If GlOSS does not have

overlap information, then it would still rank source S1 �rst, followed by S2 and S3.

However, if GlOSS knows how sources overlap, the rank it produces for q will have

to depend on the expected user's interests. Thus, if the user that issued q will be



176 CHAPTER 8. FUTURE WORK

satis�ed with the contents of only one source, then source S1 should be at the top of

the source rank. Otherwise, GlOSS should rank S2 and S3 at the top of the list. In

e�ect, GlOSS would obtain 120 documents by accessing S2 and S3, whereas it would

obtain only 110 documents by accessing S1 and S2, for example.

The example above illustrates the need to take into account the users' interests

when designing incremental query plans using source overlap information. Di�erent

users have di�erent needs, and these needs should be accessible to the metasearchers

so that users �nd the information they are seeking in the most e�ective way. A

challenging problem to study is modeling di�erent users and designing query execution

plans accordingly. A possible approach is to design a probabilistic model for the

users' behavior. For example, we can de�ne the probability that users will ask for

the contents of the i+ 1st source in an incremental query plan given that they have

accessed up to the ith source in the rank. Based on these probabilities, we can then

design optimal, or close to optimal, plans, for di�erent de�nitions of optimality. One

possibility is to minimize the number of sources accessed before users are satis�ed

with the answers received.

Another challenging problem is de�ning and extracting source overlap information.

We could start by modeling pairwise source overlap. Given two sources S1 and S2, a

possibility is to resort to document sampling to determine how they overlap. Thus,

we can conclude that, say, 20% of all S1 documents are also in S2. To gather �ner

information at the query level, we will use more sophisticated schemes. A possibility

is to obtain a document sample from S1 and S2, and cluster these documents using

some prede�ned clustering scheme [Sal89]. For each cluster, we can analyze how the

two sources overlap. When a query arrives, the metasearcher classi�es it into the

most relevant clusters, and uses the overlap information for these clusters. Thus, we

can conclude that, say, 20% of all S1 documents that match the query are also in S2.

Source Discovery over Non-Textual Sources

So far we have discussed the source discovery problem over sources of text docu-

ments. However, many sources on the Internet host other kinds of information, like



177

\relational-like" data, images, etc. A particularly challenging open issue is how to

summarize the contents of such sources in an automatic and scalable way so that

metasearchers can reason about the sources when processing user queries.

Image features like color histograms are commonly used to search over image

repositories [FBF+94, NBE+93, OS95, CSM+97]. These features are typically rep-

resented as weight vectors. Similarly, the vector-space retrieval model also models

text documents as weight vectors. An interesting direction to investigate is whether

we can use our techniques for text sources in order to compactly summarize image

repositories, given this similarity in representation. However, there are signi�cant se-

mantic di�erences between the vectors for text and for image features. For example,

it is unlikely that we could successfully summarize the color histograms of an image

repository by assuming that colors appear independently in the images. Alternatively,

we could cluster similar image feature vectors at a source, and export one centroid per

cluster as its representative. We will then use these centroids as the content summary

for the image source.

An approach for summarizing relational-like sources is to use human-generated

descriptions of the sources (e.g., the Information Manifold). An interesting direction

for generating source summaries automatically is to adapt results from the database

community on result size and selectivity estimation of queries over relational data

(e.g., [PIHS96]). These results have been used extensively for query optimization.

Thus, we will consider using frequency histograms for succinctly describing relational

tables. A challenging problem is answering point queries (as opposed to range queries),

while keeping the size of the histograms orders of magnitude smaller than that of the

original data.

Putting All the Pieces Together

Ultimately, our goal is to allow transparent query processing over sources with varying

data types. For example, users should be able to issue queries whose processing

involves accessing text, relational, and image sources. The discussion above focused

on dealing with, say, text sources and image sources separately. However, before we



178 CHAPTER 8. FUTURE WORK

can process queries that span several source and data types, we need to address the

following issues:

� De�ning the meaningful combinations of data types and operations.

To extract the information that users need, a metasearcher might perform

join-like operations involving, say, two repositories of text documents. Ref-

erence [CDY95] is an interesting step towards integrating relational-like and

text sources for querying. We will explore the meaningful combinations of data

types and operations, and de�ne their semantics precisely so that metasearchers

can translate user requests into potentially complex queries spanning multiple

sources.

� De�ning expressive query languages. Users should express their requests

using simple interfaces. Metasearchers should translate user requests into queries

written in a query language that models the wide variety of sources and data

types available on the Internet. We will start with recent work on query lan-

guages for the WWW like WebSQL [MMM96], and incorporate the notion of

sources as �rst class objects, so that we can express source discovery in our

queries, and optimize the queries using source properties. We will also include

the notion of fuzzy matches of conditions and objects, to model that users typ-

ically want the best objects for their queries, not all possible matching objects.

� De�ning e�cient execution plans for queries spanning several source

and data types. Finally, once a metasearcher produces a complex query

expressed in the query language discussed above, it has to design e�cient, in-

cremental query plans to execute it. Producing these plans involves putting

together all the pieces that we have discussed in this thesis: deciding what

sources are relevant for evaluating the di�erent query pieces (source discovery),

evaluating these pieces at the sources using the available interfaces and query

models (query translation), and �nally combining the answers produced by the

sources into a coherent query result for the user that issued the query (result

merging).



Bibliography

[Age95] Z39.50 Maintenance Agency. Attribute set Bib-1 (Z39.50-1995): Seman-

tics, September 1995. Accessible at ftp://ftp.loc.gov/pub/z3950/-

defs/bib1.txt.

[BC92] Daniel Barbar�a and Chris Clifton. Information Brokers: Sharing knowl-

edge in a heterogeneous distributed system. Technical Report MITL-

TR-31-92, Matsushita Information Technology Laboratory, October

1992.

[BCGP97a] Michelle Baldonado, Chen-Chuan K. Chang, Luis Gravano, and An-

dreas Paepcke. Metadata for digital libraries: Architecture and design

rationale. In Proceedings of the Second ACM International Conference

on Digital Libraries (DL'97), July 1997.

[BCGP97b] Michelle Baldonado, Chen-Chuan K. Chang, Luis Gravano, and An-

dreas Paepcke. The Stanford Digital Library Metadata Architecture.

International Journal of Digital Libraries, 1(2), 1997.

[BDGM95] Sergey Brin, James Davis, and H�ector Garc��a-Molina. Copy detection

mechanisms for digital documents. In Proceedings of the 1995 ACM

International Conference on Management of Data (SIGMOD'95), May

1995.

[BDH+94] C. Mic Bowman, Peter B. Danzig, Darren R. Hardy, Udi Manber, and

Michael F. Schwartz. Harvest: A scalable, customizable discovery and

179



180 BIBLIOGRAPHY

access system. Technical Report CU-CS-732-94, Department of Com-

puter Science, University of Colorado-Boulder, August 1994.

[BDO94] Michael W. Berry, Susan T. Dumais, and Gavin W. O'Brien. Using lin-

ear algebra for intelligent information retrieval. Technical Report CS-94-

270, Computer Science Department, University of Tennessee, December

1994.

[BLMO94] J. Brassil, S. Low, N. Maxemchuk, and L. O'Gorman. Document mark-

ing and identi�cation using both line and word shifting. Technical re-

port, AT&T Bell Laboratories, 1994.

[CDY95] Surajit Chaudhuri, Umeshwar Dayal, and Tak W. Yan. Join queries

with external text sources: execution and optimization techniques. In

Proceedings of the 1995 ACM International Conference on Management

of Data (SIGMOD'95), May 1995.

[CG96] Surajit Chaudhuri and Luis Gravano. Optimizing queries over mul-

timedia repositories. In Proceedings of the 1996 ACM International

Conference on Management of Data (SIGMOD'96), June 1996.

[CGMP96a] Chen-Chuan K. Chang, H�ector Garc��a-Molina, and Andreas Paepcke.

Boolean query mapping across heterogeneous information sources.

IEEE Transactions on Knowledge and Data Engineering, 8(4):515{521,

August 1996.

[CGMP96b] Chen-Chuan K. Chang, H�ector Garc��a-Molina, and Andreas Paepcke.

Predicate rewriting for translating Boolean queries in a heterogeneous

information system. Technical Report SIDL-WP-1996-0028, Stanford

University, 1996. Accessible at http://www-diglib.stanford.edu/-

cgi-bin/WP/get/SIDL-WP-1996-0028.

[Cha88] Alice Y. Chamis. Selection of online databases using switching vocabu-

laries. Journal of the American Society for Information Science, 39(3),

1988.



BIBLIOGRAPHY 181

[Chr97] Eliot Christian. Application pro�le for the government information

locator service GILS, Version 2, August 1997. Accessible at http://-

www.usgs.gov/gils/prof v2.html.

[CLC95] James P. Callan, Zhihong Lu, and W. Bruce Croft. Searching dis-

tributed collections with inference networks. In Proceedings of the Eigh-

teenth ACM International Conference on Research and Development in

Information Retrieval (SIGIR'95), July 1995.

[CLR91] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. In-

troduction to algorithms. The MIT Press, 1991.

[CMPS94] A. Choudhury, N. Maxemchuk, S. Paul, and H. Schulzrinne. Copyright

protection for electronic publishing over computer networks. Technical

report, AT&T Bell Laboratories, 1994.

[CSM+97] Shih-Fu Chang, John R. Smith, Horace J. Meng, Hualu Wang, and

Di Zhong. Finding images/video in large archives. D-Lib Magazine,

February 1997.

[DADA96] Ron Dolin, Divyakant Agrawal, Laura Dillon, and Amr El Abbadi.

Pharos: A scalable distributed architecture for locating heterogeneous

information sources. Technical Report TRCS96-05, Computer Science

Department, University of California at Santa Barbara, July 1996.

[DANO91] Peter B. Danzig, Jongsuk Ahn, John Noll, and Katia Obraczka. Dis-

tributed indexing: a scalable mechanism for distributed information re-

trieval. In Proceedings of the Fourteenth ACM International Conference

on Research and Development in Information Retrieval (SIGIR'91), Oc-

tober 1991.

[Den95] Peter J. Denning. Editorial: Plagiarism in the web. Communications

of the ACM, 38(12), December 1995.



182 BIBLIOGRAPHY

[DLO92] Peter B. Danzig, Shih-Hao Li, and Katia Obraczka. Distributed index-

ing of autonomous Internet services. Computer Systems, 5(4), 1992.

[DS94] Andrzej Duda and Mark A. Sheldon. Content routing in a network

of WAIS servers. In Proceedings of the Fourteenth IEEE International

Conference on Distributed Computing Systems, June 1994.

[Dum94] Susan T. Dumais. Latent semantic indexing (LSI) and TREC-2. In

Proceedings of the Second Text Retrieval Conference (TREC-2), March

1994.

[Fag96] Ronald Fagin. Combining fuzzy information from multiple systems. In

Proceedings of the Fifteenth ACM Symposium on Principles of Database

Systems (PODS'96), June 1996.

[FBF+94] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack,

D. Petkovic, and W. Equitz. E�cient and e�ective querying by image

content. Journal of Intelligent Information Systems, 3:231{262, 1994.

[FDD+88] George W. Furnas, Scott C. Deerwester, Susan T. Dumais, Thomas K.

Landauer, Richard A. Harshman, Lynn A. Streeter, and Karen E.

Lochbaum. Information retrieval using a singular value decomposition

model of latent semantic structure. In Proceedings of the Eleventh ACM

International Conference on Research and Development in Information

Retrieval (SIGIR'88), June 1988.

[FK93] Jean-Claude Franchitti and Roger King. Amalgame: a tool for creat-

ing interoperating persistent, heterogeneous components. In Advanced

Database Systems, pages 313{36. Springer-Verlag, 1993.

[FW+93] Jim Fullton, Archie Warnock, et al. Release notes for freeWAIS 0.2,

October 1993.

[FY93] David W. Flater and Yelena Yesha. An information retrieval system

for network resources. In Proceedings of the International Workshop on

Next Generation Information Technologies and Systems, June 1993.



BIBLIOGRAPHY 183

[GCGMP96] Luis Gravano, Chen-Chuan K. Chang, H�ector Garc��a-Molina, and

Andreas Paepcke. STARTS: Stanford protocol proposal for In-

ternet retrieval and search. Technical Report SIDL-WP-1996-

0043, Stanford University, August 1996. Accessible at http://-

www-diglib.stanford.edu/cgi-bin/WP/get/SIDL-WP-1996-0043.

[GCGMP97] Luis Gravano, Chen-Chuan K. Chang, H�ector Garc��a-Molina, and An-

dreas Paepcke. STARTS: Stanford proposal for Internet meta-searching.

In Proceedings of the 1997 ACM International Conference on Manage-

ment of Data (SIGMOD'97), May 1997.

[GGM95a] Luis Gravano and H�ector Garc��a-Molina. Generalizing GlOSS for

vector-space databases and broker hierarchies. In Proceedings of

the Twenty-�rst International Conference on Very Large Databases

(VLDB'95), pages 78{89, September 1995.

[GGM95b] Luis Gravano and H�ector Garc��a-Molina. GeneralizingGlOSS to vector-

space databases and broker hierarchies. Technical Report STAN-CS-

TN-95-21, Computer Science Department, Stanford University, May

1995.

[GGM97] Luis Gravano and H�ector Garc��a-Molina. Merging ranks from heteroge-

neous Internet sources. In Proceedings of the Twenty-third International

Conference on Very Large Databases (VLDB'97), August 1997.

[GGMT93] Luis Gravano, H�ector Garc��a-Molina, and Anthony Tomasic. The ef-

�cacy of GlOSS for the text-database discovery problem. Technical

Report STAN-CS-TN-93-002, Computer Science Department, Stanford

University, November 1993.

[GGMT94a] Luis Gravano, H�ector Garc��a-Molina, and Anthony Tomasic. The ef-

fectiveness of GlOSS for the text-database discovery problem. In Pro-

ceedings of the 1994 ACM International Conference on Management of

Data (SIGMOD'94), May 1994.



184 BIBLIOGRAPHY

[GGMT94b] Luis Gravano, H�ector Garc��a-Molina, and Anthony Tomasic. Precision

and recall of GlOSS estimators for database discovery. In Proceedings

of the Third International Conference on Parallel and Distributed In-

formation Systems (PDIS'94), September 1994.

[GMGS96] H�ector Garc��a-Molina, Luis Gravano, and Narayanan Shivakumar.

dSCAM: Finding document copies across multiple databases. In Pro-

ceedings of the Fourth International Conference on Parallel and Dis-

tributed Information Systems (PDIS'96), December 1996.

[Gri93] Gary N. Griswold. A method for protecting copyright on networks. In

Joint Harvard MIT Workshop on Technology Strategies for Protecting

Intellectual Property in the Networked Multimedia Environment, April

1993.

[GW96] Susan Gauch and Guijun Wang. Information fusion with ProFusion. In

Proceedings of the World Conference of the Web Society (WebNet'96),

October 1996.

[Har96] Darren Hardy. Resource description messages (RDM), July 1996. Ac-

cessible at http://www.w3.org/pub/WWW/TR/NOTE-rdm.html.

[INSS92] Yannis E. Ioannidis, Raymond T. Ng, Kyuseok Shim, and Timos K.

Sellis. Parametric query optimization. In Proceedings of the Eighteenth

International Conference on Very Large Databases (VLDB'92), pages

103{14, August 1992.

[Kah92] Robert E. Kahn. Deposit, registration and recordation in an electronic

copyright management system. Technical report, Corporation for Na-

tional Research Initiatives, Reston, Virginia, August 1992.

[KLSS95] Thomas Kirk, Alon Y. Levy, Yehoshua Sagiv, and Divesh Srivastava.

The Information Manifold. In Proceedings of the AAAI Spring Sympo-

sium Series, March 1995.



BIBLIOGRAPHY 185

[KM91] Brewster Kahle and Art Medlar. An information system for corpo-

rate users: Wide Area Information Servers. Technical Report TMC199,

Thinking Machines Corporation, April 1991.

[Lie95] Henry Lieberman. Letizia: An agent that assists web browsing. In

Proceedings of the 1995 International Joint Conference on Arti�cial In-

telligence, August 1995.

[LLJ96] Carl Lagoze, Cli�ord A. Lynch, and Ron Daniel Jr. The Warwick

Framework: A container architecture for aggregating sets of metadata.

Technical Report TR 96-1593, Computer Science Department, Cornell

University, June 1996.

[LM90] T. Y. Cli� Leung and Richard R. Muntz. Query processing for temporal

databases. In Proceedings of the Sixth International Conference on Data

Engineering, pages 200{8, February 1990.

[LRO96] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Querying het-

erogeneous information sources using source descriptions. In Proceedings

of the Twenty-second International Conference on Very Large Databases

(VLDB'96), September 1996.

[MDT93] Anne Morris, Hilary Drenth, and Gwyneth Tseng. The development of

an expert system for online company database selection. Expert Sys-

tems, 10(2):47{60, May 1993.

[MMM96] Alberto O. Mendelzon, George H. Mihaila, and Tova Milo. Querying the

World WideWeb. In Proceedings of the Fourth International Conference

on Parallel and Distributed Information Systems (PDIS'96), December

1996.

[MTD92] Anne Morris, Gwyneth Tseng, and Hilary Drenth. Expert systems for

online business database selection. Library Hi Tech, 10(1-2):65{68, 1992.



186 BIBLIOGRAPHY

[MW94] Udi Manber and Sun Wu. Glimpse: A tool to search through entire

�le systems. In Proceedings of the 1994 Winter USENIX Conference,

January 1994.

[NBE+93] W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman,

D. Petkovic, P. Yanker, and C. Faloutsos. The QBIC project: Querying

images by content using color, texture, and shape. In Storage and re-

trieval for image and video databases (SPIE), pages 173{187, February

1993.

[Neu92] B. Cli�ord Neuman. The Prospero File System: A global �le system

based on the Virtual System model. Computer Systems, 5(4), 1992.

[ODL93] Katia Obraczka, Peter B. Danzig, and Shih-Hao Li. Internet resource

discovery services. IEEE Computer, September 1993.

[OM92] Joann J. Ordille and Barton P. Miller. Distributed active catalogs

and meta-data caching in descriptive name services. Technical Re-

port #1118, University of Wisconsin-Madison, November 1992.

[Org95] National Information Standards Organization. Information re-

trieval (Z39.50): Application service de�nition and protocol speci-

�cation (ANSI/NISO Z39.50-1995), 1995. Accessible at http://-

lcweb.loc.gov/z3950/agency/.

[OS95] Virginia E. Ogle and Michael Stonebraker. Chabot: retrieval from a

relational database of images. Computer, 28(9), September 1995.

[PCGM+96] Andreas Paepcke, Steve B. Cousins, H�ector Garc��a-Molina, Scott W.

Hassan, Steven K. Ketchpel, Martin Roscheisen, and Terry Winograd.

Towards interoperability in digital libraries: Overview and selected

highlights of the Stanford Digital Library Project. IEEE Computer

Magazine, May 1996.



BIBLIOGRAPHY 187

[PGMGU95] Yannis Papakonstantinou, Hector Garcia-Molina, Ashish Gupta, and

Je�rey Ullman. A query translation scheme for rapid implementation of

wrappers. In Fourth International Conference on Deductive and Object-

Oriented Databases, pages 161{186, 1995.

[PIHS96] Viswanath Poosala, Yannis E. Ioannidis, Peter J. Haas, and Eugene J.

Shekita. Improved histograms for selectivity estimation of range pred-

icates. In Proceedings of the 1996 ACM International Conference on

Management of Data (SIGMOD'96), June 1996.

[PK79] Gerald J. Popek and Charles S. Kline. Encryption and secure computer

networks. ACM Computing Surveys, 11(4):331{356, December 1979.

[RBC+97] Martin Roscheisen, Michelle Baldonado, Chen-Chuan K. Chang, Luis

Gravano, Steven Ketchpel, and Andreas Paepcke. The Stanford InfoBus

and its service layers: Augmenting the Internet with higher-level infor-

mation management protocols. In MeDoc Dagstuhl Workshop: Elec-

tronic Publishing and Digital Libraries in Computer Science, July 1997.

[SA89] Patricia Simpson and Rafael Alonso. Querying a network of autonomous

databases. Technical Report CS-TR-202-89, Department of Computer

Science, Princeton University, January 1989.

[Sal89] Gerard Salton. Automatic Text Processing: The transformation, anal-

ysis, and retrieval of information by computer. Addison-Wesley, 1989.

[Sch90] Michael F. Schwartz. A scalable, non-hierarchical resource discovery

mechanism based on probabilistic protocols. Technical Report CU-CS-

474-90, Department of Computer Science, University of Colorado at

Boulder, June 1990.

[Sch93] Michael F. Schwartz. Internet resource discovery at the University of

Colorado. IEEE Computer, September 1993.



188 BIBLIOGRAPHY

[SDW+94] Mark A. Sheldon, Andrzej Duda, Ron Weiss, James W. O'Toole, and

David K. Gi�ord. A content routing system for distributed informa-

tion servers. In Proceedings of the Fourth International Conference on

Extending Database Technology, 1994.

[SE95] Erik Selberg and Oren Etzioni. Multi-service search and comparison us-

ing the MetaCrawler. In Proceedings of the Fourth International WWW

Conference, December 1995.

[SEKN92] Michael F. Schwartz, Alan Emtage, Brewster Kahle, and B. Cli�ord

Neuman. A comparison of Internet resource discovery approaches. Com-

puter Systems, 5(4), 1992.

[SFV83] Gerard Salton, Edward A. Fox, and Ellen M. Voorhees. A comparison of

two methods for Boolean query relevance feedback. Technical Report

TR 83-564, Computer Science Department, Cornell University, July

1983.

[SGM95] Narayanan Shivakumar and H�ector Garc��a-Molina. SCAM: A copy de-

tection mechanism for digital documents. In Proceedings of the Second

International Conference in Theory and Practice of Digital Libraries,

June 1995.

[SGM96] Narayanan Shivakumar and H�ector Garc��a-Molina. Building a scalable

and accurate copy detection mechanism. In Proceedings of the First

ACM International Conference on Digital Libraries (DL'96), March

1996.

[SM83] Gerard Salton and Michael J. McGill. Introduction to modern informa-

tion retrieval. McGraw-Hill, 1983.

[TA94] A. Tal and Rafael Alonso. Commit protocols for externalized-commit

heterogeneous database systems. Distributed and Parallel Databases,

2(2):209{34, April 1994.



BIBLIOGRAPHY 189

[TGL+97] Anthony Tomasic, Luis Gravano, Calvin Lue, Peter Schwarz, and Laura

Haas. Data structures for e�cient broker implementation. ACM Trans-

actions on Information Systems, 1997.

[VGJL95] Ellen M. Voorhees, Narendra K. Gupta, and Ben Johnson-Laird. The

collection fusion problem. In Proceedings of the Third Text Retrieval

Conference (TREC-3), March 1995.

[VT97] Ellen M. Voorhees and Richard M. Tong. Multiple search engines in

database merging. In Proceedings of the Second ACM International

Conference on Digital Libraries (DL'97), July 1997.

[WGMJ95] Stuart Weibel, Jean Godby, Eric Miller,

and Ron Daniel Jr. OCLC/NCSA metadata workshop report. Accessi-

ble at http://www.oclc.org:5047/oclc/research/publications/-

weibel/metadata/dublin core report.html, March 1995.

[YGM95a] Tak W. Yan and H�ector Garc��a-Molina. Duplicate detection in infor-

mation dissemination. In Proceedings of the Twenty-�rst International

Conference on Very Large Databases (VLDB'95), September 1995.

[YGM95b] Tak W. Yan and H�ector Garc��a-Molina. SIFT{a tool for wide-area in-

formation dissemination. In Proceedings of the 1995 USENIX Technical

Conference, pages 177{86, January 1995.

[YJGMD96] Tak W. Yan, Matthew Jacobsen, H�ector Garc��a-Molina, and Umeshwar

Dayal. From user access patterns to dynamic hypertext linking. In

Proceedings of the Fifth International World Wide Web Conference,

May 1996.

[YL96] Budi Yuwono and Dik L. Lee. Search and ranking algorithms for locat-

ing resources on the World Wide Web. In Proceedings of the Twelfth

International Conference on Data Engineering, February 1996.



190 BIBLIOGRAPHY

[Z3997] ZDSR pro�le: Z39.50 pro�le for simple distributed search and ranked

retrieval, Draft 5, March 1997. Accessible at http://lcweb.loc.gov/-

z3950/agency/profiles/zdsr.html.

[ZC92] Sajjad Zahir and Chew Lik Chang. Online-Expert: An expert system

for online database selection. Journal of the American Society for In-

formation Science, 43(5):340{357, June 1992.


