IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5. NO. 11, NOVEMBER 1994 1121

Adaptive Deadlock- and Livelock-Free
Routing in the Hypercube Network

Gustavo D. Pifarré, Luis Gravano, Gustavo Denicolay, and Jorge L.C. Sanz, Feliow, IEEE

Abstract—This paper consists of two parts. In the first one, two
new algorithms for wormhole routing on the hypercube network
are presented. These techniques are adaptive and are ensured to
be deadlock- and livelock-free. These properties are guaranteed
by using a small number of resources in the routing node. The
first algorithm is adaptive and nonminimal, and will be referred
to as Nonminimal. In this technique, some moderate derouting
is allowed in order to alleviate the potential congestion arising
from highly structured communication patterns. The second
algorithm, dubbed Subcubes, is adaptive and minimal, and is
based on partitioning the hypercube into subcubes of smaller
dimension. This technique requires only two virtual channels per
physical link of the node. In the second part of the paper, a
wide variety of techniques for wormhole routing in the hypercube
are evaluated from an algorithmic point of view. Five partially
adaptive algorithms are considered: the Hanging algorithm, the
Zenith algorithm, the Hanging-Order algorithm, the Nonminima!
algorithm, and the Subcubes algorithm. One oblivious algorithm,
the Dimension-Order, or E-Cube routing algorithm, is also used.
Finally, a Fuily Adaptive Minimal algorithm is tried. A simple
node model was designed and adapted to all the algorithms. For
those algorithms that require fewer virtual channels per physical
link, the extra logical channels are used as extra lanes. As a result
of this, the storage and routing capabilities of the algorithms
are equalized. For the empirical performance evaluation, several
dynamic injection loads are used on a hypercube of 2'" nodes.

Index Terms— Adaptivity, deadlock freedom, hypercube, live-
lock freedom, parallel communication, parallel computer, perfor-
mance simulation, wormhole routing

I. INTRODUCTION

ESSAGE routing in large interconnection networks has
Mattractcd a great deal of interest in recent years. Differ-
ent underlying machine models have been used and proposed
[2), 171, [14], [24], [27], (28], [31], [32]. [36]. [39]-[42]. Some
fundamental distinctions among routing algorithms involve the
length of the messages injected in the network, the static or
dynamic nature of the injection model, special assumptions on

Manuscript received November 9, 1992; revised November 30, 1993.

G.D. Pifarré is with the Departmento de Computacién, Universidad de
Buenos Aires, Buenos Aires. Argentina, and Advanced Solutions and Inno-
vative Technologies Department, IBM Argentina. Buenos Aires, Argentina.;
e-mail: pifarre@buevm?2.vnet.ibm.com,

L. Gravano is with the Computer Science Department, Stanford University,
Stanford, CA 94305 USA; e-mail: gravano@cs.stanford.edu.

G. Denicolay is with ESLAIL Escucla Superior Latino Americana de
Informitica, Buenos Aires, Argentina.

J.L.C. Sanz is with the Coordinated Science Laboratory, University of

Illinois at Urbana-Champaign, Urbana, IL 61801 USA. and Advanced So-
lutions and Innovative Technologies Department, IBM Argentina; e-mail:
sanz@buevmi.vnet.ibm.com.

IEEE Log Number 9403097.

the semantic of the messages, architecture of the network and
router, degree of synchronization in the hardware, and others.

In terms of message length, several issues have been studied
concerning the ways to handle long messages (of potentially
unknown size) and very short messages (typically of 150 to
300 bits). In packet-switching routing, the messages are of
constant (and small) size, and they are stored completely in
every node they visit. In [18], a survey of some packet routing
algorithms has been presented. In [16], simulation results
have been shown comparing a number of different oblivious
packet routing schemes on the hypercube. In wormhole routing
[14]. messages of unknown size are routed in the network.
These messages are never stored completely in a node. Only
pieces of the messages, called flits, are buffered when routing,
For a review of recent wormhole methods, see [35]. In
between packet-routing and wormhole routing lie some hybrid
approaches [1], [3]. In [25], a message is routed by using a
wormhole technique until it gets blocked in a node by traffic.
In this case, the message is buffered completely in the node if
buffers are large enough with respect to message length.

Two subjects of long-standing interest in routing are dead-
lock and livelock freedom. Techniques that perform without
deadlocks or livelocks have been shown on different models.
Some algorithms succeed in accomplishing deadlock-free or
livelock-free routing only in a probabilistic sense [28], [38].
In other algorithms, deadlock freedom is guaranteed in a
deterministic sense [19], [33]. Several techniques achieve
this by defining an ordering on the critical resources and
allowing each message to progress throughout the network by
occupying resources in a strictly monotonic fashion (see, e.g.,
[5], [14], [26], [39], [40]). This idea results in a generation of
a directed acyclic graph (DAG) of the resources.

A desirable feature of routing algorithms is adaptivity, i.e.,
the ability of messages to use multiple paths toward their
destinations [13]. In this way, alternative paths can be followed
based on factors that are local to each node, such as conflicts
arising from messages competing for the same resources (e.g.,
buffers, crossbar access), faulty nodes, or links, among others.
For example, consider the 16-node hypercube shown in Fig.
. A message starting from node (0, 0, 0, 0) having (1, 0, 1,
1) as its destination can move to any of the following nodes
as its first step: (1, 0, 0, 0), (0, 0. 1, 0), and (0. 0, 0, 1).
An adaptive routing function will allow more than one choice
among the three possible nodes. The decision about which
node is actually selected is based on an arbitration mechanism
that attempts to optimize the use of available resources. If
one of the involved links out of (0, 0, 0, 0) is congested

1045-9219/94504.00 © 1994 IEEE

1122

1EEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 11. NOVEMBER 1994

Fig. 1. The paths available in the 4-hypercube between node (0, 0, 0, 0) and node 1,0, 1, .

or faulty, a message can use another link to progress to
its destination. Thus, adaptivity may potentially yield more
throughput by distributing the traffic over the resources of the
network better. For example, if (1, 0, 0, 0) is chosen, the next
hop can be made to nodes (1, 0, 1, 0) or (1, 0, 0, 1), and so on.
Recent simulation results for packet switching on the 2-D mesh
{17] have shown that adaptivity improves the performance
of dynamic injection routing when compared to oblivious
methods. Also, the same conclusion was obtained by [11] for
several adaptive routing techniques for k-ary n-cube networks.
However, finding deterministic and probabilistic bounds for
static models of message injection in adaptive routing is still
an open problem for all cube-type networks.

A fully adaptive minimal routing scheme is one in which
all possible minimal paths between a source and a destination
are of potential use at the time messages are injected into the
network. Paths followed by the message depend on the traffic
congestion found in the nodes of the network. For example,
the minimal routing functions presented in [5] and [26] are
not fully adaptive, because several minimal routes are not
allowed to take place. Full adaptivity is a feature from which
one can hope to obtain the best possible performance if no
source of randomization is used. Full adaptivity has been used
by Upfal in [41] to produce a deterministic optimal algorithm
for routing in the multibutterfly. Multibutterflies are extremely
rich in terms of the number of minimal paths between any
pair of nodes.

In [37], fully adaptive algorithms for the hypercube and
mesh have been presented for packet-switching routing. These
algorithms are deadlock-free and can be implemented using
only two queues per node. Recently, the principles shown
in [37] have been used for the same routing mode in n-
dimensional torus networks by using three queues per node
[8], and this result is optimal for the given model and network
[9]. Unfortunatety, the methodology of [8] and [37] does not
apply to wormhole routing. On the other hand, new algorithms

for deadlock-free wormhole routing have been reported in [4],
[11], [12], [15], [21], and [30].

In [12], a technique based on the use of the multiple
independent lanes associated with each physical link in a
routing node is shown. Given a fixed amount of storage space
allocated to each physical channel, it is shown that breaking
the storage into several buffers is a convenient methodology
for improving network performance. In [17], a fully adaptive
minimal wormhole routing technique for the bidimensional
torus network was shown, requiring eight virtual channels per
bidirectional link. In {21], fully adaptive wormhole algorithms
were introduced for a variety of networks, including the
hypercube, together with a methodology for the design of
deadlock-free wormhole routing techniques. The same fully
adaptive wormhole algorithm for the hypercube and a very
similar design methodology were independently presented in
[15].

This paper consists of two parts. In the first one, two
algorithms for wormhole routing in the hypercube are shown.!
Although other topologies have received increasing attention
in recent years, the hypercube remains important, because
several parallel machines were constructed with this topology
[10]. Furthermore, the study of hypercube topologies is still
relevant, because as the technology continues to improve, it
may be possible to build even larger hypercubes in the future.

The techniques addressed in this paper are adaptive,
deadlock-free, and livelock-free, and require a very moderate
amount of resources in the routing nodes. The hypercube
algorithm of Section III is adaptive, but nonminimal in the
sense that some derouting is permitted. This nonminimality,
though restricted, is aimed at providing each message with a
wealth of paths for arriving at its destination. An important
feature of this technique is that moderate connectivity is

1{n fact, it should be noted that even though the presentation of the routing
techniques in this paper is carried out in terms of wormhole routing, all of
the techniques can easily be adapted for the packet-switching routing model.

PIFARRE er al.: ADAPTIVE DEADLOCK- AND LIVELOCK-FREE ROUTING

necessary between the virtual channels of the same routing
node. More precisely, an input virtual channel needs to reach
only four output virtual channels. This is relevant in the
hypercube because of the logarithmic growth of physical links
per routing node. Also, eight virtual channels are needed for
each bidirectional link.

This algorithm has another interesting property. Although
it is possible to find traffic patterns for which determin-
istic performance of the algorithm is not proportional to
the diameter of the hypercube, it is likely that the method
performs well for many communication patterns, because at
each step, every message will suffer some (limited) enforced
potential derouting that is hoped to break many structured
communication patterns. However, this derouting is limited
in an attempt to achieve minimum latency, as well as freedom
from deadlock and livelock, with moderate resources at each
node. This technique is referred to as Nonminimal [20].

In Section 1V, another deadlock-free adaptive wormhole-
based routing algorithm for the hypercube interconnection,
dubbed Subcubes, is presented [20]. This algorithm, unlike
the one shown in Section IIl, is minimal. The central idea
in this hypercube algorithm consists of decomposing the 7-
dimensional cube into disjoint subcubes of dimension 7./2.
Routes are generated by considering the hypercube as hung
from one of the subcubes of dimension 7/2. The idea of de-
composing the hypercube into disjoint subcubes has also been
used in [6]. In the Basic Subcube algorithm of Section 1V-A,
moderate hardware resources are necessary, because only two
virtual channels per bidirectional physical link are necessary.
This compares favorably with the three virtual channels per
link needed by the natural wormhole extension of the packet-
switched hypercube algorithm proposed in [26]. Also, the
algorithm requires the same number of virtual channels per
link as the deadlock-free oblivious routing algorithm for the
hypercube presented in [14].

Although the new routing algorithm of Section IV is based
on hanging the structure in a certain manner, it does not exhibit
the same type of negative congestion analysis to which pre-
vious algorithms in the hypercube are subjected. Furthermore,
the methodology allows the different alternatives when routing
inside each of the subcubes of dimension n/2, and a choice
of adaptive methods that perform well in a practical sense for
low-dimensional hypercubes becomes appealing. (Remember
that the size of each subcube is v/N for an N-node hypercube).

In the second part of the paper, a wide variety of algorithms
for wormhole routing on the hypercube are evaluated. These
techniques are adaptive, deadlock-free, and livelock-free, and
require a very moderate amount of resources in the routing
nodes. This part focuses on comparing the different routing
strategies from an algorithmic point of view. Therefore, a
simple hypercube node model was designed and adapted for all
of the algorithms in order to obtain a meaningful comparison
of the techniques. In this model, all of the nodes have the
same number of input and output buffers per link in order to
implement the different virtual channels that share each link.
For those algorithms that require fewer virtual channels per
physical link than those provided by this uniform node design,
the extra logical channels are used as lanes [12]. As a result

of this, the storage and routing capabilities of the different
algorithms are equalized.

The comparison of wormhole routing algorithms for the
hypercube involves techniques known from the literature,
and also the new techniques. One oblivious algorithm, the
Dimension-Order or E-Cube algorithm [14] is tried. Also,
five partially adaptive algorithms are considered: the Hanging
algorithm [5], [26], the Zenith algorithm [26], the Hanging-
order algorithm [6], the Nonminimal algorithm (see Section
1), and the Subcubes algorithm (see Section IV). Finally. a
recently presented Fully Adaptive minimal algorithm is con-
sidered. This technique requires only four virtual channels per
physical bidirectional link, and was developed independently
by [15] and [21].

For the empirical performance evaluation, several dynamic
simulations are tried. These simulations involve three different
message sizes and four traffic patterns on a hypercube of
210 nodes. Section VI describes the different simulations
performed, as well as the results obtained.

[l. DEFINITIONS

Definition 1: An n-dimensional hypercube is a network
with 2™ nodes. The n dimensions of the hypercube are referred

toas n— 1Ln—2---,1,0. Node (p_y. - .,---.0) is

connected to nodes (&,—1,---, 1 — ., ---, 0,0 < i< n.
Denoting by (4,,_1,---,4o) the binary address of node I,

and by (jn—1,---,jo) the corresponding address of node .J,

the bitwise exclusive or function of I and .J shows the dimen-
sions to be corrected in traversing from [to ./. Sometimes a
transition in dimension &, when moving from / to .J. is labeled
0— lifig =0and jp =1,and | — 0if iy = | and j; = 0.

I1I. ALGORITHM NONMINIMAL

To improve network throughput, routing algorithms and
their flow control should promote the effective use of the
available physical links. Because contention in the output links
of a node is likely to occur, algorithms may benefit from
adaptive decisions in the way in which links are assigned to
competing messages. A class of these algorithms is the one in
which messages may be derouted away from their destination,
thus following nonminimal paths. In general, if the amount of
derouting is not controlled, messages may remain undelivered
in the network forever, a situation known as livelock.

In this section, an adaptive, nonminimal, deadlock- and
livelock-free routing algorithm for the hypercube is presented.
Given a pair of nodes s and d, any route built by this function
for a message going from s to d has length between » and 2n
in an n-dimensional hypercube.

This nonminimal algorithm is inspired by routing on the
multibutterfly: Multibutterflies correct dimensicns starting
from the highest, without paying attention to the lower
ones. These lower dimensions will eventually be corrected
at later stages. The experiments in Section VI show that the
moderately larger routes created by the technique help improve
the throughput in many situations.

1124

The route of a message will consist of n phases. Each
phase processes one dimension. Dimensions are processed
from highest to lowest in an ordered manner. Each dimension
has to be processed, regardless of whether it is already correct.
During each of these phases, every message will have d
alternative paths to take for some d fixed in advance. The
least significant dimensions are a special case, as discussed
below. The length of the paths to take at each phase will be 2
or 1, depending on the need to correct the current dimension
or not, respectively. Messages will choose any one among
these d paths adaptively. So, there are O(d"™) different (but
not necessarily virtual-channel disjoint) paths between any
pair of nodes. The O notation is needed because the least
significant dimensions will have, in general, fewer than d paths
associated.

The main idea behind this algorithm is to break the struc-
tured communication patterns by providing a wealth of paths
between any source and destination, introducing a limited
potential of derouting at each phase. At the start of phase
i, dimensions n — 1 through ¢ + 1 have already been corrected,
and will never be modified again. When dimension ¢ is
being processed, a message m will either have to correct
it or not. Regardless of this need, m will be sent first
through a dimension j < 4 (if ¢ is not one of the least
significant dimensions), regardless of whether this means
correcting dimension j. Only after this will the message
be sent through dimension ¢, if required. Dimension j will
be chosen from within a set of d dimensions (again, ex-
cept for the phases corresponding to the lowest dimensions,
as discussed below). In principle, the set of d dimensions
corresponding to a certain phase of the algorithm may be
different for each node of the network, but it must be fixed
in advance.

In other words, if a message m is at some node p, and m is
at the ith phase of the routing algorithm, then m will leave p
through any of the dimensions that node p will have associated
with the ith phase. The set of dimensions corresponding to
node p and phase i will be referred to as dims(p, 7).

Although the paths are not minimal, the number of derouting
steps performed for each message is bounded; hence, the
maximum length of the paths is fixed. Thus, if resources in
the nodes are managed with fairness, the routing algorithm is
livelock-free.

A. Virtual Channels Needed to Implement
the Routing Algorithm

In this section, the set of virtual channels [14] needed to
implement the routing algorithm in a deadlock-free manner is
analyzed. Each virtual channel has one input and one output
buffer, whereas several virtual channels share a physical link
through multiplexing. A virtual channel is denoted by ca,
where o is a 4-tuple, as explained below. In the following,
¢ denotes the number that results from complementing the
ith dimension in the binary representation of p.

Consider the node p, and a phase ¢ of the routing algorithm.
As stated above, p and ¢ have associated with them a set

[EEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 11, NOVEMBER 1994

dims(p,¢) of dimensions, |dims(p,i)| =
|dims(p,)] = 7 otherwise.2

Thus, |dims(p,)| virtual channels are needed for derouting
for node p and phase i. These channels are expressed as
follows:

difi > d, and

Cilyiipgayy """ G4 Ldg,pein)

where dims(p,i) = {i1,---, ik}

Furthermore, one virtual channel is needed for routing for
each node p and phase . This channel is used to correct the ith
dimension of the address if this is necessary for the message
to get closer to its destination. This virtual channel is denoted
as follows:

€i,0,i,p(:) "

Channel c; 4 ; . (d = 0,1) is associated with the physical
link incident to p through dimension j. The input and output
buffers associated with each virtual channel are referred to as
routing or derouting buffers, according to the virtual channel
type. In addition, each node p has an injection channel c, ¢,
where messages are injected in the network.

B. The Routing Algorithm

As explained above, the routing algorithm for each message
consists of n phases on an n-dimensional hypercube. Initially,
each message is injected in the injection channel of its source
node, and starts the routing process in phase n — 1. Next phase
1 is described for a message /m currently at a virtual channel
of a node p.

Phase i:

/* Throughout the algorithm, p is the node at which message

m resides */

/* Derouting Step First */

Send m to any virtual channel in {c; 1 ; Lo,
Ci,l,ik,p(ik)}

where dims(p,i) = {41, -+, ik}

/* Routing Step Follows */

If dimension ¢ needs to be changed

Then

Send m to virtual channel c; g ;)

Enter phase ¢ — 1

Theorem 1: The routing algorithm described in Section III
is correct and deadlock-free.

Proof: The proof can be found in the Appendix.

An important characteristic of this routing algorithm is the
fact that each virtual channel has at most d + 1 candidates
as the next channel for any message that passes through it.
Furthermore, these channels are fixed. So, each virtual channel
has to be connected to at most d+1 other channels. This should
be contrasted with the algorithm presented in [14] for routing
on the hypercube.

21n fact, this does not need to be so rigid, as illustrated in Section III-C.
For example, in the routing algorithm shown there for d = 3, dims(p,7) =
® for 0 < i < 3, and for all nodes p.

PIFARRE e al.: ADAPTIVE DEADLOCK- AND LIVELOCK-FREE ROUTING

Theorem 2: Injection channel ¢, g, has outdegree d (d <
n), whereas channels c¢;; ;, and c;0;, have outdegree
[dims(p,i — 1)| + 1 and |dims(p, i — 1)|, respectively, if j < .

Proof: The proof can be found in the Appendix.

Dimensions (d — 1),(d — 2),---,1,0 are a special case. In
general, these dimensions will have fewer than d dimensions
associated with them in order to perform their corresponding
derouting phase.

Now the main problem to solve is how to select for each
node and for each phase the dimensions associated to have
something at least similar to the expansion property [32], [41]
while keeping the number of virtual channels associated with
each physical link independent of the size of the network.
Next an instance of the general algorithm presented above,
with d = 3, is described.

C. An Instance of the Algorithm for d = 3

In this subsection, the routing algorithm presented in Section
III is instantiated for d = 3, with some slight modifications.
The set dims(p,4) has to be defined for each node p and
for each dimension 3. For the sake of uniformity, dims(p,:)
will be equal to dims(p’,¢) Vp,p’ nodes. As a result of this,
the connections between the different virtual channels will
follow a uniform pattern for every node of the network.
However, by making the network uniform, the algorithm
looses part of its potential ability for breaking the structure
of the communication patterns.

For every node p, we have:

dims(p,i) = {i — 2,1 —4,i -6} ifi > 6
dims(p, 5) = {3,1}

dims(p,4) = {2, 0}

dims(p,i) =0 if 0 <4 < 3.

From the definition above, it follows that the lowest di-
mensions have fewer dimensions associated for performing
the corresponding phase. Therefore, these dimensions have
less nonminimal adaptivity in their corresponding phase of
the routing algorithm, as discussed above.

Then an oriented physical link corresponding to dimension
i (2 € ¢ < n~—7) has associated four virtual channels, a
number that is independent of the size of the network. The
other links have one, two, or three virtual channels associated,
depending on their particular dimension.

In Figs. 2 and 3, the possible message transitions between
input and output buffers of a node are shown. These figures
show the derouting and the routing steps of the ith phase,
respectively.

Fig. 2 shows the possible derouting moves from the routing
and derouting buffers. A message beginning the derouting step
of phase 7 may be in a derouting buffer or in a routing buffer.
If the message did not need to correct dimension i + 1, it
will enter phase ¢ immediately after the derouting step of
phase i 4+ 1. For example, the message in the derouting buffer
attached to virtual channel ¢; 41,1 i+1-4 c in Fig. 2 has ended
the derouting step of phase ¢ + 1, so, if the message does not
need to correct dimension i+ 1, it will start the derouting step

1125

of phase i. Thus, the message can leave the node through any
of the following channels:

Cil,i—-2,ci=201 G4 1,i—4,c(i=4) 5 G4 1,i—6,c(i~6) -

On the other hand, a message that has ended the routing step
of phase ¢ + 1 must also start the derouting step of phase 7.
The message in the routing buffer associated with the virtual
channel ¢;40,;+1,c in Fig. 2 has corrected dimension i + 1,
and now, in the derouting step of phase 7, can go through any
of the same three virtual channels as in the previous case.

Fig. 3 refers to the routing moves possible from a derouting
buffer. A message can start the routing step of phase i only
after it ends the derouting step of the same phase. Thus, a
message residing in a derouting buffer after the derouting
phase of phase ¢ that needs to correct dimension 7 must be sent
to the routing buffer of dimension :. For example, consider a
message in the derouting buffer associated with the virtual
channel ¢; 1 -4, in Fig. 3. If this message needs to correct
dimension 4, it must go to the routing output buffer associated
with virtual channel c; g ; .-

In summary, the algorithm that results from the definitions
above needs at most four virtual channels per directed physical
link. Each of these channels has to be connected to at most
four other channels. As a result of this, no 1 to n switches are
required. There are 3"~622 different paths between any pair
of nodes. For example, in Fig. 4, the 12 paths from node (0,
0,0,0,0,0,0) to node (0,.0,0, 0, 0, 1, 0) in a 7-D hypercube
are shown. In this figure, each phase is presented as two steps:
a derouting step and a routing step.

IV. ALGORITHM SUBCUBES

In this section, an adaptive, minimal, deadlock-free routing
algorithm for the hypercube that requires only a moderate
amount of resources for its implementation is described. This
algorithm is based mainly upon considering the hypercube as a
hierarchical network in which each node is a small hypercube.
These small hypercubes are referred to as subcubes.® The
routing functions over this network are defined as if the
hypercube were hung from one of these subcubes [5], [26].
This hanging defines a leveled structure of subcubes. By
considering the hierarchical network as hung from one of these
subcubes, an order in which these subcubes will be visited can
be defined. In addition, if each of these subcubes is visited in
a deadlock-free manner, a deadlock-free routing algorithm on
the whole network may be obtained.

Consider an n-dimensional hypercube with N = 2" nodes.
First of all, the size of each of the subcubes mentioned
above has to be chosen. Each subcube consists of 2% nodes,

0 € k < n. Then k& dimensions iy, ---,i; have to be chosen
from the set {0,---,n — 1}. By fixing the n — k remaining
dimensions, 1, -, {,_%, a subcube of size 2* is defined. So,

each subcube is identified by the value in each of these n — &
fixed dimensions. Therefore, by selecting these k dimensions,
2"~F subcubes of size 2* are defined.

For example, if n = 10,k = 5, and ¢; = 2(j — 1),1 <
J <k, then the subcube determined by I, =0,1<j<n-—k

3The idea of defining a hierarchical topology using the hypercube has also
been used in [6] and [24].

1126

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5. NO. 11, NOVEMBER 1994

Non-Minimal Algorithm

Phase i. Derouting step.
OUTPUT INPUT
BUFFERS BUFFERS
L]
- -
DIM n-1 —
—/ [J| omn-1
: 1
o
2 1]
°
(i-2)| pEE °
Ci,l,i-z,c ° c
i+1,0,i+1,C
PR AL TR TR TN
DIM i-2 I—_—]
[:] DIM i+1
(i-4)
ci,l,i—4,c s
DIM [-4 -
I
Ci+1,1,1+1—4,c
PR TE LAl
DIM i-6 €,41= D {41}
N i+1 i+l
c (i-6)
i,1,i-6,C
.
o
o
° o
o
° I
o [
= L1 omo
]]
—

| Routing buffer.
[Derouting buffer.

c Current node.
D Destination node.

Fig. 2. The phase ¢ derouting step for the algorithm of Section III-C on an n-hypercube.

consists of all those nodes zg - --zg suchthatxy = 23 =--- =
. 1,3
zg = 0, and is referred to as S vO;g;g;S,

In general, we have: ’
PO A .
Sy gt = Awac1 w0ty =YV < j <k},

where V1< j<n—-k:0<1; <n-1y, €{0,1}.

In order to define the routing function, how to visit each
subcube has to be decided. As mentioned above, the main idea
is to consider each subcube as a big node, and define a routing
strategy for this new “hierarchical” network, a hypercube with
2"~k big nodes.

The strategy chosen for this hierarchical network is the
following. The hierarchical hypercube is regarded as hung

from one of the subcubes. The path of a message going from
one subcube to another subcube will consist of two phases.
During the first hierarchical phase, the message will visit
the nodes of the hierarchical network by moving downward,
considering the network as hung from a fixed subcube. During
the second hierarchical phase, the message will visit the nodes
by traveling upward. Therefore, if the subcube from which to
hang the network is Sé{,’ff:[’)’““’“, the two phases are defined as
follows. In the first phase, a dimension /,,1 < i < n —k,
will be corrected only if that correction is a 0 — 1 transition.
In the second phase, a dimension /;,1 < i < n — k, will
be corrected only if that correction is a 1 — 0 transition.
During the first phase, any 0 — 1 transition can be performed,

PIFARRE et al.: ADAPTIVE DEADLOCK- AND LIVELOCK-FREE ROUTING

1127

Non-Minimal Algorithm

Phase i. Routing step.
INPUT
OUTPUT
BUFFERS BUFFERS
—
ot | = mn
— [_]| DmMn-
3 1
o]
S]
o
.
o
. .
o o
c. . (i) ° -
oo | & -
DIM i = C | e
—
{C <>D1 ’
: Caf s
S o
°
[+]
o
o
o
o
o o
o
e [
o [:I
]
DIM o - l:] DIM 0
— CJ
1

L Routing buffer.
] Derouting buffer.

¢ Current node.
D Destination node.

Fig. 3. The phase ¢ routing step for the algorithm of Section III-C on an n-hypercube.

and in any order. So, the order in which these dimensions
will be changed can be chosen adaptively depending on local
congestion. Analogous remarks apply for the second phase.
The only restriction is that a message will enter the second
phase only once it has finished its first phase.

Note that in each phase of this strategy, each bidirectional
link is used in a different direction. Each link will be used
in only one direction in each phase. Therefore, to achieve
deadlock freedom, this part of the routing algorithm can be
implemented using two virtual channels [14] per bidirectional
link. Each of these two virtual channels corresponds to one of
the possible orientations of the underlying bidirectional link.

Hanging the hypercube from a single node (ie. & = 0)
is a well-known methodology for generating deadlock-free

routing algorithms [5], [26], [37]. When & = 0 the two-phase
algorithm used above is known to generate severe congestion
at node 1---1 (if the network is hung from node 0---0)
for moderate network sizes. If k is different from 0, the
congestion phenomenon is distributed to all the nodes of the
subcube labeled Sif,’f_';il"‘*. Because 2* nodes are present in
this subcube, congestion is less likely to arise at a single node.

Several routing algorithms can be defined on top of this
routing strategy for routing between any pair of nodes of the
hypercube. These routing algorithms differ in the way in which
messages move within each subcube. An important point
is that each subcube may use a different “internal” routing
strategy. This will have an impact on the routing performance.
As an illustration of the above ideas, several routing strategies

1128

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NC. i1, NOVEMBER 1994

6 5 4 3 2 1 0
01110 boo110g*****—#{oooo10g"****—#foooonoe] «++*—*fpo0001d
0011002~
001100 00100 -----—Mu..........................- 2000010)
[oo10000)"****)
l0010010]* 2+ .
__,......_.,.,,"_.......-..---......-..._.-
..................---.-.... 000003 -l--"
0000117 w sesnenernsasiacnnnsnsnnannnences—
fogaaggeeererreereereess—mhogotgy)rerss
oootoagsessmerusensncens lo00p00g" "t ot saemnenasnsasasan
wness
....................................-----------------------
0000013f* """ :

D Derouting Step

—

The message porforms a step in its path.

R___Routing Ste,

wesenens

The message stays in the same node.

Fig. 4. The paths available on the 7-hypercube from node (0, 0, 0, 0, 0, 0, 0) to node (0, 0, 0, 0, 0, 1, 0) with the Nonminimal algorithm of Section III-C.

can be devised. The reader is referred to [22]. In the next
section, one such algorithm is presented.

A. Basic Subcube Algorithm

This algorithm allows each message to move within the
subcubes only during its first phase. A message will have
as many chances to correct the k bits 4;,---,%; as the
number of hierarchical steps it has to take during the first
phase, as described in Section IV. By taking any of these
hierarchical steps, the message passes from one subcube to
another, and different routing strategies can be followed within
each subcube, as pointed out above. The message will have
to have corrected all the dimensions 71, - - -, 75 before starting
the second hierarchical phase. If a message does not have to
perform any step in the first hierarchical phase, it will start
its path toward its destination by correcting all the dimensions
i1, --,%; according to the routing strategy corresponding to
its source subcube. After this it will start moving toward its
destination subcube following the second hierarchical phase.

The routing strategy in each subcube can be chosen inde-
pendently. The following are two possible choices:

» Routing by correcting dimensions in order [14], or
* Routing as if each subcube were hung from one node [5],
{26}, {37].

Either of these routing strategies requires two virtual chan-
nels per bidirectional link for its deadlock-free definition. In
this way, the set of virtual channels needed at each node
will be the same, regardless of the node’s belonging to a
particular subcube. Furthermore, each subcube can be hung
from any node, or can choose any permutation of the set of
dimensions {41, - -, i } as the order in which these dimensions
are corrected.

Figs. 5 and 6 depict the routing function for an instance
of this algorithm. A 4-hypercube is considered. Suppose that
k = 2 and the four associated subcubes are defined by the two
most significant dimensions. Fig. 5 shows the available paths
during the first phase, when a hanging strategy is chosen in
each subcube. Notice that not all arrows within cubes can be
taken at arbitrary moments. Fig. 6 shows the second phase of
the algorithm. Fig. 7 shows all the available paths from node
(0, 0,0, 1) to node (1, 1, 1, 0). Note that all of these paths are
realized during the first phase, so messages never reach the
second phase. On the other hand, the paths from node (0, 1,
0, 1) to node (1, 0, 1, 0) shown in Fig. 8 involve both phases
of the algorithm.

In summary, there are three sources of adaptivity.

1) Correcting dimensions I, - -

hierarchical phases;

*yIn & throughout the two

PIFARRE er al.: ADAPTIVE DEADLOCK- AND LIVELOCK-FREE ROUTING

1129

S
11
Fig. 5. The first phase of the Basic Subcube algorithm on a 4-hypercube.

2) Correcting dimensions 1, ---,%; within one subcube;
and
3) Correcting dimensions iy, ---,4; within different sub-

cubes: If a message is still in its first hierarchical phase,
and it has to visit other subcubes before ending this
phase, then this message will have more chances to
correct the dimensions in {é1,---,%x} as it visits other
subcubes; therefore, when correcting the dimensions in
{i1,---, %k}, and so when moving within a subcube, the
message will be able to do the following:

a) switch to the second phase of the subcube routing
algorithm corresponding to hanging the subcube
from a node, even if some dimensions that need
to be corrected in this first phase have not been
corrected yet [26], or

b) leave some dimensions incorrect when it is these
dimensions’ turn to be corrected, if dimensions are
corrected in order within this subcube.

All the dimensions that have not been corrected will have
the chance to be changed within another subcube that will be
visited before entering the second hierarchical phase.

B. Possible Sources of Randomness

Once the size of the subcubes has been chosen,* there are
several parameters that can be set arbitrarily to incorporate

A = n/2 seems to be a good choice, because it balances the size of the
subcubes and the size of the hierarchical network.

randomness to the routing algorithm. All of the following
parameters must be fixed before the routing process starts:
* The n — k dimensions [y, ---
subcubes;
¢ The subcube from which to hang the hierarchical network
(this choice determines the way in which the subcubes
will be visited, and so it defines the order in which the dif-
ferent routing strategies to correct dimensions 4, - -, i
will be applied.); and
* The node within each subcube from which to hang
the subcube, or the order in which the dimensions are
corrected within a subcube, depending on the routing
strategy used within each subcube.

,ln—k that characterize the

V. WORMHOLE ROUTING ALGORITHMS TO BE COMPARED

In this section, the wormhole routing algorithms to be com-
pared are briefly revisited. Table I summarizes the resources
for each algorithm in terms of the number of virtual channels
needed per bidirectional link.

A. Dimension-Order, or E-Cube, Algorithm

Dimension-Order, also referred to as E-Cube, works as
follows. After a message has been injected in the network,
it will be routed by correcting the dimensions from the most
significant to the least significant. A message will not attempt
to correct a dimension until all the higher ones have been
corrected. This is an oblivious algorithm; there is no source

1130

TABLE I
THE NUMBER OF VIRTUAL CHANNELS PER
BIDIRECTIONAL LINK REQUIRED BY EACH ALGORITHM

Fully Adaptive
Nonminimat d = 3

Algorithm Number of virtual channels
Basic Subcube 2
Hanging 2
Hanging-Order 2
E-Cube 2
Zenith 3

4

8

of adaptivity. Two virtual channels per bidirectional link are
used. This algorithm has been described in {14].

B. Hanging Algorithm

For any message m with source s and destination d, let node
(sVvd) be the Zenith of m [26]. Each message will be routed in
two phases. During the first phase, the message is routed with
the objective of decreasing its Hamming distance to its Zenith
node, and thus only 0 — 1 transitions are allowed. Dimensions
are corrected following no particular order; i.e., the algorithm
is adaptive. During the second phase, having reached its
Zenith node, the message is routed (adaptively), decreasing its
Hamming distance to its destination d. Therefore, the 1 — 0
transitions take place. There are two virtual channels per

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 11, NOVEMBER 1994

11
Fig. 6. The second phase of the Basic Subcubes algorithm on a 4-hypercube.

bidirectional physical link, one for each phase. This algorithm
has been described in [5] and [26].

C. Hanging-Order Algorithm

This algorithm can be seen as a combination of the Hanging
and Dimension-Order algorithms. A message is allowed to
make any 1 — O transition at any moment (as in the first phase
of the Hanging algorithm), and also a 0 — 1 if this transition
occurs in the highest dimension still to be corrected. Note that
there is more adaptivity here than in Hanging, because it is
not required that messages make all of the 1 — O transitions
before taking 0 — 1 transitions. This a minimal algorithm
that can be implemented using just two virtual channels per
bidirectional link. This algorithm has been presented in [6].

D. Zenith Algorithm

For any message m with destination node d, currently in
some node p, let node (p A d) be the Nadir(p,d) of m.
Messages can be divided into two classes. Class 1 messages
are routed (adaptively), decreasing their Hamming distance to
their Zenith first (Ascend Phase). When the Zenith has been
reached, Class 1 messages are routed (adaptively), decreasing
their Hamming distance to their destination d (Descend Phase).

On the other hand, Class 2 messages are routed (adaptively),
decreasing first their Hamming distance to their Nadir node
(Descend Phase). After the Nadir has been reached, they are
routed (adaptively) to decrease their Hamming distance to their
destination (Ascend Phase). Every message mn with source s

PIFARRE er al.: ADAPTIVE DEADLOCK- AND LIVELOCK-FREE ROUTING

1131

Soo

Source

00

o
00
S
01 Oo1 100 S
10
11
o
Destination
]
11
Fig. 7. The available paths from node (0, 0, 0, 1) to node (1, 1, 1, 0) using the Basic Subcube algorithm.

and destination d is injected into the network as a Class 1
message. It is routed first following the Ascend Phase. After
reaching its Zenith, it proceeds with the Descend Phase. If a
Class 1 message 7 in its Ascend Phase is in some node p other
than its Zenith, and if all the output buffers that would lead m
to its Zenith are full, then the message switches from Class 1
to Class 2. Because the message is now a Class 2 message, it
will be routed first following a Descend Phase starting from
node p to node Nadir(p, d), where d is m’s destination. When
the message has reached Nadir(p, d), the Ascend Phase begins,
and proceeds until mn reaches its destination d.

There are three virtual channels per physical link, called 1, 2,
and 3. Channel 1 holds only Class 1 messages in their Ascend
Phase, Channel 2 holds both Class 1 and Class 2 messages in
their Descend Phase, and Channel 3 is for Class 2 messages
during their Ascend Phase. This algorithm has been presented
in [26].

E. Fully Adaptive Algorithm

Each directed link has two virtual channels. One of these
channels is referred to as a star-channel [21]. Star channels
will be used judiciously, observing certain rules to guarantee
freedom from deadlock, whereas the rest of the channels will
be used freely. The head of a message m may enter the star
channel corresponding to the dimension ¢ only if ¢ is the most
significant of the dimensions that m has to correct to arrive
at its target node.

On the other hand, m can correct any of the dimensions
as far as the corresponding nonstar channels are used for

accomplishing the transitions. This technique does not discard
any minimal path for potential routing and requires only
four virtual channels per bidirectional link, and deterministic
freedom from livelock and deadlock are still ensured. This
result was independently developed by [15] and [21].

VI. SIMULATIONS

In this section, the algorithms described in Section V
for wormhole routing on the hypercube are evaluated and
compared with the techniques of Sections II and IV. The
comparison is carried out from an algorithmic point of view.
Therefore, a simple node model was designed and adapted
to all the algorithms. For empirical performance evaluation,
several simulations with continuous routing are tried. These
simulations involve three message sizes and four traffic pat-
terns on a hypercube of 2!° nodes.

A. The Model for the Routing Node

A high-level functional description of the routing node for
implementing the algorithms is discussed in this section. A
simple node model was designed for all the algorithms. Each
directed link has four virtual channels associated with it,
because this is the number of virtual channels required by the
Nonminimal algorithm. Because all of the other algorithms
use fewer virtual channels, several lanes [12] are used for
one logical virtual channel. Thus, different messages can take
the same virtual channel by using different lanes associated
with the channel. Each lane of a virtual channel is imple-

1132

mented by an independent input and an independent output
buffer; i.e., each input buffer receives messages from only
one output buffer. Note that by normalizing the number of
virtual channels per link for all of the algorithms, not only
the storage but also the routing capability are equalized. This
allows for a fair comparison of the performance of the different
algorithms.

Thus, each node consists of a central crossbar, input and
output buffers, and an injection and a delivery buffer. All
of the input buffers and the injection buffer are connected
to the crossbar’s inputs. The output buffers and the delivery
buffer are connected to the crossbar’s outputs. It should be
noted that neither the injection nor the delivery buffers differ
from the rest of the buffers regarding their access to the
crossbar. In principle, all connections in the central crossbar
are possible, with the only restrictions being those imposed by
the particular routing function of each algorithm. All buffers
have the capacity for one flit. Nodes are able to consume one
flit per routing cycle. In the simulations, it was considered that
the header of a worm consisted of only one flit.

All of the algorithms considered in this paper, except for
Fully Adaptive, are based on routing functions that form
channel dependency graphs [14] that are acyclic. These al-
gorithms need to find only the tail of a worm in an output
buffer to be able to establish a connection for a header of a
worm to that output buffer. Fully Adaptive, because it uses
a different approach with dynamic transitions between the
resources, requires that it be checked that the input and output
buffers implementing a given virtual channel are both free
before establishing a new connection for that virtual channel.
Otherwise, deadlock may arise.

Although all the compared algorithms were simulated with
the same number of input and output buffers per physical
link, some consideration must be given to the complexity of
the node models. In those algorithms with a small number
of required virtual channels per physical link, a simpler node
model can be used. Each algorithm requires a crossbar switch
that performs the routing function. Regardless of the lanes
added to the algorithm to equalize the storage and the routing
capabilities of all of the algorithms, the fewer virtual channels
an algorithm needs, the fewer connections the associated
crossbar will perform, and so, the simpler the resulting switch
will be. When the lanes are added to the virtual channels, only
a second step of arbitration between the different lanes that
belong to the same virtual channel is needed. Consequently,
minimizing the number of virtual channels is a key issue in
the design of routing algorithms. Moreover, an algorithm with
only one virtual channel per physical link, such as the subcube
algorithm presented here, does not require multiplexing over
physical links, so the routing node is simpler and faster.

Another important consideration is the switching required
from the input to the output buffers. With the exception of
algorithm Nonminimal, every algorithm requires some input
buffers to be connected to at least n output buffers. Further-
more, in some cases, as in algorithms Zenith and Hanging,
there are different patterns of connections inside the different
nodes of the network, so a full crossbar connection is required
to obtain a uniform node design.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5. NO. i11. NOVEMBER 1994

In the case of algorithm Nonminimal, a limited buffer
connectivity is required inside a node. Only four connections
are needed for a derouting input buffer (see Figs. 2 and 3), and
thus the corresponding routing decision is very simple. If the
current dimension bit has to be corrected, there will be only
one output buffer to be used, and the message must wait until
this buffer becomes free. If the current dimension does not
need to be changed, then any of the three connected derouting
output buffers could be used, and thus only an arbitration step
is required among them. On the other hand, from a routing
input buffer, there is no routing decision at all (see Fig. 2). A
routing input buffer is connected to three output buffers, and
a message in that input buffer can take any of these outputs
buffers. So, only a simple arbitration among these competing
input buffers is needed. The above features suggest a design
of a simple and fast routing node, thus making algorithm
Nonminimal competitive in spite of its relatively large number
of virtual channels.

B. Network Activity

This subsection describes the activity of the network as-
sumed for the experiments. Because latency will be measured
in terms of routing cycles, a definition of the amount of work
involved in a cycle is needed. The routing cycle consists
of two phases: the node cycle and link cycle, which occur
simultaneously.

Some decisions were made in order to keep the node cycle
as short as the link cycle. Only one crossbar connection can
be established during a single node cycle, because allowing
for more would require some mechanism to handle collisions
when two or more worm headers might want to enter the same
output buffer. The overhead resulting from this arbitration
would make the node cycle much longer than the link cycle.

*» Node Cycle: As explained in Section VI-A, each node
has one crossbar. A connection is said to be established if
the header of a worm has previously set it in the crossbar.
During the node cycle, each node passes the flits from the
input buffers to the output buffers for all previously set
connections, provided that the output buffers are empty.
After the last flit of a worm has passed through the
crossbar, it releases the crossbar connection in that routing
cycle. During this cycle, at most one head from the input
buffers is allowed to establish a connection to an output
buffer. A fair policy to prevent starvation is used. The
injection buffer has the same priority as the rest of the
buffers. The head of a message that has arrived at an
input buffer of its destination node tries to establish a
connection with the delivery buffer of that node.

¢ Link Cyele: During the link cycle, each directed link with
a flit of a message in its associated output buffer sends
it to the corresponding input buffer, provided that this
buffer is empty. For those algorithms with more than one
output buffer per directed link, only one flit is transferred.
These buffers are served in a round-robin fashion. The
first buffer, according to this round-robin policy, that can
effectively transmit a flit is chosen to do so. A fair policy
is used to prevent starvation.

PIFARRE ef al.: ADAPTIVE DEADLOCK- AND LIVELOCK-FREE ROUTING

S0

o}
00

Qo1 100

1133

o] (o]
00 00
Source On 10’ Destination
S 11
01 o 7 s10

s

11

—™ First Phase

o™ Second Phase

Fig. 8. The available paths from node (0, 1, 0, 1) to node (1, 0, 1, 0) using the Basic Subcube algorithm.

It is important to point out some implications of the previous
definitions. First, it takes at least two cycles for a flit under no
congestion to pass from an input buffer to another input buffer.
In one cycle, it reaches an output buffer, and only in the next
routing cycle is it transferred to the neighboring node. (Note
that the flit cannot be transferred in the same cycle, because the
node and the link cycles are assumed to occur simultaneously.)
Second, under optimal conditions, a worm of length b needs
2b routing cycles to complete its injection process (i.e., the
time between its head being in the injection buffer and the
tail leaving it).

In the simulations, both node and link cycles are synchro-
nized throughout the network in the sense that all of the
nodes are involved in the node cycle, and afterward all of
the links perform the link cycle. However, the algorithms can
be implemented in an asynchronous model if desired.

C. Injection Model

Network simulations for parallel computers usually involve
two kinds of models: the static injection model, in which
every node has a fixed number of messages to inject, and the
dynamic injection model, in which each node attempts to inject
at arbitrary moments following some probability distribution.
In the first case, the routing begins when each node injects
its first message, and ends when the last message arrives at
its destination. In the latter, the simulations are samples of an
infinite process that must be stopped at some point.

In this paper, simulations for dynamic injection are re-
ported. This model mimics the network activity of multiple-

instruction, multiple-data (MIMD) computers; hence, it is
more interesting than the static case. A node decides to
inject a new message into the network with some probability
A. If the corresponding buffer is empty, the message is
effectively injected. Otherwise, the message is discarded, and
it is considered a failure. If A is too large, the network may
saturate; i.e., the behavior of the network becomes unstable,
with the maximum latency of the messages growing without
bound and the network rejecting a lot of messages.

The number of messages injected per cycle in each node,
7, is bounded by the characteristics of traffic patterns, the
network, and the routing algorithm. Some bounds are known
for 7 [17], [29]. In this work, Tmax = 1/(2b), where b is the
worm length.> Although this optimal bound is far away from
the achieved throughput, it is used only as a normalization
factor common to all compared algorithms, thus expressing the
throughput of the network in terms of its maximum estimated
capacity.

Two parameters have been considered: throughput (the
number of messages delivered per cycle) and maximum la-
tency (the largest latency experienced by a worm).

D. Communication Patterns and Traffic Characteristics

The performance of the routing algorithms should be mea-
sured for different communication patterns and traffic charac-
teristics. Two communication patterns will be used:

3In the routing model used for all the algorithms, the injection of a message
into the network takes 2b cycles in the best case. If buffer capacity is increased
to two flits or more, then pipelining in message transmission will be possible,
and the injection of a message will take b cycles.

1134
Throughput
7
i
40. -
S -
— -
/
30. —
- ~
20.
10. /
+ + + + +—Applied Load
20. 40. 60. 80. 100.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 1. NOVEMBER 1994

Max . Llatency

1000. /

800.

600. / "
400. / //

/ o
/ o
- 7z
200. .

‘Throughput

Fig. 9. Results for Random Routing with worms of length 10.

‘Throughput.
10, Y ool
py 4
Pt .-
- -
AT
30 s
s
F-
/] -~
// — -~ .
20. / 7~
p —
-—
10. //
/
¥ + + ; 4 Applied Load
20. 40. 60. 80. 100.

Max 5 Latency

800.

600.

400.

200.

-

+ + Throughput

10. 20. X. 40.

ZENITH]FULLY—ADAPYIVE lHANGlNG I E-CUBE TNON—MINIMAL lSUECUEES IHANGlNQ—QHDER I

Fig. 10. Results for Random Routing with worms of length 20.

¢ Random Routing: Messages have random destinations.
Several distributions are possible, from which two were
chosen.

a) Uniform: Destinations have a uniform distribution
over the set of nodes. This distribution models the
unstructured communication pattern that is present
in many applications.

b) Leveled: Each node p sends each message to
a node that is randomly chosen, with uniform
distribution, among all of the nodes with the same
Hamming weight as p.

* Fixed Permutations: In this case, a permutation ¢ of
the processors’ indices is fixed in advance. A node p

injects messages with destination o(p). In particular, the
following permutations are simulated.

a) Complement: All the bits in the binary address of
the node are complemented.

b) Transpose: The binary address of the node is
split into halves, and these halves are swapped
(if the dimension of the hypercube is odd, then
the middle bit remains unchanged).

E. Simulation Results

All of the algorithms presented in Section V are simulated
on a hypercube of 2!° nodes with the model shown in the
previous sections. The patterns explained above are tried with
several worm sizes: 5, 10, and 20.

PIFARRE ef al.: ADAPTIVE DEADLOCK- AND LIVELOCK-FREE ROUTING

‘Throughput

50. e

1135

Max . Latency
600.]

Throughput

”

+ Throughput

Fig. 11. Results for Complement with worms of length 10.
Throughput Ma)éub' L.;tency
!
50. I
500. /
/
40. /
00. /
/
. /
300. /
/
/
a 200. /
- /
/
10. 1o, e ———
0.
Fig. 12. Results for Complement with worms of length 20.

The results for the uniform random, complement, and trans-
pose communication patterns are shown in Figs. 9 through 14.
Two figures are shown for each communication pattern and for
worms of length 10 and 20 flits. One plot shows the maximum
latency reached when the network achieves a given throughput.
The other plot shows the achieved throughput as a function of
the applied load. Recall that throughput and injection rate are
measured as a percentage of the theoretical bound, as explained
in Section VI-C.

Both Nonminimal and Fully Adaptive show good results for
all the communication patterns, but Fully Adaptive is better.
Nonminimal presents always higher latency than the best for

each case, because of the nonminimality of the technique. On
the other hand, Hanging is the worst in all the cases.

It was observed that some of the algorithms displayed
bad behavior under a certain traffic pattern. For example,
Dimension-Order, and also Hanging-Order, behave very badly
for the transpose permutation, but show a good performance
for the complement permutation. On the other hand, the
algorithms based on hanging the hypercube, namely, Hanging,
Zenith, and Basic Subcubes, have their worst performance for
the complement pattern. Note that in the case of Hanging,
all of the messages pass through node 1---1 for this pattern.
Basic Subcubes and Zenith also suffer, but Basic Subcubes is

Throughput

1136 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. S, NO. 11, NOVEMBER 1994
Throughput. Ma:t;m.7 . Latency
90.
40.
30.
20.
10.
+ + + + +—Applied Load
20, 0. 60. 80. 100.
zEnTH | FuLLY-ADAPTIVE [HANelue | e-cuse
I* I [— | — —eeem - ==
Fig. 13. Results for Transpose with worms of length 10.

Throughput.
50. —
/ . ‘
a0, ’ F
7S, .
S
-
S S
/30
30.
£z
4~
20.
. * : .
10. ’ AR
7/
A
} + 3+ + — Applied Load
20. 10. 60. BO. 1b0.

Hax . Latency
80

0. ' /

700,

600. .j J

500.

, !
400. '
/
.
300. / / ”
200.1

100.

~—Throughput
50.

Fig. 14. Results for Transpose with worms of length 20.

slightly better. Furthermore, Zenith, and, to a lesser extent,
Basic Subcubes, exhibit very good behavior for the transpose
permutation.

The simulations for random routing, both uniform and
leveled, show a similar behavior for all the algorithms, except
for Hanging and Nonminimal. Hanging is the worst in latency
and can sustain very small throughput relative to the others.
Nonminimal sustains higher throughput than Hanging, but has
higher latency than the other algorithms.

VII. CONCLUSION

The first part of this paper presented two new algorithms
for wormhole routing in the hypercube network. Algorithm

Nonminimal (see Section III) is adaptive and nonminimal.
This algorithm uses eight virtual channels per physical link
and requires small connectivity among the virtual channels
on the same network node. Algorithm Basic Subcubes (see
Section IV) is adaptive and minimal, and uses just two virtual
channels per bidirectional physical link.

The second part of the paper reported an experimental com-
parison of the new techniques with other known algorithms
from the literature. This wide range of experiments covers
the state of the art for wormhole routing in the hypercube.
Oblivious and adaptive, minimal and nonminimal, partially
adaptive and fully adaptive algorithms were tried. A simple
node model for all the algorithms was used. This model

PIFARRE ef al.: ADAPTIVE DEADLOCK- AND LIVELOCK-FREE ROUTING

allows to compare the different strategies from an algorithmic
standpoint.

Consider first those algorithms requiring fewer resources
per node, and thus allowing for a simpler node design, as
discussed in Section VI-A.® Among these algorithms, Basic
Subcubes is the only one that can sustain at least 20% of the
Tmax 10 throughput for all of the patterns tried.

If more complex node models are allowed, Zenith, with
three virtual channels per bidirectional link, is a good candidate
for routing. It performs closer to the optimal in all the
communication patterns except the complement where it can
tolerate only up to 20% of 7max. In that case, even Basic
Subcubes is slightly. better when the size of the worm increases.

Nonminimal performs well for all of the communication pat-
terns, because of its potential ability of breaking the structure
of the regular communication patterns. However, Nonminimal
is slightly worse than the best algorithm in each case, because
it is a nonminimal routing technique. Although the number of
virtual channels per link is very large compared to the other
algorithms, thus increasing the node complexity, one feature of
the algorithm can result in a simple node design: A moderate
connectivity is required between the virtual channels of the
same routing node. More precisely, an input channel needs to
reach only four output virtual channels.

Finally, Fully Adaptive appeared to be the best technique
for all of the communication patterns and worm lengths tried.
It requires fewer virtual channels per link than Nonminimal,
which is the only other algorithm that did not show a bad-case
communication pattern. Fully Adaptive makes a better use of
the bandwidth of the hypercube network than the others, as a
result of its being fully adaptive, and this comparison is fair,
because all of the algorithms tested were assigned the same
number of virtual channels per physical link.

APPENDIX

Theorem 1: The routing algorithm described in Section III
is correct and deadlock-free.

Proof:

¢ Correctness: It suffices to show that at the end of phase i,
dimensions n — 1 through ¢ have already been corrected.
The proof is straightforward, using induction on %.

 Deadlock-Freedom: 1t suffices to show that each mes-
sage goes through virtual channels following a strictly
descending lexicographic ordering with respect to the
virtual channels’ subscripts. Initially, each virtual channel
is injected in a virtual channel with prefix n. Then
messages go through phases n — 1 to 0, and during phase
i, messages move through channels with prefix <. At
most two channels are visited during each phase, and,
if so, the two channels are visited following a strictly
descending lexicographic ordering. Therefore, messages
visit virtual channels in strictly descending lexicographic
ordering of the subscripts, and so the routing algorithm
is deadlock-free.

8 All of the techniques requiring just one virtual channel per directed link
can be used for circuit-switching models of message transmission.

1137

Theorem 2: Injection channel c, o, has outdegree d (d <
n), whereas channels c¢;;;, and ¢;o;, have outdegree
|dims(p,i—1)| 4+ 1 and |dims(p, i — 1)|, respectively, if j < i.

Proof:

* A message m at channel c,0, is starting its
phase n — 1. So, according to the routing
algorithm, m will move to any of the channels
in {Cﬂ—l,lyilyp(il)v"'7cﬂ-171,id,P(xd)}r' where
dims(p,n — 1) = {21, -+,%q¢}.dims(p,n — 1) is the
same for every message. Consequently, ¢, has
outdegree d.

* When a message m enters c; 1 ;p,J < ¢, it is in the ¢th
routing phase, performing a potentially derouting step.
So, there are two cases.

a) m does not have to correct the ith dimension.
In this case, m has already finished phase
i once it has entered channel ¢;;,. So,
m has to start phase ¢ — 1, and this means
entering any of |dims(p, — 1)| virtal channels,
namely, ¢;_j 1 p610, 5 Gy 1, pi)s Where
dims(p,7 — 1) = {41,142, -, ik}, Which is fixed
for every message entering ¢; 1 j,p-

b) m has to correct the 7th dimension. In this case,
m has to enter channel ¢; g; p).

Therefore, it follows that the outdegree of channel ¢; 1 ;
is |dims(p,i — 1)| + L.

* When a message m enters ¢; o ; p, it is in the ith routing
phase, correcting dimension ¢. So, after entering this
channel, m has to enter phase ¢ — 1. So, it has to go to
any of the channels in {¢;_; 1 ;, ,61)," "
where dims(p,i — 1) = {¢ ;
outdegree |dims(p,¢ — 1)|.

:‘fi-1,1,ik,p(wc)}s
L1y, Zk}. SO, Ci0,i,p has

The virtual channels corresponding to phases d — 1 through
0 are a special case, because, in general, they have less
outdegree. So, every virtual channel has outdegree less than
or equal to d + 1.

ACKNOWLEDGMENT

The authors are indebted to the very useful comments and
suggestions provided by three reviewers.

REFERENCES

[1] M. Arango, H. Badr, and D. Gelenter, “Staged circuit switching,” IEEE
Trans. Comput., vol. C-34, pp. 174-180, Feb. 1985.

[2} S. Borkar er al., “iWarp: An integrated solution to high-speed parallel
computing,” in Proc. Supercomputing 1988.

{3] H. Badr, D. Gelenter, and S. Podar, “An adaptive communications
protocol for network computer,” Performance Evaluation, vol. 6, pp.
35-51, Mar. 1986.

[4] P. Berman, L. Gravano, G.D. Pifarré, and J.L.C. Sanz, “Adaptive

deadlock- and livelock-free routing with all minimal paths in torus

networks,” in Proc. 4th Symp. Parallel Algorithms and Architectures

(SPAA), 1992,

Y. Birk, P.B. Gibbons, D. Soroker, and J.L.C. Sanz, “A simple

mechanism for efficient barrier synchronization in MIMD machines,”

Tech. Rep. RI-7078-(67141), Dept. of Comput. Sci., IBM Almaden

Research Center, CA, USA, Oct. 1989.

[5

1138

(6]

[71

(8]

91
{10]
f11]
[12]

[13]

[14}

[15]

[16]

(17

(18]

[19]

(20

[21]

[22)

[23]

[24
[25]

[26]

(271

[28

[29]

[30]

[31]

{32)

{33]

[34]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 11, NOVEMBER 1994

G.-M. Chiu, S. Chalasani, and C.S. Raghavendra, “Flexible, fault-
tolerant routing criteria for circuit-switched hypercubes,” in 11th Int.
Conf. Distrib. Computing Syst., 1991.

F. Chong, E. Egozy, A. DeHon, and T. Knight, “Multipath fault
tolerance in multistage interconnection networks,” Transit Note 48,
Massachusetts Inst. of Technol., Cambridge, MA, USA, June 1991.

R. Cypher and L. Gravano, “Adaptive deadlock-free packet routing in
torus networks with minimal storage,” in Proc. ICPP 92, vol. III, pp.
204-211, 1992.

. “Requirements for deadlock-free, adaptive packet routing,” in
Proc. PODC 92, 1992.

Thinking Machine Corp., “Connection machine model CM-2,” Tech.
Summary, May 1989.

W.J. Dally and H. Aoki, “Adaptive routing using virtual channels,”
Tech. Rep., MIT, Cambridge, MA, USA, 1990.

W.J. Dally, “Virtual-channel flow control,” in I7th Ann. Int. Symp.
Comput. Architecture , May 1990.

S.P. Dandamundi, “A performance comparison of routing algorithms
for hierarchical hypercube multicomputer networks,” in Proc. 1990 Int.
Conf. Parallel Processing, vol. 1, pp. 281-285, Aug. 1990.

W.J. Dally and C. Seitz, “Deadlock-free message routing in multipro-
cessor interconnection networks,” IEEE Trans. Comput., vol. C-36, pp.
547-553, May 1987.

J. Duato, “Deadlock-free adaptive routing algorithms for multicomput-
ers: Evaluation of a new algorithm,” in Proc. 3rd IEEE Symp. Parallel
Distrib. Processing, 1991.

M. L. Fulgham, R. Cypher, and J.L.C. Sanz, “A comparison of SIMD
hypercube routing strategies,” in Proc. ICPP’91 Int. Conf. Parallel
Processing , vol. II, pp. 236-243, 1991.

S.A. Felperin, L. Gravano, G.D. Pifarté, and J.L.C. Sanz, “Fully-
adaptive routing: Packet switching performance and wormhole algo-
rithms,” in Supercomputing, pp. 654-663, 1991.

, “Routing techniques for massively parallel communication,”
Proc. IEEE (special issue on massively parallel computers), vol. 79,
pp. 488-503, Apr. 1991.

D. Gelernter, “A DAG-based algorithm for prevention of store-and-
forward deadlock in packet networks,” IEEE Trans. Comput., vol. C-30,
pp. 709-715, Oct. 1981.

L. Gravano, G.D. Pifarré, G. Denicolay, and J.L.C. Sanz, “Adap-
tive deadlock-free wormhole routing in hypercubes,” in Proc. 6th Int.
Parallel Processing Symp., 1992.

L. Gravano, G.D. Pifarré, S. A. Felperin, and J.L.C. Sanz, “Adaptive
deadlock-free wormhole routing with all minimal paths,” Tech. Rep.
TR:91-21, CRAAG, IBM Argentina, Buenos Aires, Argentina, 1991.
L. Gravano, G.D. Pifarré, and J. L. C. Sanz, “Adaptive wormhole routing
in tori and hypercubes,” Tech. Rep. TR-91-10, CRAAG, IBM Argentina,
Buenos Aires, Argentina, Mar. 1991.

K.D. Gunther, “Prevention of deadlocks in packet-switched data trans-
port system,” JEEE Trans. Commun., vol. COM-29, no. 4, Apr. 1981.
D. Hillis, The Connection Machine. Cambridge, MA: MIT, 1985.

P. Kermani and L. Kleinrock, “Virtual cut-through: A new computer
communication switching technique,” Comput. Networks, vol. 3, pp.
267-286, 1979.

S. Konstantinidou, “Adaptive, minimal routing in hypercubes,” in 6th
MIT Conf. Advanced Res. VLSI, 1990, pp. 139-153.

C.P. Kruskal and M. Snir, “The performance of multistage interconnec-
tion networks for multiprocessors,” [EEE Trans. Comput. , vol. C-32,
pp. 1091-1098, Dec. 1983.

S. Konstantinidou and L. Snyder, “The Chaos router: A practical
application of randomization in network routing,” in 2nd Ann. ACM
SPAA, 1990, pp. 21-30.

, “Chaos router: Architecture and performance,” in /8th Int. Symp.
Comput. Architecture, 1991, pp. 212-221.

D.H. Linder and J. C. Harden, “An adaptive and fault tolerant wormhole
routing strategy for k-ary n-cubes,” IEEE Trans. Comput., vol. 40, pp.
2-12, Jan. 1991.

D. Lenoski, J. Landon, K. Gharachorloo, W. Weber, A. Goopta, and J.
Hennessy, “Overview and status of the Stanford Dash multiprocessor,”
in Int. Symp. Shared Memory Multiprocessing , Tokyo, Japan, Apr. 1991.
T. Leighton and B. Maggs, “Expanders might be practical: Fast algo-
rithms for routing around faults on multibutterflies,” in 30th Ann. Symp.
Foundations of Comput. Sci., 1989, pp. 384-389.

T. Leighton, B. Maggs, and S. Rao, “Universal packet routing algo-
rithms,” Proc. 29th IEEE Symp. Foundations Comput. Sci., 1988, pp.
256~269.

P.M. Merlin and P.J. Schweitzer, “Deadlock avoidance in store-and-
foreward networks, part I: Store-and-forward deadlock,” IEEE Trans.

[351

{36]

(37]

[38]

391

[40]

[41]

(42}

Commun., vol. 28, no. 3, pp. 345-354, Mar. 1980.

L.M. Ni and P.K. McKinley, “A survey of routing techniques in
wormhole networks,” Tech. Rep. MSU-CPS-ACS-46, Dept. of Comput.
Sci., Michigan State Univ., USA, Oct. 1991.

J.Y. Ngai and C.L. Seitz, “A framework for adaptive routing,” Tech.
Rep. 5246:TR:87, Comput. Sci. Dept., California Inst. of Technol., USA,
1987.

G.D. Pifarré, L. Gravano, S.A. Felperin, and J.L.C. Sanz, “Fully
adaptive minimal deadlock-free packet routing in hypercubes, meshes,
and other networks,” in Proc. 3rd Ann. ACM Symp. Parallel Algorithms
and Architectures, 1991,

N. Pippenger, “Parallel communication with limited buffers,” in Foun-
dations of Comput. Sci., pp. 127-136, 1984,

A.G. Ranade, “How to emulate shared memory,” in Foundations of
Comput. Sci., pp. 185-194, 1985.

A.G. Ranade, S_N. Bhat, and S.L. Johnson, “The Fluent abstract
machine,” in J. Allen and F. T. Leighton, Eds., 5th MIT Conf. Advanced
Res. in VLSI, 1988, pp. 71-93.

E. Upfal, “An O(log N) deterministic packet routing scheme,” in 2/st
Ann. ACM-SIGACT Symp. Theory of Computing, May 1989.

L.G. Valiant, “General purpose parallel architectures,” in J. van
Leeuwen, Ed., Handbook of Theoretical Computer Science. Ams-
terdam, Netherlands: North-Holland, 1988.

G.D. Pifarré received the B.S. degree in com-
puter science from the Escuela Superior Latino-
Americana de Informatica (ESLAI) in 1991.

In 1990, he joined the Computer Research and
Advanced Applications Group at IBM Argentina as
a Researcher. He has been a Student Visitor to the
IBM Almaden Research Center, CA, USA, three
times. He is now a Professor and doctoral student at
the Department of Computer Science, Universidad
de Buenos Aires, Argentina. His current areas of
research interest include multicomputers, multipro-

cessors, routing algorithms, parallel processing, and computer architectures.
Mr. Pifarré is the recipient of a research scholarship from the Universidad
de Buenos Aires, as well as a scholarship from ESLAL

L. Gravano received the B.S. degree in com-
puter science from the Escuela Superior Latino-
Americana de Informatica (ESLAI) in 1991, and
the M.S. degree in computer science from Stanford
University, Stanford, CA, USA, in 1994.

From 1990 until 1992, he was a Researcher at
the Computer Research and Advanced Applications
Group at IBM Argentina. He has been a Student
Visitor to the IBM Almaden Research Center, CA,
USA, three times. He is now a doctoral student
at the Computer Science Department, Stanford

University, Stanford, CA, USA. His current areas of research interest include
databases and parallel computers.

G. Denicolay received the B.S. degree in computer
science from the Escuela Superior Latino Ameri-
cano de Informadtica (ESLAI) in 1992.

During 1991, he was a Researcher at the Com-
puter Research and Advanced Applications Group
at IBM Argentina. He is now warking on finan-
cial business. His current areas of research interest
include software engineering, compiler design, and
operating systems.

PIFARRE et al.: ADAPTIVE DEADLOCK- AND LIVELOCK-FREE ROUTING

J.L.C. Sanz (M’82-SM’86-F’91) received the
M.S. degree in computer science, the M.S. degree
in mathematics, and the Ph.D. degree in applied
mathematics from the Universidad de Buenos Aires,
Argentina, in 1977, 1978, and 1981, respectively.

Since 1993, he has been a Professor of Electrical
and Computer Engineering at the University of
Iilinois at Urbana-Champaign, USA. He is also
affiliated with the Coordinated Science Laboratory
there, and is also Manager of the Advanced
Applications and Innovative Technologies Group
at IBM Argentina, Buenos Aires, Argentina. He was an Instructor with
the Department of Mathematics, Universidad de Buenos Aires, Argentina,
during 1978 through 1980, and conducted research as a scholar member of
the National Council of Scientific and Technical Research of Argentina for
four years. He was a recipient of many scholarships and was a member
of the Argentinian Institute of Mathematics. He was a Visiting Scientist
at the Coordinated Science Laboratory, University of Illinois at Urbana-
Champaign, USA, during 1981-82. He was a Visiting Assistant Professor
in the Department of Electrical Engineering and the Coordinated Science
Laboratory in 1983. During 1983, he was a member of the summer visiting
faculty at the Department of Computer Science at the IBM Research
Laboratory in San Jose, CA, USA. From 1984 to 1993, he was with the
Department of Computer Science, IBM Research Laboratory, San Jose, CA,
USA, as a Research Staff Member. He conducted work on industrial machine
vision, parallel computing, and multidimensional signal processing. He was
the Technical Manager of the machine vision group during [985-86. He
has also been an Adjunct Associate Professor at the University of California
at Davis, USA, where he conducted research as the Associate Director of
the Computer Vision Research Laboratory until 1988. He has served as a
consultant for several companies in the USA.

Dr. Sanz is a member of ACM. In 1986, he received the IEEE Acoustics,
Speech, and Signal Processing Society’s Paper Award for a publication
in IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING.
He is a Committee Member of the Multidimensional Signal Processing
Group of the IEEE Acoustics, Speech, and Signal Processing Society. He
was an Associate Editor of IEEE TRANSACTIONS ON ACOUSTICS, SPEECH,
AND SIGNAL PROCESSING from August 1987 until August 1989. He was
the Editor of IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE
INTELLIGENCE special issues on industrial machine vision and computer vision
technology in 1988. Also, he is an Editor-in-Chief of Machine Vision and
Applications: An International Journal, and is author of the book Radon
and Projection Transform-Based Computer Vision (Springer-Verlag 1988).
He is the Editor of the book Advances in Machine Vision (Springer-Verlag).
He is also a coauthor of the book Massively Parallel Computing: Theory,
Algorithms, Applications, and Technology (Springer-Verlag 1991). He has
been Chair and Organizer of the 1988 IEEE Workshop on Machine Vision,
held in Ann Arbor, MI, USA. He has been the Chair and Organizer of the
IBM Almaden/National Science Foundation Workshop on Opportunities and
Constraints of Parallel Computing. He was the Program Committee Chair
of the VI IEEE Acoustics, Speech, and Signal Processing Workshop on
Multidimensional Signal Processing. He was the Program Committee Chair
of the Computer Architecture Chapter at the 1990 International Conference
on Pattern Recognition. He is Chair of the Industrial Machine Vision Chapter
of the International Association of Pattern Recognition, and is a member of
the Architecture Chapter of that organization.

1139

