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Fully Adaptive Minimal Deadlock-Free Packet
Routing in Hypercubes, Meshes, and Other
Networks: Algorithms and Simulations

Gustavo D. Pifarré, Luis Gravano, Sergio A.

Abstract— This paper deals. with the problem of packet-
switched routing in parallel machines. Several new routing
algorithms for different interconnection networks are presented.
While the new techniques apply to, a wide variety of networks,
routing algorithms will be shown for the hypercube, the
two-dimensional mesh, and the shuffle-exchange. Although the
new techniques are designed for packet routing, they can be
used alternatively for virtual cut-through routing models. The
techniques presented for hypercubes and meshes are fully-
adaptive and minimal. A fully-adaptive and minimal routing is
one in which al/l possible minimal paths between a source and a
destination are of potential use at the time a message is injected
into the network. Minimal paths followed by messages ultimately
depend on the local congestion encountered in each node of the
network. In the shuffie-exchange network, the routing scheme
also exhibits adaptivity but paths could be up to 3log N long
for an N node machine. The shuffle-exchange algorithm is the
first adaptive and deadlock-free method that requires a small
(and independent of N) number of buffers and queues in the
routing nodes for that network. .

Furthermore, all of the new techniques are completely free
of deadlock situations. In dynamic message injection models,
the routing methods are also ensured to be free of livelock if
messages competing for resources are handled with fairness. In
contrast to other approaches in which adaptivity, deadlock and
livelock freedom can be guaranteed at the expense of complex
architectures, the algorithms presented in this paper require a
very moderate amount of routing resources. In particular, it will
be shown that only two central queues per routing node of the
network are necessary for the cases of the two-dimensional mesh
and the hypercube, and four queues for the shuffle-exchange.

Simulations are reported showing the performance of the
routing algorithms for two-dimensional meshes and hypercubes
for different traffic models: random, complement, transpose,
bit-reversal and leveled permutations. The performance of
the routing algorithms is measured in terms of throughput,
maximum and average latency, and saturation point. In the
case of the mesh network, the new method is compared to an
oblivious scheme similar to the -y or e-cube router. Simulation
results are reported for hypercubes up to 16-K nodes and for
meshes of 1-K nodes. These results demonstrate that the new
algorithms outperform oblivious e-cube-type techniques.
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I. INTRODUCTION

[ ESSAGE routing in large interconnection networks
has attracted a great deal of interest in recent years.
Different underlying machine models have been used and pro-
posed [1]-{13]. Some fundamental distinctions among routing
algorithms involve the length of the messages injected in the
network, the static or dynamic nature of the injection model,
special assumptions on the semantic of the messages, archi-
tecture of the network and router, degree of synchronization
in the hardware, and others.

In terms of message length, several issues have been studied
concerning the ways to handle long messages (of potentially
unknown size) and very short messages (typically of 150-300
bits). In packet-switching routing, the messages are of constant
(and small) size, and they are stored completely in every
node they visit. In [14], a survey of some packet routing
algorithms has been presented. In [15], simulation results have
been shown comparing a number of different oblivious packet
routing schemes on the hypercube. In worm-hole routing [1],
messages of unknown size are routed in the network. These
messages are never stored completely in a node. Only pieces
of the messages, called flits, are buffered when routing. For
a review of recent worm-hole methods, see [16]. In between
packet-routing and worm-hole lie some hybrid approaches. In
these methods [17], a message is routed by using a worm-hole
technique until it gets blocked in a node by traffic. In this case,
the message is buffered completely in the node, if buffers are
large enough with respect to message length.

Two subjects of long-standing interest in routing are dead-
lock and livelock freedom. Techniques that perform without
deadlocks or livelocks have been shown on different models.
Some algorithms succeed in accomplishing deadlock-free or
livelock-free routing only in a probabilistic sense [7], [18].
In other algorithms, deadlock freedom is guaranteed in a
deterministic sense [19], [20]. Several techniques achieve
this by defining an ordering on the critical resources, and
allowing each message to progress throughout the network by
occupying resources in a strictly monotonic fashion [1]-[3],
[21]-[24], among others. This idea results in the generation of
a directed acyclic graph (DAG) of the resources.
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A desirable feature of routing algon'thms is adaptivity, i.e.,
the ability of messages to use alternative .paths toward their
destinations according to traffic congestion in the nodes of
the network. Recent simulation results for k-ary n-cubes have
shown that adaptivity improves the performance of dynamic
injection routing when compared to oblivious methods [25].
However, finding deterministic and probablhstlc bounds for
static models -of message injection in. adaptive routmg is still
an open problem for all cube-type networks.

Restricting the set of available paths ‘in the network to
a subset suitably chosen is a common: way to reduce the
hardware resources necessary for deadlock-free routing. When
stringent restrictions are applied, oblivious algorithms or meth-
ods with partial adaptivity wiil be obtained. In [21], an
adaptive method for routing in the hypercube is proposed. In
the work of [1], practical oblivious routing techniques for a
variety of networks are presented. Oblivious algorithms have
been studied thoroughly for meshes and tori [26]. In [26],
the performance of these algorithms for meshes has been
analyzed, for both static and dynamic injection models, and
for both packet switching and virtual cut-through techniques.
Recently, some mathematical analyses have been reported on
the performance of worm-hole oblivious algorithms [27]. On
the other hand, if few restrictions are imposed on the set of
possible routes generated by a routing function, impractical
algorithms may result. For example, the structured buffer
pool [23], [24] guarantees deadlock freedom by adding all
necessary resources so that a DAG is obtained. This will result
in an excessive amount of hardware necessary in a routing
node and this situation will not be improved by allowing
messages to depart from the DAG routes if queue space is
available [24]. o

A fully-adaptive minimal routing scheme is one in which
all possible minimal paths between a source and a destination
are of potential use at the time messages are injected. into the
network. Paths followed by the messages depend on the traffic
congestion found in the nodes of the network. For example, the
minimal routing functions presented in [21] and [22] are not
fully-adaptive because several minimal routes are not allowed
to take pldce. Full-adaptivity is a feature from which one can
hope to obtain the best possible performance if no source of
randomization is used. Full- -adaptivity has been used by Upfal
in [4] to produce a deterministic optimal algorithm for routing
in the multlbutterﬂy Multibutterflies are extremely rich in
terms of the number of minimal paths between any pair of
nodes. Recently, the principles shown in [28] and this paper
have been used for the same routing model in n-dimensional
torus networks by using three queues per node [29], and this
result is optimal for the given model and network [30].

The recent work reported in [7] shows a striking reduction
of hardware resources by providing an adaptive deadlock-free
routing algorithm dubbed Chaos. The ‘method has a non-zero
probability that a message will not reach its destination after ¢
routing steps, for an arbitrary ¢. However, this probability tends
to zero as ¢ approaches infinity. Furthermore, the technique
in [7] and {31] applies only to packet and virtual cut-through
routing and paths followed by the messages are not necessarily
minimal.

Lately, new algorithms for worm-Hole routing have been
reported [25], [32], and [33]. In’ [25] a method for deadlock-
free adaptive routing in k-ary n-dlmensmnal cubes is presented
such that it can be used for worm-hole routmg The new
technique is based on a dynamic view of the conditions
under which deadlock may arise. Routing of messages is
accomplished by enforcing certain priorities on the use of
virtual channels potentially intervening in deadlock conditions.
In [32], a technique based on the use of multiple independent
"lanes" associated with each physical link in a routing node
is presented. Given a fixed amount of storage space allocated
to each physical channel, it is shown that breaking the storage
into several buffers is a convenient methodology for improving
network performance. Simulations for worm-hole routing on
a multistage interconnection network are shown. On the other
hand, in [33], new algorithms for deadlock-free fully-adaptive
minimal routing are presented. These algorithms are for k-
ary n-dimensional cubes and n-dimensional mesh-connected
networks. The techniques require 12 virtual channels for some
physical links in the two-dimensional torus and a total of 36
virtual channels per node. In the 3-D mesh, up to 8 virtual
channels for some physical links are necessary and a total of
32 per routing node. In [34], a fully-adaptive minimal worm-
hole routing technique for the bidimensional torus network
was shown, requiring 8 virtual channels per bidirectional
link. In [35], fully-adaptive worm-hole algorithms were in-
troduced for a variety of networks. For example, a routing
algorithm for n-dimensional tori was presented requiring just
5 virtual channels per bidirectional link in all but the most
significant dimension, in which only 3 virtual channels are
needed [36].

In this paper, a number of algorithms for packet routing are
shown. These techniques are fully-adaptive minimal (except
for the one for the shuffle-exchange), deadlock- and livelock-
free and require a very moderate amount of resources in the
routing nodes. The new methods are presented for hypercubes,
meshes, and shuffle-exchange networks. These results have
been originally presented in [28].

The family of algorithms presented in this paper differs
in a radical way from deflection routing, hot-potato routers,
and other fully-adaptive techniques that misroute messages to
ensure deadlock freedom [37], [38]. Hot-potato routers are
non-minimal and furthermore, messages can get misrouted in
the presence of conflicts in the use of the output ports in a
node. The misrouting mechanism is necessary for deflection
or hot-potato routers to be free of deadlock situations. On the
other hand, misrouting creates potential livelock in dynamic
routing as a message may take arbitrarily long time to arrive
at its destination.

The organization of this paper is as follows. In Section
II, some terminology and concepts concerning static and
dynamic deadlock freedom will be introduced. In Sections
III, IV, and V, the main results of this paper are presented.
In these sections, algorithms for fully-adaptive routing on
hypercubes, two-dimensional meshes, and for adaptive routing
on shuffle-exchange networks will be shown. In Section VI,
the functional designs of the routing node for the above
three interconnections are shown. These designs give empha-
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sis to the number of buffers sharing a physical link, and
the operation and number of central queues in the node.
In Section VII, the results obtained from the simulations
involving two-dimensional meshes and hypercubes are pre-
sented. These simulation results have been originally reported
in [28] and [34]. In Section VIII, some conclusions are
presented.

II. DEFINITIONS AND TERMINOLOGY

In the packet routing model used in this paper, the critical
resources are the queues used to store the messages. This
model has been used in a number of routing papers [21], [29],
[301, [7], [31]. Deadlock will arise, if and only if there exists a
set of full queues occupied by messages such that all of these
messages need a slot of a queue that belongs to the set in
order to continue their way toward their destinations. Livelock
takes place whenever a message can keep moving infinitely
many times without getting delivered. This phenomenon may
happen when the routing technique is nonminimal, i.e., when
messages can take paths that are longer than the shortest
paths.

Each node of the network will have associated with it a
certain number of queues. Each node has a pair of distinct
queues, namely the injection and the delivery queues. Mes-
sages will be injected in the injection queue, and they wili
be consumed from the delivery queue. The set of injection
queues of all the network will be referred to as InjectQ, and
the set of delivery queues, as Deliv@. The routing function
will be expressed in terms of the queues of each node. Every
delivery queue identifies a unique node of the network. Each
message has a destination associated with it, given by the
function Dest : Messages — Deliv(Q.

A total routing function R Queues x DelivQ —
P(Queues), where P(Queues) is the powerset of Queues,
is such that R(q,d) indicates which are the next possible
hops of a message with destination d that is currently in ¢.
Possibly, a delivery queue d may not be reachable from a
given non-delivery, non-injection queue ¢. In such a case,
R(q,d) should be equal to §.

The queue dependency graph (QDG) corresponding to a set
of queues @ and a routing function R is a directed graph such
that its set of vertices is Q and there exists an edge from qi
to g; (¢:,¢; € Q) if and only if there exist an injection queue
s and a delivery queue d such that R builds a route from
s to d passing through both ¢; and g;. and ¢; € R(q;,d).
(This definition is related to the one presented in [1] regarding
virtual channels.) Clearly, if the QDG corresponding to a
set of queues and a routing function is acyclic (i.e., it is a
DAGQG), then, the greedy routing algorithm resulting from R is
deadlock free.

Let D = (Q, A;) be an (acyclic) queue dependency graph.
Then, Q@ is the set of queues and A, the set of links between the
queues. Every nondelivery queue has finite (independent of the
size of the network) size. The delivery queues of D will have
infinite size, to model the fact that messages are eventually
consumed at them. If ¢ # @, Head(q) is the first message in
FIFO order of g. g can be modified either by deleting its head
(RemoveH ead(q)) or by adding an element m to it as its last
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element (Insert(m,q)). The Full function tests if a queue is
full. Level(q) is the length of the longest path between any
member of InjectQ and g. For every ¢, Level(q) is finite
because D is acyclic.

In previous work, routing functions are built such that
the resulting QDG’s are acyclic. Although this condition is
sufficient to guarantee deadlock freedom, it is too strong,
and can be relaxed: the queue dependency graph has to be
dynamically acyclic, i.e., cyclic wait must not arise in a
dynamic environment [24].

This paper uses a model for such dynamically acyclic
queue dependency graphs in the generation of practical routing
algorithms for hypercubes, meshes, and shuffle-exchanges.

In order to present the results of Sections III, IV, and v
some more definitions and terminology will be required. Let
Ag C @ X @ be a set such that A, N A; = @, and, if
(q1,g2) € Aq, then go is at most one hop away from ¢, in
the network. Although it is not necessary, it will be required
that if (g,q’) € Ag then Level(q) > Level(q'). This is not
a restriction because if Level(q) < Level(q') then (q,q’)
can be included in As, and D will still be acyclic. Now, let

= (V, A, U Ag) be the extension of D by A4. Sometimes,
D will be called the underlying DAG of D. Note that D is
not necessarily a DAG. In the following, A, will be called
the static transition set and Ay will be called the dynamic
transition set. Let R be a routing function on D, observing
the following conditions: Vq,q’ € Q,d € DelivQ.

1) R(g,d) € R(q,d).

2) If ¢ € R(q,d) and ¢’ & R(qg,d) then R(q’,d) # 0. This
means that if a message can be routed along a dynamic
transition, it will still have the possibility of taking a
static transition as a next step towards its destination.
Therefore, at any moment, every message has a static-
transition path that takes it to its destination. In other
words, every message will be able to progress towards
its target queue through the underlying DAG.

3) D is the QDG correspondmg to ¢ and R: 3

The Routing Algorithm: Let R be a routing function and D
be the QDG associated with it. Furthermore, suppose that D
is the underlying DAG of D. The following greedy algorithm
can be used to route messages over D from the aneCthI] to
the delivery queues.

Route(q)
/* g is the queue executing the algorithm */

(01) select ¢ €{¢"€Q:(q.¢") €A, UAy} :
(not Full(¢') and ¢ € R (¢, Dest(Head(q))))

(02) Insert(Head(q),q')

(03) RemoveHead(q)

It is supposed that once a ¢ finds and selects some ¢’
satisfying the condition in line (01) it gains the access to a
place in ¢/, and can execute lines (02) and (03) of the algorithm
above. Note that select may return a ¢ satisfying condition
in line (01) according to any criterion, as long as it does so if
the set of queues satisfying (01) is not empty. :

Theorem 2.1: The routing scheme proposed above over D,
with the extended routing function R, is deadlock free.

The proof of the deadlock freedom of this algorithm is easy.
For completeness, it is included in the Appendix.
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III. HYPERCUBE ALGORITHM

In this Section, a fully-adaptive minimal routing algorithm
for the hypercube will be presented. A routing function will
be built that uses dynamic transitions. So, the QDG associated
with this routing function will have cycles. As said above,
this routing function should be regarded as an extension of an
acyclic routing function (i.e., a routing function whose QDG
is acyclic) so as to guarantee that the routing algorithm is
deadlock-free. Next, this underlying routing function, and how
to extend it to achieve the final one will be described.

The routing function that results from routing over the
hypercube as hung from node 0-:-0 will be used as the
underlying acyclic function. This routing algorithm has been
presented in [22], for implementing virtual barriers on the hy-
percube. A similar idea has been used in [21] for implementing
a minimal adaptive routing algorithm on the hypercube. The
idea on which this hanging algorithm is based is the following.
Each message is routed in two phases: In phase A, it travels
as moving downwards through the network, always moving
towards its destination, as much as possible. So, in this phase,
each message starts heading to node 1---1 (which happens
to be the node that is opposite to node 0---0). So, in phase
A, each message turns the incorrect Os in the address of its
source node into 1°s.

In phase B, every message arrives at its destination by
following an upwards path. In this phase, messages move
towards node 0---0. So, in this phase, each message turns
the incorrect 1's of its source address into 0's. Therefore, all
the required corrections are terminated at the end of this phase.
Consequently, each message arrives at its destination.

The following implementation of this algorithm is such
that the corresponding QDG is acyclic. Each node 7 should
have two queues, g4, (associated with phase A), and gp,,
(associated with phase B), as well as an injection queue 7,
and a delivery queue d,,, as discussed above. During the first
phase, messages move through the g4 queues of the nodes
they visit. When a message switches phases, it has to start
moving through the g queues of the nodes visited. The QDG
resulting from this implementation is acyclic. Therefore, the
algorithm associated with it is deadlock-free.

Fig. 1 shows the QDG of a three-dimensional hypercube.
The queues are labeled by the address of the hypercube node
where they reside. The upper part of the Fig. shows the
queues g4, linked by solid arrows representing the possible
transitions a message can take from one node to a neighboring
node of the hypercube while changing incorrect 0’s into 1’s.
The lower part of the figure shows a similar arrangement for
the ¢ queues. The solid arrows represent node transitions
a message can take while changing incorrect 1’s into 0’s.
Finally, the dashed arrows show the change of phases in
the routing. Notice that these arrows link queues residing in
the same hypercube nodes, and thus these transitions do not
involve communication.

As messages are forced to correct first the incorrect 0’s
into 1I’s and only afterwards the incorrect 1’s into 0’s, con-
gestion around node 1---1 takes place. This technique has
been modified to yield a more flexible algorithm in [21] but
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Fig. 1. A 3-hypercube hung from node 000.

deadlock freedom was ensured at the expense of eliminating
possible paths from the network and thus, the method yields
a partially-adaptive router. Furthermore, the algorithm in [21]
needs 3 queues per node.

Now, a fully adaptive deadlock-free algorithm based on only
two queues will be shown. Dynamic transitions will be added
to the QDG in such a way that messages are allowed to change
incorrect 1’s into 0’s while being in phase A if the message
finds place in the g4 queue of the corresponding node, at a
certain moment. The resulting algorithm is as follows. Each
message is injected, and starts moving through the g4 queues
of the different nodes it visits (phase A) while it has any 0 to
correct into 1. During this phase (moving through g4 queues),
each message can correct any of the incorrect dimensions.
After performing the last O to 1 correction, the message must
enter the gp queue of the corresponding node, and will start
making the 1-to-0 corrections needed undil it arrives at its
destination node.

In Fig. 2, the dynamic transitions have been added to those
shown in Fig. 1. The new transitions, drawn as thick arrows,
connect ¢4 queues in the upper part of the figure. The graph
linking queues g4 has become a hypercube as all transitions
between neighboring nodes are possible by using these queues.
A message will travel adaptively along a minimal path in this
part of the graph (visiting queues q4) as far as it has at least
one 0-to-1 transition to make, i.e., the message still needs
to traverse a solid thin arrow. Once all 0-to-1 transitions are
exhausted, the message must change phases (represented by the
dashed-arrow transition to gg queues) and traverse adaptively
in the lower part of the Fig. (i.e., by using ¢z queues).

As is seen, a message may take on any available path to
progress toward its destination and never revisits any node.
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Fig. 2. A 3-hypercube hung from node 000 with dynamic transitions.

Furthermore, the travelled number of hops is exactly the
Hamming distance between the source and the destination
nodes, and thus, the algorithm is minimal. The adaptivity of
the above algorithm is materialized by having an adequate
flow control. This flow control depends on other features of
the node model as will be discussed in Section VI.

Thus, with the queue policy just outlined, the resulting
routing algorithm is deadlock-free, and allows each message to
wait to correct any of the possible dimensions it has to correct.
This algorithm requires only two queues per node, plus the
injection and delivery queues, and is fully-adaptive minimal.
The formal definition of the routing function is given in the
Appendix.

It is worth remarking that no particular congestion should
be expected near node 1---1 as messages are allowed to
move upwards even if they are in phase A, as a result of
the newly added dynamic transitions. In fact, this algorithm is
the only candidate known for the hypercube that might exhibit
deterministic worst-case time performance O(log V) for static
injection (also called batch routing). As this conjecture has
not been proved or disproved!, performance has been tested
experimentally under different traffic conditions, structured
communication patterns, and models of injection. Simulation
results of this algorithm for hypercubes of up to 16-K nodes are
reported in Section VII. In all cases, it was demonstrated that
no congestion arises in any node of the network (see Section
VII), showing the advantage of the new algorithm over the
conventional oblivious e-cube technique.

! Actually, the complexity of the theoretical answer may be formidable.

(0.2)

(0,2)

(0,1)

(0,0)

— -
Staflc franstfions not changlng phase

s'uﬁs_m':-m“- changing phase
Fig. 3. A 3-mesh hung from node (0, 0).

IV. MESH ALGORITHM

A routing algorithm for the mesh will be presented here
in terms of the ideas of dynamic transitions. The scheme is
minimal and deadlock free. Although the following description
focuses on two-dimensional meshes, the technique can be eas-
ily generalized for k-dimensional meshes, for any arbitrary k.

The key idea is similar to the one presented for the hy-
percube network. First, a partially adaptive minimal algorithm
having a QDG that forms an acyclic graph will be shown.
Second, this technique will be extended to a fully-adaptive
routing by using dynamic transitions.

The partially adaptive algorithm is based on the idea of
“hanging” the mesh from the (0,0) and (n — 1,n — 1) nodes
and consists of two phases. In phase A the messages move
toward their destination by visiting nodes in such a way that
if a message passes from (z,y) to (z’,y’) in one routing step,
then £ < =’ or y < v'. In phase B, messages visit nodes with
lower number instead of those with higher number. In other
words, the mesh is hung from node (0,0) in phase A and
the messages visit nodes with higher level, where the level
of (z,y) is  + y. In phase B, the mesh is hung from node
(n — 1,n — 1) and the nodes are visited in decreasing level
order. Each message starts the routing process in phase A.
After all of the steps that could be taken in phase A have
been completed, the message enters phase B. Certain messages
arrive at their destinations by taking steps only in phase A
(resp. phase B). This scheme can be implemented using two
queues in each node, g4 for phase A messages and ¢p for
phase B messages.

In Fig. 3, a diagram of the QDG for a 3 x 3 mesh is shown.
The explanation of this figure is completely analogous to that
of the hypercube case shown in Fig. 1. The routing scheme is
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deadlock free, because the queue dependency graph is acyclic.
Also, this scheme has some degree of adaptivity, because
messages can use all the descending (resp. ascending) paths
towards their destinations in the first (resp. second) phase.
However, many pairs of communicating nodes can be served
by a unique path as, for example, is the case of a message
travelling from node (0,2) to node (2, 0).
Formally, the routing function® is given by the following:

if z>zorw>y,

. — QA,(w,y)a
Rlige), daw)) = { if z<zandw<y,

4B, (z,y)>

Az y)» if z=2zandy=w,
_ )94, (z41,y), If z >z,
R(QA,(r,y)’ d(z,w)) = qA,Em,y+33, if w>y,
4B,(z,y)» if z<zandw<y,
dia.y); if z=zandy=uw,
R(4B,(z,v), dzow)) = < 4B (2 y-1), if w < y,
4B (z~1,9), Iif z <z

This routing function allows some degree of adaptivity. But
suppose that some message starts from node (z,y) towards
its destination (v,w), and let v < z and w > y. Following
the function above, this message has only one path, namely
correct its second dimension, change phase and correct its first
dimension. So, it has no adaptivity at all.

In the following, this scheme will be extended to a fully
adaptive one, that is still deadlock-free and uses the same
number of queues. This is done by allowing messages that
have not finished their phase A to take phase-B steps (but
still visiting g4 queues). These steps are dynamic transitions,
using the terminology of Section II. The phase change mech-
anism is the same as in the previous scheme. In phase B,
the messages still have to go through ascending paths. The
resulting algorithm is such that every message always has the
chance of taking a static transition, as messages keep visiting
ga queues while taking dynamic transitions.

Fig. 4 shows the dynamic transitions among the ¢4 queues
drawn as solid thick arrows. The explanation of this figure is
identical to that of Fig. 2 shown in Section IIL

Formally, the routing function of the fully-adaptive mesh
routing algorithm is given as follows.

o qa(zy), 1 z>zorw>y,
Ricz,0)s e uy) = { R

4B,(z,9)» zSzandw <y,
A ) if z=zandy=w,
9a,(z+1y)> if z >,
5 = 9ae-1y, T z<z andw>y
R(4a,(2,y) d(zw)) = Taoyt1), if w >y,

da(zy-1), if  z>zand w <y,

9B,(z,y); if z<zandw<y,
5 A(zy), if z=zandy=w,
Rl4B,@w)r ) = { 9B, y-1)>  if w <y,

4B,(z-1,y), If z< .

Using Theorem 2.1 and the fact that the routing function
was built using the methodology of Section II it can be seen
ZIn this section, R(a, b) is the set of all the right members satisfying the

associated condition involving @ and b. The same applies to the definition of
R below.

(0,2)

(0.2)

—
Static transitions not
changing phase

(0,0)

— -
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[—
Dynemic transitions

Fig. 4. A 3-mesh hung from node (0,0) with dynamic transitions.

that the algorithm is deadlock-free. In addition, it can be easily
verified that the routing function is fully-adaptive minimal, and
so, livelock cannot take place.

A fully-adaptive and minimal routing technique for packet-
switching over tori can be achieved using four queues per node
(plus an injection and delivery queue per node) following an
idea similar to the one presented in [34] for worm-hole routing
over tori [39].

V. SHUFFLE-EXCHANGE ALGORITHM

Although the shuffle-exchange network is not a practical
interconnection, finding deadlock-free routers has attracted
some attention [1]. Previous algorithms for deadlock-free
routing are oblivious and use a logarithmic number of queues
(see [1]). The algorithm presented in this section is the first
known in the literature that requires a constant number of
queues and provides some degree of adaptivity. Furthermore,
the algorithm is this section has a worst case of 3 log N routing
hops. This technique requires only 4 queues per node for its
implementation.

First, consider a 2"-node shuffle-exchange network as with-
out the exchange links. Each connected component of the
graph will be called a shuffle cycle. Note that every node
in a shuffle cycle has the same number of 1’s in its binary
address. Then, the level of a shuffle cycle can be defined as
the number of ones in the address of any of its nodes. The
idea of the algorithm is to break the shuffle cycles using the
technique presented in [1] and then, visit the cycles so as to
avoid deadlock.
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Fig. 5. Breaking a cycle in a 3-shuffle-exchange.

_—
Static transitions not
changing phase

— -
Statlc transitions
changing phase

Fig. 6. A 3-shuffle-exchange hung from node 000.

The routing strategy can be defined in two phases. In
the first one, messages can move from one shuffle cycle to
another whenever the new cycle has higher level. In the second
phase, messages visit the shuffle cycles in decreasing order
with respect to their level. The routing algorithm consists of
visiting the dimensions of the address to correct twice, once
in each phase. In each phase, dimensions are visited using the
shuffle links. Consequently, every path has at most 3n steps:
at most 2n shuffle steps and at most n exchange steps (see
Fig. 6).

After going through a shuffle link, every message has
to know which dimension of the destination corresponds to
the current least significant bit so as to know whether the
least significant bit has to be corrected or not. So, each
message must record the number of shuffle links it has already
traversed. This is necessary to compare the least significant
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Fig. 7. A 3-shuffle-exchange hung from node 000 with dynamic transitions.

bit of the current node address with the corresponding bit
of the destination address so as to decide what to do as the
next step. If these bits disagree, that dimension will have to
be corrected at that step or not depending on the phase the
message is in. In the first phase, a dimension will be corrected
if it has to be changed from O to 1. Note that this restriction
implies that the new cycle has higher level. In the second
phase, the reverse direction of the exchange links is used.
Only will a change from 1 to 0 be allowed. So, the level
of the cycles that are visited decreases during the second
phase.

The routing function described above can be implemented
using four queues per node, as it is necessary to break the
shuffle cycles twice: once for each phase, and two queues are
needed to break a shuffle cycle once.

Next, the modification of the routing by adding dynamic
transitions is presented. Basically, the main change introduced
is that a message will be allowed to traverse an exchange
link that corrects the current dimension from 1 to 0 even if
the message is in its first phase. In other words, a message
will be allowed to correct a 1 to O if it happens to find
place to do it during the first phase. If not, that dimension
will have to be changed during the second phase. As a
result of these changes, the resulting routing algorithm is
adaptive, as a given message may take alternative paths as
a consequence of local congestion: e.g., it may or may not
correct a 1 into a 0 during the first phase (see Fig. 7).
A formal description of this routing function can be found
in [40].
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VL. THE MODEL OF THE ROUTING NODE

In this section, a possible node model will be presented. In
Section VI-A, a detailed description of a node to implement
the algorithm presented in Section III for the hypercube will
be given. Sections VI-B and VI-C will be devoted to the nodes
for implementing the algorithms presented in Section IV for
the mesh and in Section V for the shuffle-exchange networks,
respectively.

As described above, a message can move from a queue
to another queue following dynamic or static transitions. If
(q1,92) € A5 U Ay, then go will receive messages from g;.
So, there must exist a physical connection between ¢ and
g2- If g1 and ¢, belong to adjacent nodes, then this physical
connection is the physical link between the two nodes. On the
other hand, if g; and g, belong to the same node, then, there
must exist an internal connection between the two queues so
as to allow internal passage of message within the nodes.

A key idea in the control-flow of the nodes is the introduc-
tion of buffers that serve the links of the networks. This idea
has also been used in many other research works (see, e.g.,
[21]). Buffers allow to decouple the link activities (i.e., sending
and receiving messages) from those of the central queues and
switching. In the case of the algorithms presented in this paper,
buffers are also important because the conditions that allow
messages to take dynamic transitions can be checked locally in
each routing node and thus, no direct communication between
two queues residing in different nodes will be necessary. As
it will be explained below, queues will receive messages from
buffers, as well as from other queues in the same node. Thus,
given a queue g, some fair policy must be implemented so
as to guarantee fair access to g to all the resources that may
want to access g.

Each node will have both an injection and a delivery queue,
as explained above, as well as all the queues used by the
routing algorithm. Each physical link will have associated
with it input and output buffers. In general, there will be
two types of buffers associated with each physical link: those
associated with dynamic transitions and those with static
transitions. Consider link j, incident to nodes n and n’. If
traffic corresponding to dynamic transitions can enter node 7
from node n’ through link j, then link j will have an input
buffer in node n and an output buffer in node n’' associated
with the dynamic transitions. So, if a message has to go
out of node n’ through link j via a dynamic transition, it
will be placed in the output buffer corresponding to dynamic
traffic of link j if this buffer is empty, and it will arrive
at the input buffer in node n that is associated with both
dynamic transitions and link j. If traffic corresponding to static
transitions can enter queue g in node n through link j, then
link j will have an input buffer associated with queue ¢ in
node n and an output buffer associated with queue g in node
n’. So, if some queue ¢’ in node n’ wants to send a message
through link j to queue q via a static transition, then it will
place the message in the output buffer corresponding to link
J and queue q in node n’.

Next, this node model will be illustrated on the intercon-
nection networks and algorithms presented above. A more

dim 3 dim 2 dim 1 dim ©
1 [} 1 0
!
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I
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f f f f
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Fig. 8. Node 0101 of the 4-Hypercube.

detailed description of the activity of a node during routing
can be found in Section VII-A where extensive simulations
are reported.

A. Hypercube Node Design

This section will focus on the hypercube routing technique
presented in Section III.

Every node will have an injection and a delivery queue,
and two other queues, as described in Section III: queue g4
and queue gg. As a result of the routing function, messages
will move from g4 to gg of the node in which they switch
from phase A to phase B. So, g4 must be connected to gp
in each node. According to the routing function, and the node
model given above, each physical link will have either an input
and two output buffers, or two input and one output buffers,
depending on the number of the corresponding node.

Consider a four-dimensional hypercube. Furthermore, con-
sider node 0101 (see Fig. 8). Messages arriving through the
link corresponding to dimension 3 are messages that are
changing that dimension from 1 to 0. So, these messages are
either in phase B, and so, they will enter queue gp through a
static transition, or in phase A, and they will enter queue ¢4
through a dynamic transition. Therefore, this link will have two
input buffers: one associated with queue g (static transitions),
and one associated with queue g4 (dynamic transitions).

Regarding the output buffers associated with the link cor-
responding to dimension 3, notice that messages going out of
node 0101 through that link turn the 0 in the most significant
dimension into a 1. So, this link will only be taken by messages
in phase A (static transitions), i.e., by messages at queue ¢ 4.
Therefore, this link will only have one output buffer, and it
will be associated with queue g4 (static transitions).

Regarding the link corresponding to dimension 2, this link
will be taken by messages changing a 0 into 1 in that



PIFARRE et al.: FULLY ADAPTIVE MINIMAL DEADLOCK-FREE PACKET ROUTING: ALGORITHMS AND SIMULATIONS 255

(x+1.y) (x=1.y) (x+1.y) (xy-1)

I I i f
@ %‘ET—
P

Queue
A

Queue
B

F—

Injection
Queue

l

Delivery
Queue

—

| | | i

(x+1.y) (x=1.y) (xy+1) (y=~1)

Fig. 9. The node for the Mesh.

dimension. So, this physical link will have one input buffer
and two output buffers, following a reasoning similar to the
one just above.

Each physical link will thus have associated three buffers:
one input buffer, one output buffer and the third one will be
either an input or an output one, depending on the address
of the corresponding node. The reader may assume that a
practical design would incorporate the same number of input
and output buffers per physical link making all nodes in the
network identical.

B. Mesh Node Design

In this section, the implementation of the routing function
presented in Section IV will be presented. Only three buffers
per physical link, and two queues, ¢4 and g, per node are
needed. As before, each node must have an injection and a
delivery queue.

Consider a generic node (z, y) of a (k x k)-mesh where 0 <
z,y < k — 1 (see Fig. 9). Consider links ((z,y), (z — 1,7)),
and ((z,y),(z,y — 1)). Each of these links has only one
associated input buffer in node (z,y), because (z,y) can
only receive messages in their first phase, and taking static
transitions, through these links. Therefore, these messages can
only enter queue g4. On the other hand, each of these links
has two associated output buffers in (z,y). One of these
buffers holds those messages that are to be sent through
a dynamic transition during the first phase. So, this. buffer
receives messages only from g4. The other buffer holds those
messages that take static transitions during the second phase.
So, this buffer receives messages only from gB-

Now, consider links ((z,y),(z + 1,y)) and ((z,y), (z,y +
1)). Each of these links has associated with it only one output
buffer in (z,y), connected to ¢4, that holds messages using

3For those nodes which are on an “edge” of the mesh, their design is
identical but some buffers are never used.

static transitions during the first phase. On the other hand,
cach of these links has two associated input buffers in (z,y).
One of these buffers is connected to g4, and it is used by
messages taking dynamic transitions during their first phase.
The other one is connected to gp, and holds those messages
that take static transitions during the second phase. As each
buffer is connected to only one queue, ¢4 has to be connected
to ¢gp in order to aliow the messages to switch from phase
A to phase B.

C. Shuffle-Exchange Node Design

This section will focus on how to implement the algorithm
presented in Section V for the shuffle exchange network. The
node model that will be described varies from node to node,
depending on whether the number of the node is odd or even.

Each node has four queues, plus the injection and delivery
queues. Each of these queues has an input buffer and an output
buffer associated with the shuffle link. Queues ¢; and g2 and
their corresponding buffers are used during the first phase of
the algorithm. The other two queues, and their corresponding
buffers are used during the second phase of the algorithm.
In addition, each node has three buffers associated with the
exchange link. If the node number is odd, there is one input
buffer associated with the exchange link, and it is connected
to queues g; and ¢z, because messages arriving from this link
are changing the least significant bit from 0 to 1 (the node
is odd), and so, these messages are taking a static transition
during phase A. There are two output buffers associated with
the exchange link. One of them is used by phase A messages
taking a dynamic transition, and the other one is used by
phase B messages taking a static transition. If the node is
even, thére are two input buffers associated with the exchange
link: one corresponding to phase A messages taking a dynamic
transition, connected to queues q; and go, and the other one,
corresponding to phase B messages taking a static transition,
connected to queues g3 and ¢4. This is so because messages
arriving from this link are changing the least significant bit
from 1 to O (the node is even). There is only one output buffer
associated with the e)ichange link in this case. This buffer is
used by phase A messages taking a static transition.

Fig. 10 shows a generic node model that allows the imple-
mentation of both the even and the odd case.

VII. SIMULATION RESULTS

Mathematical analyses yielding bounds for the behavior of
routing techniques have received a great deal of attention.
Oblivious routing schemes have been analyzed for several
networks and probabilistic bounds on the performance of
different algorithms with static injection have been shown
[41], [6], [42], [43], [2], [3], [26]. Even when mathematical
bounds can be estimated, the practical performance of routing
algorithms is important. To this end, simulation results for
static and dynamic injection models have been reported by
several authors [41], [14], [44], [45].

On the other hand, deterministic bounds have been proved
for sorting-based algorithms [46], [47] and for adaptive al-
gorithms based on the multibutterfly construction [4], [5]. In
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general, the problem of finding mathematical bounds on the
performance of adaptive routing for general networks seems
a challenging problem.

For dynamic message injection, several attempts to model
and measure the performance of interconnection networks
are known [13], [48]-[50]. Dynamic injection presents a
paramount complexity to the mathematical analysis of routing
techniques and in many cases, simulations of the involved
networks have been the only alternative to show the per-
formance achieved under different injection loads, topology
of interconnection, queue size, and arbitration of conflicting
resources.

The main goal of this Section is to report a number of
simulation results on the routing techniques for the hypercube
and the mesh presented in Sections IIT and IV. The simulation
work is aimed at showing the practicality of the new routing
ideas for different communication patterns and models of
injection. Also, some comparisons are made with other routing
algorithms.

According to the node models described in Sections VI-A
and VI-B, each node will have both an injection and a
delivery queue, as well as the two queues used by the routing
algorithm. The injection queue will have size 1, modeling
the fact that each node can generate at most one message
in each cycle and that no node will be allowed to inject a
new message until all the previously injected messages have
begun their route. As will be described later, the delivery
queue is not needed. The two central queues will have the
(arbitrary) size of 5 messages each. So, the queue size will
be independent of the network size.

Throughout the rest of this paper, the fully-adaptive minimal
routing techniques described in Sections ITI and IV will be
referred to as FULL. The routing algorithms that result from
removing all the dynamic transitions from FULL will be called
ADAPT. These routing algorithms are still adaptive and mini-
mal but not fully-adaptive as some possible minimal paths are
excluded. The routing algorithm that results from choosing one
only among the static transitions in a deterministic way will be
called OBLIVIOUS. This last technique has no adaptivity at all.

Sections VII-B and VII-C present the simulation results for
the hypercube and the mesh, respectively.

A. Network Activity

This Section describes the activity of the network used in
the simulations reported in Sections VII-B and VII-C. Because
latency will be measured in terms of routing cycles, a definition
of the amount of work involved in a cycle is needed.

Every routing cycle is divided into two parts, a node cycle
and a link cycle. Dufing the node cycle, the queues send their
messages to a suitable output buffer. The queues are scanned
in FIFO order, and all the messages that find a useful output
buffer empty are allowed to move there. Next, each node
scans all of its input buffers and its injection buffer and moves
the messages to the corresponding queue, if possible. During
this scanning, messages addressed to that node are consumed
and removed from the network. In order to avoid starvation,
the input and injection buffers of a node are arranged in a
cycle, and they are scanned cyclically, beginning with the first
buffer that has not found an empty slot in a central queue for
its message in the previous cycle. Once this step has been
performed, the node is allowed to inject a message in its
injection buffer, provided that this buffer is empty and the
node has a message to inject. This step ends the node cycle.
Note that every message needs at least two routing cycles to
pass through a node.

In the link cycle, each link* with a message in its associated
output buffer sends it to the corresponding input buffer,
provided that this buffer is empty. Note that some links have
two output buffers associated, but only one message can pass
through the link in a single cycle. So, it is necessary to manage
the link in a fair way, to avoid that any message starves in an
output buffer.

Injection Model: There are two injection models: the static
injection model, in which every node has a fixed number of
messages to inject, and the dynamic injection model, in which
each node wants to inject at arbitrary moments. In the first
case, the routing process begins when each node injects its
first message, and ends when the last message arrives at its
destination. Some interesting parameters to measure for this
injection model are Ly, the maximum latency, and L.y,
the average latency.

The dynamic injection model presents a number of phenom-
ena that do not appear in the static case. Dynamic injection
leads to infinite processes. So, in order to observe the inter-
esting phenomena, the routing process has to be truncated at
some point. Another problem is that if the average number of
packets that a node tries to inject per cycle, J, is too large, the
system can become saturated, i.¢., Ly,,x grows without bound.
So, the maximum A that maintains the system unsaturated is
a key parameter to measure.

In addition, in the dynamic model it is important to measure
the network throughput 7, which is defined as the average
number of messages that are injected in a cycle per node.
Some simple bounds are known for 7. If N is the number
of nodes of the network, B the bisection of the network [26]
[51] and ¢ the proportion of messages that cross the bisection,

“Here, each bidirectional link is considered as two links, one in each
direction.
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then

Nrc
2

< B. (1)

This formula means that, in every cycle, the number of
messages injected in the network in that cycle that are going
to cross the bisection should be less than the bisection in order
to avoid saturation. So

T < m = Tmax- )
This bound is used to express the obtained throughput as a
percentage of this theoretical maximum. The ‘parameter A will
be expressed in the same way.
Communication Patterns and Traffic Characteristics: The
performance of networks should be measured for different
patterns of communication and traffic characteristics. Two
communication patterns will be used.

* Random Routing: Every message chooses its destination
randomly. This models the unstructured pattern of com-
munication that is present in many applications.

* Fixed Permutations: In this case, a permutation o is fixed
in advance. A node p injects all of its messages with
destination ¢ (p). In the static injection model, this pattern
is useful when a large structure is embedded in a smaller
network (e.g., an m X m matrix in an n.xn mesh, m > n).
Dynamic injection mimics the same kind of pattern when
the number of messages per node is much greater than
the number of nodes, so the injection can be thought of
as continuous. In particular, the following permutations
were simulated.

1) Transpose: In the mesh, node (z,y) will send
messages to node (y,z). In the hypercube, the
binary address of the node will be split into halves,
and these halves will be swapped (if the dimension
of the hypercube is odd, then the middle bit will
remain unchanged).

2)  Complement: In the hypercube, the complement
is defined by complementing all the bits in the
binary address of the node.

3) Leveled Permutation: As defined in Sections III
and IV, each node has an associated level. So, a
leveled permutation is a random permutation in
which every node sends messages to some node
in the same level. :

4)  Bit Reversal: In the hypercube, this permutation is
obtained by reversing the bit-string of the binary
address of the node and in the n x n-mesh, by
concatenating the [logn] bits of each coordinate
and then reversing the resulting string.

Some of these permutations are known to create con-
gestion in the hypercube or in the mesh if oblivious
routing algorithms are used. For example, the e-cube al-
gorithm suffers from severe congestion for traffic patterns
such as the Tranpose. Bit reversal is known to produce
congestions for the mesh and torus [25] for the z — y
algorithm.

TABLE 1
RANDOM ROUTING, 1 PACKET

n N Lavg Linax
7 128 8.28 13
8 256 9.37 15
9 512 9.94 17
10 1024 10.96 19
11 2048 12.09 21
12 4096 13.08 25
13 8192 14.03 27
14 16384 15.04 29

TABLE 11

COMPLEMENT, 1 PACKET

n N Lavg Lmax
7 128 15 15
8 256 17 17
9 512 19 19
10 1024 21 21
11 2048 23 23
12 4096 25 25
13 8192 27 27
14 16384 29 29

TABLE 11

TRANSPOSE, 1 PACKET

n N Lavg Lmax
7 128 7.03 13
8 256 9.03 17
9 512 9.03 17
10 1024 11.09 21
11 2048 11.09 21
12 4096 13.13 25
13 8192 13.13 25
14 16384 15.23 29

TABLE IV

LEVELED PERMUTATION, 1 PACKET

n N Lavg Lmax
7 128 7.43 13
8 256 8.04 13
9 512 9.24 17
10 1024 10.10 21
11 2048 10.98 21
12 4096 12.06 25
13 8192 13.07 25
14 16384 14.03 29

B. The Simulations for the Hypercube

In this section, simulation results for the routing algorithm
proposed in Section III will be shown for the hypercube.
Recalling (2), for the n-dimensional hypercube, B = 2" /2=
N/2. So,

1

Tmax =

This means that 7,,,, does not depend on the size of the
network. Note that since ¢ is a proportionality factor, ¢ < 1,
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TABLE V
RANDOM ROUTING, . PACKETS
n N Lavg Lmax
7 128 8.10 15
8 256 9.25 17
9 512 10.29 20
10 1024 11.33 22
11 2048 12.52 25
12 4096 13.76 27
13 8192 15.02 30
14 16384 16.54 32
TABLE VI
COMPLEMENT, 1 PACKETS
n N Lavg Lmax
7 128 15.00 15
8 256 17.00 17
9 512 19.00 19
10 1024 21.00 21
11 2048 24.99 30
12 4096 28.61 35
13 8192 32.74 39
14 16384 36.23 44
TABLE VII
TRANSPOSE, n PACKETS -
n N Lavg Lmax
7 128 7.07 15
8 256 9.23 19
9 512 9.13 21
10 1024 12.27 26
11 2048 12.40 32
12 4096 16.01 37
13 8192 16.22 36
14 16384 20.49 43
TABLE VIII
LEVELED PERMUTATION, n PACKETS
n N Lavg Lmax
7 128 7.77 15
8 256 8.52 17
9 512 9.77 19
10 1024 10.78 23
11 2048 11.77 25
12 4096 13.17 28
13 8192 14.60 32
14 16384 16.03 37

and then 7,5 > 1. Also, because of the node model, at most
one packet can be injected in each cycle. So, for the dynamic
injection case, A was fixed to 1.

In the tables, NV is the number of nodes of the hypercube, n
is the number of dimensions of the hypercube. Also, Layg is
the average latency of the messages, and L,y is the maximum
latency any packet experienced, as before.

Tables I-IV show the results for static injection when
each node injects one packet. Tables V-VIII show the results
for static injection when each node injects n packets. This

TABLE IX
RANDOM ROUTING, A = 1

n N Lavg Lmax T
7 128 8.57 21 98
8 256 9.67 23 97
9 512 10.82 26 96
10 1024 12.10 30 93
11 2048 13.47 35 89
12 4096 15.01 37 85
13 8192 16.58 44 81
14 16384 18.30 49 76

TABLE X

COMPLEMENT, A = 1

n N Lavg . Lmax T
7 128 24.11 33 75
8 256 24.11 37 68
9 512 28.49 43 61
10 1024 33.32 52 55
11 2048 39.29 58 49
12 4096 45.60 68 45
13 8192 52.87 79 41
14 16384 60.70 90 38

TABLE XI

TRANSPOSE, A = 1

n N Lavg Lmax T
7 128 7.02 14 - 100
8 256 10.33 25 94
9 512 10.33 25 94
10 1024 14.67 36 83
11 2048 14.67 36 83
12 4096 15.78 49 73
13 8192 20.31 54 71
14 16384 27.33 66 61

TABLE XII

LEVELED PERMUTATION, A = 1

n N Lavg Lmax T
7 128 9.11 kY) 97
8 256 9.75 34 97
9 512 11.28 37 94
10 1024 1247 43 91
11 2048 13.50 48 89
12 4096 15.17 56 84
13 8192 16.91 53 80
14 16384 18.46 57 75

number of packets has been tried because there exists a good
theoretical bound [6] for this pattern of communication using
random routing. These tables show that the fully-adaptive
algorithm does not exhibit the typical congestion encountered
in oblivious routers such as the e-cube. e-cube is well-known to
have congestion for some structured communication ﬁattems
such as Transpose.

Tables IX-XII show the results for dynamic injection. It
should be noted that no saturation arises in the hyf)ercube,
but 7 degrades. This is due to the fixed size of the queues.

.
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Under all traffic conditions, the algorithm performs with no
congestion thus demonstrating the importance of adaptivity in
hypercube routing.

C. The Simulations for the Mesh

In this section, the simulation results for the algorithm
described in Section IV for the mesh will be presented. In
this topology, the algorithms FULL, ADAPT, and OBLIVIOUS
will be compared. It is important to notice that OBLIVIOUS
is a variation of the e-cube algorithm for the mesh topology.
Only the results for dynamic injection will be considered here.
Recalling (2), for an n x n-mesh, B = n, N = n2, 50 Trax =
2/(nc). This means that 7., decreases very rapidly with n.
The simulations focused on only one network size, namely the
32 x 32 = 1K-mesh, and tried to show the performance of the
algorithms FULL, ADAPT, and OBLIVIOUS for different \’s.

One modification was made to the FULL algorithm pre-
sented above for the mesh. Since the links are a scarce resource
in the mesh, the excessive use of dynamic transitions could
spoil all the routing because a message trying to get through
one of these transitions can delay a message trying to make
a static transition through the same physical link. Hence, it
was decided that a message can be moved to an output buffer
associated with a dynamic move only if no message is waiting
in the static buffer associated with the same link.

For all the communication patterns simulated, there are plots
for Lavg, Limax, and T as a function of A. A and 7 are expressed
as a percentage of Tp.x. Simulations were performed for
injection rates going from 10% of Tyay to its 80%, in intervals
of 5%. After the network saturates, the values in the plots
shown below have no meaning at all: they are finite only
because the simulation is stopped.

In the following plots, the FULL line stands for the FULL
algorithm, the more densely dashed line stands for the ADAPT
algorithm and the less dense one for the OBLIVIOUS algo-
rithm.

The results are the following.

1) Random Routing: In this case, ¢ = 1/2, s0 Tmayx =
4/n = 0.125. Fig. 11 shows that the algorithm FULL
was able to accept injection up to the 75% of Tmax
before saturation, while both ADAPT and OBLIVIOUS
could only accept up to the 50%. Before saturating, Lyg
and Ly,ax were slightly better for the FULL algorithm
than for the other two. Fig. 11 also shows that for
FULL the maximum 7 is reached when A = 75%7Tmax,
T = 3/n = 0.09375.

2) Transpose: Here, c = 1/2 again, and Tyax is equal to
that of Random Routing. For transposing, ADAPT and
OBLIVIOUS are the same algorithm. That is because in
ADAPT a message going from (z,y) to (z/,%') can use
the adaptivity of ADAPT only if (z < =’ and y < 3')
or (z > 2’ and y > y’). But when going from (z,y)
to (y,z), none of these relations can be true, so there
is no adaptivity at all and ADAPT should behave equal
to OBLIVIOUS.

Fig. 12 shows that the three algorithms behave very
similarly for A less than 25% of 7y,.x. OBLIVIOUS and
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Fig. 11. Results for Random Routing.

ADAPT saturate for any A higher than 25% of 7pax,
while FULL tolerates higher loads. The FULL algorithm
sustains up to 35% of the maximum throughput, (7 =
1.48/n = 0.04625) before the maximum latency begins
to grow, while OBLIVIOUS (and ADAPT) up to 25%,
with higher latency than that displayed by FULL. Also,
maximum latency grows in a smoother way in FULL
than in OBLIVIOUS.
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Fig. 12. Results for Transpose.

3) Bit Reversal: In this case, ¢ = 1/2 again. As shown
in Fig. 13, the maximum latency of the messages in
FULL starts to grow quickly for A higher than 30% of
the maximum throughput, while the maximum latency
of the messages in ADAPT and OBLIVIOUS starts to
increase fast for A higher than 25% and 20% of Tmax»
respectively. Again, FULL suffers less than the other
two algorithms from the applied loads and it degrades
more gracefully.

Avg. Latency ve Lambda (%)

100
9% =
/
80
1] 4
7 LS
/S
60 2 |7l
/ A
2 A/
50 >
/ / (
L
« A4 e
o’
v 41'44/
30 10 20 30 I
Max. Latency vs Lambda (8}
2000 -
- J -
1750 7 — 2
oo
1500
/ /
1250 4 f
/ )
[
1000 ] /,/
750 f ‘,'/
500 [ ,"
! 7
250 — 7
10 20 30 0
Throughput (%) vs Lambda (%)
40 A
30 =
< T
20
10
10 20 30 40

Fig. 13. Results for Bit-Reversal.

As it is seen, FULL outperforms OBLIVIOUS under
all traffic conditions and for all communication patterns.

VIII. CONCLUSION
In this paper, new algorithms for routing in hypercubes,

two-dimensional meshes, and shuffle-exchanges are presented.
These techniques have several appealing properties: they are
deadlock and livelock free, fully-adaptive minimal (except for



PIFARRE et al.: FULLY ADAPTIVE MINIMAL DEADLOCK-FREE PACKET ROUTING: ALGORITHMS AND SIMULATIONS 261

the one for the shuffle-exchange), and a moderate amount of
resources are necessary for their implementation.

The hypercube algorithm accomplishes fully-adaptive min-
imality while preserving deadlock and livelock freedom by
using only two queues per routing node. This result improves
on previous work in terms of the number of queues and the
number of minimal paths available for routing. The mesh
algorithm also provides the best known technique in terms
of number of queues with the given properties of the routing
algorithm. The algorithm for the shuffle-exchange is minimal
in the sense that the number of exchange connections used
for any given source-destination pair is the Hamming distance
between these nodes. Furthermore, this technique is the first
known in the literature to use a small (and independent of N)
number of buffers and central queues in the design of the node.

An important tool on which the proposed methods are built
is that of “hanging” an interconnection network. This idea
has also been used in [21]-[24]. In this paper, it has been
shown that this methodology is very useful for creating and
visualizing routing functions. Furthermore, by hanging the
underlying graphs, it is possible to generate queue utilization
strategies that lead to dynamic deadlock-free conditions.

This paper showed the simulation of the performance of
fully-adaptive minimal algorithms for deadlock- and livelock-
free routing on hypercubes and two-dimensional meshes. Spe-
cial attention was given to the mesh because of the potential
practicality of this interconnection over the hypercube. Static
and dynamic injection models have been tried. Several com-
munication patterns have been used: random, complement, bit-
reversal, transpose, and leveled permutations. These last four
patterns are useful to test the ability of the routing algorithms
to cope with the congestion arising in oblivious e-cube-type
techniques. Furthermore, different loads have been applied to
the routing techniques and critical network parameters such as
average latency, maximum latency, and throughput have been
measured.

The desirable properties that these routing techniques have
in terms of deadlock-freedom and simplicity of the node are
complemented with good routing performances, as shown by
the simulations in Section VII. In particular, the fully-adaptive
algorithms shown in this paper do not exhibit any congestion
for any type of traffic, thus surpassing oblivious counterparts
such as the e-cube or the z — y algorithms.

Three algorithms called FULL, ADAPT, and OBLIVIOUS
were tried on the two-dimensional 1K-node mesh. It has
been shown that the routing algorithm FULL for the mesh
has better throughput than OBLIVIOUS and ADAPT. These
conclusions hold for the three types of communication patterns

tried. An important conclusion from the results obtained
for the fixed-permutation patterns is that network saturation
occurs at substantially smaller values of applied load. For
example, FULL accepts up to 30% of the maximum theoretical
load for bit-reversal permutations while the same routing
algorithm yields up to 75% of the maximum theoretical load
for random routing. The simulations clearly show that for
congesting communication patterns, as is the case for fixed-
permutations, the FULL routing algorithm outperforms the
others by sustaining a higher throughput.

In the hypercube, the results were also extremely satisfac-
tory, for both static and dynamic injection. Random routing
and three fixed-permutation patterns were tried. Oblivious
routing techniques such as the e-cube algorithm are known to
generate congestion when used on highly structured patterns
such as routing-to-the-transpose. Therefore, only the FULL
routing algorithm has been used in both static and dynamic
injection models. No saturation took place in the hypercubes
of up to 16K nodes for maximum loads, as a consequence of
the rich connectivity of the network and the good performance
of FULL.

Future work will be aimed at defining a much more detailed
routing node model and flow control. Practical implementa-
tions of the principles shown in this paper are based on a
switching mechanism that connects input to output buffers
directly (i.e., not all switching is accomplished through the
queues). With direct switching between input and output
(both dynamic and static) buffers, only one queue per routing
node is needed for increased throughput [39]. In addition,
practical considerations call for a careful choice of the network
topology. An attractive interconnection is the two-dimensional
torus network. The torus offers an increased bandwidth at a
relatively small expense measured in terms of the extra number
of wires in the network when compared to the mesh. In [39],
a fully-adaptive minimal deadlock- and livelock-free routing
was devised for the 2-D torus. Excellent performance results
were obtained with a similar approach to the one presented
in this paper adapted to a more detailed node design for
cut-through implementations [39].

APPENDIX

Theorem 2.1 [24]: The routing scheme proposed above
over D, with the extended routing function R, is deadlock
free.

Proof: Let FDQ(q) be the distance (in the underlying
DAG D) from g to the farthest delivery queue reachable from ¢

Rl d) = { {12
{qa,et(n) = me # me},
QB,n}u

{dm},

'ﬁ,(qB,n7dm) = {}Zif:(n) TNy # mt},

R(qA,na dm) =

if3j:s; #m; and s; = 0,

otherwise,

if 3j:n; #m;and n; =0,
ifn#mand Vj: (n; #m; =n;=1),

if n=m,
if n #m,
if n = m.



262

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 3, MARCH 1994

through the underlying DAG D. It will be proved by induction

on FDQ(q) that

no deadlock can arise,

Basis: FDQ(q) = 0. Then, q must be a delivery queue.
So, ¢ is not deadlocked because it is not waiting for
anything,

Inductive step: Suppose now that FDQ(q) = t and for
all ¢ < ¢ the inductive hypothesis holds. Note that if
(¢,9') € A,, then FDQ(q) > FDQ(q') because D is a
DAG. So, the set {¢ €0Q: (¢.¢") € A,} (which is not
empty, because of the fact that g is not a delivery queue)
cannot have members ip deadlock, because of the IH. So,
as at least one successor of ¢ in D belongs to 7€(q, d) G.e.,
R(q,d) #0), d being the destination of any message that
can enter g, g will route any message in a finite amount
of time. Thus, no deadlock can arise involving g.

The Hypercube Routing Function: In the following, £(k)
is the number that hag the same binary representation as k
but for the ith digit, k. Formally, the routing function is ag
shown at the bottom of this page.
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