
Adaptive Deadlock- and Livelock-Free Routing

in Torus Networks

Pablo E. Berman *t Luis Gravano ‘~

With All

Gustavo

Minimal Paths

D. Pifarr6 tt$

e-mail: gravano@buevm2. vnet .ibm.com e-mail: pifarre@buevm2. vnet .ibm.com

Jorge L. (1. Sanz ‘t

e-mail: sanz@ibm.com

Abstract

This paper consists of two parts. In the first part, a new

algorithm for deadlock- and livelock-free routing for the

n-dimensional torus network is presented. This algo-

rithm, called *-Channels, is fully-adaptive minimal, i.e.

all paths with a minimal number of hops from source to

destination are available for routing. *- (7hannels works

for messages of unknown size, thus yielding new rout-

ing techniques for both packet-switched and worm-hole

models. *-Channels differs radically from the packet-

switched fully-adaptive minimal methods presented in

SPAA ’91 by Pifarr6, Gravano, Felperin, and Sanz

[PGFS91]. In particular, the packet-based techniques in

[PGFS91] do not work for worm-hole routing as dead-

lock situations can be constructed.

*-Channels requires only five virtual channels per

bidirectional link of the n-dimensional torus. In fact,

only three virtual channels are necessary for the links
in one of the dimensions, thus yielding a total of

10(n – 1) + 6 buffers per node.

* ESLAI, Escuela Superior Latino Americana de Informiitica, CC

3193,(1000) Buenos Aires, Argentina.

t Computer Research and Advanced Applications Group, IBM

Argentina, Ing. E. Butty 275, (1300) Buenos Aires, Argentina.

$ Computer Science Dept., IBM Alrnaden Research Center, San

Jos6, California.

~ Departamento de Computaci6n, Fat. de Ciencias Exact= Y

Naturales, Univeraidad de Buenos Aires, Argentina.

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct

commercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and notice is given that copying is by

permission of the Association for Computing Machinery. To copy other-

wise, or to republish, requires a fee and/or specific permission.

This bound gives the smallest number of chan-

nels known in the literature for fully-adaptive mini-

mal worm-hole routing. Previous algorithms for fully-

adaptive worm-hole routing in n-dimensional tori re-

quire more than 0(2”- l) virtual channels per bidirec-

tional link (see [LH91]). In addition, these results also

yield the smallest number of buffers known in the litera-

ture for packet-switched fully-adaptive minimal routing.

In the second part of this paper, a comparison of

four worm-hole techniques in the 2-dimensional torus is

shown in terms of activity in the routing nodes ad ex-

perimental performance evaluation. Simulation results

on the performance of the four worm-hole algorithms are

shown for dynamic injection models. Meaningful com-

parisons required the equalization of the number of vir-

tual channels for all of the techniques, and this is accom-

plished by resorting to the concept of lane-channels in-

troduced in [Da190]. The performance of these schemes

is measured for different traffic models: random and

bit-reversal. Two worm lengths are tried.

1 Introduction.

Message routing in large interconnection networks has

att ratted a great deal of interest in recent years. Dif-

ferent underlying machine models and hardware archi-

tectures have been used and proposed [DS87], [RBJ88,

Ran85], [Upf89, LM89], [Va188], [KS90], [NS87], [Hi185],

[cEDK91], [Bcc+88], [LLK+91].

A desirable feature of routing algorithms is adaptiv-

it y, i.e., the ability of messages to use alternative paths

toward their destinations according to trafhc congestion

in the nodes of the network. The amount of hardware

resources grow with the degree of adaptivity desired,
and resources may become critical if deadlock and live-

SPAA ’92- 61921CA

@1992 ACM 0-89791-484-81921000610003 $1.50 3

lock freedom in a deterministic sense are also needed,

The recent work reported in [KS90] shows an adaptive

deadlock-free routing algorithm dubbed Chaos. The

method has a non-zero probability y that a message will

not reach its destination after t routing steps, for an ar-

bitrary t. However, this probability tends to zero as

t approaches infinity. Furthermore, the technique in

[KS90] and [BS91] applies only to packet and virtual

cut-t hrough routing and paths followed by the messages

are not necessarily minimal.

Restricting the set of available paths in the network

to a subset suitably chosen is a common way to reduce

the hardware resources necessary for deadlock-free rout-

ing. When stringent restrictions are applied, oblivious

algorithms or methods with partial adaptivity will be

obtained. Oblivious algorithms have been studied thor-

oughly for meshes and tori [Lei90]. In [Lei90], the per-

formance of these packet routing algorithms for meshes

has been analyzed, for both static and dynamic injection

models, and for both packet switching and virtual cut-

through techniques. Recently, some mathematical anal-

yses have been reported on the performance of worm-

hole oblivious algorithms [RU91]. On the other hand, if

few restrictions are imposed on the set of possible routes

generated by a routing function, impractical algorithms

may result.

A fully-adaptive minzmal routing scheme is one in

which all possible minimal paths between a source and

a destination are of potential use at the time messages

are injected into the network. Paths followed by the

messages depend on the traffic congestion found in the

nodes of the network. Full-adaptivity is a feature from

which one can hope to obtain the best possible per-

formance if no source of randomization is used. Full-

adaptivity has been used by Upfal in [Upf89] to pro-

duce a deterministic optimal algorithm for routing in

the multibutterfly.

In [PGFS91], fully-adaptive algorithms for the hyper-

cube and mesh have been presented for packet-switching

routing. These algorithms are deadlock-free, and can be

implemented using only two queues per node. Recently,

the principles shown in [PGFS91] have been used for the

same routing model in n-dimensional torus networks by
using three queues per node [CG92a], and this result is

optimal for the given model and network [CG92b]. Un-

fortunately, the methodology of [PGFS91] and [CG92a]

does not apply to worm-hole routing.

On the other hand, new algorithms for deadlock-

free worm-hole routing have been reported in [LH91],

[DA90], [Da190], [GPFS91], and [Dua91]. The algo-
rithms in [LH91] are for k-ary n-dimensional cubes and

n-dimensional mesh- connect ed networks. These tech-

niques need a number of virtual channels per link that

increases exponentially with n: in a k-ary n-cube 2n - 1

virtual networks are needed, each with n + 1 copies of

the network. In [DA90], a method for deadlock-free

adaptive routing in k-ary n-dimensional cubes is pre-

sented, which can be used for worm-hole routing. In

[Da190], a technique based on the use of multiple inde

pendent lanes associated with each physical link in a

routing node is shown. Given a fixed amount of stor-

age space allocated to each physical channel, it is shown

that breaking the storage into several buffers is a conve-

nient met hodology for improving network performance.

In [GPFS91], fully-adaptive worm-hole algorithms were

introduced for a variety of networks, including the hy-

percube. Later, the same fully-adaptive worm-hole al-

gorithm for the hypercube was independently presented

in [Dua91].

In Section 3, a new algorithm for routing on toroidal

networks is presented [GPFS91]. This technique, called

*-Channels, is fully-adaptive, deadlock- and livelock-

free, and requires a very moderate amount of resources

in the routing nodes. The new method is presented for

n-dimensional tori. *- C’hannels works for messages of

unknown size, thus rendering new rout ing techniques

for both packet-switched and worm-hole models. It re-

quires 5 virtual channels per bidirectional link of an

n-dimensional torus. This algorithm is the first one

with these characteristics, i.e., fully-adaptive minimal

and deterministically livelock- and deadlock-free, t hat

requires a number of virtual channels per link that does

not depend on nor the size of the network. Actually, the

number of virtual channels can be made equal to 3 for

one of the dimensions. Thus, the total number of virtual

channels per node is 10(n – 1) + 6 for an n-dimensional

torus. This count compares very favorably with that of

the techniques presented in [LH91], aa explained above.

An instance of *- Channe/s yields a fully-adaptive min-

imal deadlock-free worm-hole routing algorithm for the

bidimensional torus using 3 virtual channels per bidi-

rectional link associated with the X dimension, and 5

virtual channels per bidirectional link associated with

the Y dimension.

In addition, *-Channels also yields the smallest num-
ber of buffers known in the literature for packet-

switched fully-adaptive minimal routing. For exam-
ple, a total of 16 buffers are needed in the node of a

2-dimensional torus, and 26 buffers in a 3-dimensional

torus. Thus, *-Channels offers an appealing approach

to practical implementations of packet-switched low-

dimensional toroidal networks because of its reduced

storage requirement, ensuring freedom from deadlock

and livelock deterministically without any source of ran-

domization, and yet allowing all minimal paths for rout-

ing. Another remarkable characteristic of *-Channels

for the packet model is that no central queue is neces-

sary to guarantee any of its properties. These properties

make *-Channels a practical alternative to chaotic rout-

ing [BS9 1], [KS91] for 2-dimensional and 3-dimensional

adaptive torus networks.

Section 4 presents a comparison of worm-hole algo-

rithms for the 2-dimensional torus. Four algorithms

will be analyzed and compared: *-Channels, J-Classes,

Linder-Harden’s, and Oblivious. Algorithm *-Channels

will be presented in Section 3, as mentioned above. 4-

Classes is a fully-adaptive minimal routing algorithm for

the 2-dimensional torus that was described in [FGPS91].

Although 4-Classes uses more virtual channels than *-

Channels, it allows a node model design with potentially

more parallel logic than that in *-Channels. Linder-

Harden’s algorithm [LH91], is fully-adaptive minimal,

but uses more virtual channels than *- Channels and 4-
Classes. Oblivious [DS87], is oblivious and non-minima[,

i.e. the path followed by a message is completely deter-

mined by its source and destination, and the number of

hops of this path may be greater than that of a minimal

path. A node model for each of the algorithms and node

activity are presented. For a fair comparison of the four

algorithms, the number of virtual channels used by the

different techniques is equalized.

2 Definitions.

Definition 2.1 An n-dimensional k-torus (sometimes

referred to as k-ay n-cube) is a network with kn nodes.

The n dimensions of the n-dimensional torus will be

referred to as Xn-l, Xo. Each node of the torus

will be denoted by a tuple (x~-l, Xo), with 0 ~

xi < k for all O < i < n, and will be connected

to nodes (x~_I, ‘i+l,(xi + 1, ‘nod ‘, Xi-l, ~. ,xo)I
and(xn-l, ..., Zi+l, (~i —l) mod k,~i-lj . . . ,Zo), for all

O~i <n.

The link connecting nodes (Xn-l, k – 1, ..., *0)

and (Zn-l, ..., 0,..., izo) along dimension Xi will be

called a wrap-around link along dimension Xi. The

directed link ((Zn_l, Xa. ZO), (Zn,l,n-l, ... (Z~ +
1) mod k, Zo)) corresponds to dimension Xi, and

will be referred to as having orientation X,+. Anal-

ogously, hnk ((zn–l, . . . ,~ij . . ., Zl)), (zn-,,..., (z, -

l)mod k,..., Zo)), corresponding to dimension Xi, will

be referred to as having orientation X$:. Dimensions Xl

and XO of a 2-dimensional torus will often be referred

to as X and Y, respectively.

3 Algorithm *-Channels.

In this Section, a fully-adaptive, minimal, deadlock-free,

worm-hole routing algorithm for the n-dimensional k-

torus will be presented. This routing algorithm requires

5 virtual channels per bidirectional link for its imple-

ment ation 1, a number that does not depend on the size

or dimension of the torus, and allows each message to

choose adapt ively, step by step, among all the minimal

paths that take it to its destination. No minimal path

is discarded in order to obtain freedom from deadlock.

This algorithm will be referred to as *-Channels. A sim-

plified routing node model is depicted in Figure 1 for the

2-dimensional torus.

The central idea in *-Channels is simple. Figure 1

shows that there are basically two types of virtual chan-

nels, as will be explained below: star channels, and

non-star channels. Messages will move through the star

channels as when doing dimension-order oblivious rout-

ing [DS87]. The non-star channels will be used when

taking any of the transitions that would not be allowed

by the dimension-order routing algorithm, thus obtain-

ing full adaptivity while preserving freedom from dead-

lock. A more detailed description of the algorithm fol-

lows.

Consider the directed link:

((tn-l,..., za,..., zo), (zn_l,..., (z~+l)mod k,..., zo)).

This link will have three virtual channels associated

with it:

● c!t,+, O,(zt_l,...,(z, +l)modk,co)~co)~

o c!
a,+,l,(sti-l,..., ($,+l)modk,zo)~ zo)~ and

c Ci,+,(zn-l,..., (z,+l)modk,,ro) ro).

Analogously, link:

((Zn_l,..., ~i,..., ~o), (~n-l,..., (~~-l)mod k,..., ~o~l)

1In fact, only 3 virtual channels are needed for each bidirec-

tional link associated with the most significant of the dimensions
of the torus network.

will have three virtual channels associated:

● c*a,-, O,(zn_l,...,(zl) modk,k,ao)]ao)]

● c*a,–,l,(cn_l,..., (cl)modk,k, ,c.)~ and

● Ci, -,(zn_l,,..,(z, -l)modk.,...,Oo).

Channels:

● ct,+,o,(z~–l,...,(~t+l)mod~,~o),~o)’

● C*t,+,l,(zm_,,..., (~,+l)modk,co)Jco)J

● c; – o (Cn l,..., (ol)modk, k,~o);~o); and
,,, -

● c!g,–,l,(on_l,..., (ol)modk,k,co),co)

will be referred to as star channels.

In both cases, the star channels will be used as when

doing dimension-order routing [DS87]: messages will

move through star channels with prefix i, +, Owhile cor-

recting dimension Xi following orientation X,+ before

taking a wrap-around link along dimension Xi. After

taking a wrap-around along dimension Xi following ori-

ent ation X$+, messages will move through star channels

with prefix i, +, 1 when correcting dimension Xi.

Now, the routing function 7? : VirtualChannels x
Nodes -+ 7(VirtualChannels) will be described, where

T(VirtualChannels) is the powerset of the set of Virtu-

alChannels. It is supposed that each node p has an in-
jection channel iP where p injects the new messages into

the network. Whenever a message arrives at a channel

incident with its destination node, it is delivered and

taken out of the network.

The routing function. 2

7? (c.,!/) =

c*t,+, o,(zn-l,.. .,zt+l, zz+l, zl-l ,.. .,$0)
ifzj=yj Vj=n–l,i+

z~#yiandzi#k– land

the message has’~ot taken

a wrap-around along

dimension Xi yet and

dimension Xi ~hould be corrected

following X:

%+>1, (%-1, Z*+l. O, C,-l,..., ZO)

ifzj=Yj Vj=n–l,i+l and

xi#yiandxi=k– land

dimension Xi should be corrected

following XT

c:
$>+>l>(z n—l, . ..>c. +l ,~t+l, c, —1, ...> Zo)

ifxj=yj V~=n–l,i+l and

xi # yi and the message has already

taken a wrap-around

along dimension Xi and

dimension Xi should be corrected

following X~

%,+,(x:-l, (“. . ..z3+I. cJ+l)modk, z3_ I, ..., co)

If X.j # Yj

and dimension Xj should be corrected

following Xj+; j 6 {n – 1, . . . ,0}

where c= is a virtual channel incident to node x

(xn_,,..., Zo), and y = (y~_l, ..., yo). In the definition

above, only the equations for correcting each dimension

following the “ +“ orientation have been described.

Therefore, a message will be allowed to correct any

of the dimensions that need correction through non-star

channels. A message m will be allowed to enter a star

channel corresponding to dimension Xi only if Xi is the

most significant dimension the message needs to correct,

and only if t he star channel corresponds to the message’s

having taken a wrap-around along that dimension or

not, as explained above.

Consequently, the resulting worm-hole routing algo-

rithm is fully-adaptive minimal. Moreover, assuming

that virtual channels are assigned fahly, and that mes-

sages are of finite but arbitrary length, this routing al-
gorithm is free of deadlock. Star channels play the most

import ant role in proving this.

The following lemma has been proven in [GPFS91].

2In fact, ‘R (cZ, y) is the set of all the virtual channels above

whose corresponding condition on the right hand size is tree.

Lemma 3.1 The routing algorithm that results from

routing function R is free of deadlock.

l?kom Lemma 3.1 and 7? , it follows that:

Theorem 3.2 The *-Channels algorithm yields a

worm-hole routing technique for any n-dimensional

torus. The technique is fully-adaptive, minimal, free

of deadlock and livelock in a deterministic sense, and

can be implemented using 5 virtual channels per bidi-

rectional physical link in all but one of the dimensions

whew only 3 channels sufice. Thus, the total number

of virtual channels per node is I()(n – 1) + 6.

In fact, the above presentation yields an algorithm

with 6 virtual channels per physical link. How-

ever, only 5 virtual channels per bidirectional link

are necessarv. This is so because the star channels

c?a,+,l, (cn—l,...,~,,,, CO) with za > [k/2J are never used,

because paths are minimal, and so, each message trav-

els at most Ik/2 I steps along each dimension, Channels

q+,l,(zn-, ,,~,,z,,~,,CO)-with Z; > lk/2j would be used by

messages that had taken a wrap-around along dimension

Xi and orientation X$, and moved at least [k/2j – 1

steps along X%+ after the wrap-around. So, entering

such a channel would involve traveling more than lk/2J

steps along dimension Xi.

Analogously, channels c*
a,-,l,(zn- l,...)zi, co),co)

with xi <

[k/2J are never used.

So, only 5 virtual channel per bidirectional link
are needed, because channels c~,+,o,(zn- 1,...,o,cO),cO)and

*,_,O1(Z~_l ,,,,~_l CO)are never used. Furthermore, di-e!

menslon Xfi- 1, tke’ most significant one, does not need

non-star channels. So, each bidirectional link corre-

sponding to dimension X~_ 1 needs only 3 virtual chan-

nels.

As a result of this, the algorithm above instantiated to

a 2-dimensional torus needs 3 virtual channels for each

bidirectional link associated with dimension X, and 5

virtual channels for each bidirectional link associated

with dimension Y.

The above theorem was presented in the context of

a worm-hole model. In this model, messages serviced

by the network are of unknown size. Therefore, the

design of the routing node cannot be based on the as-

sumption that messages will be completely stored in a

node. This fact is because the model does not assume
a known bound for the message size, and also because

the required storage could become prohibitively large.

In case a packet implementation is desired, *-Channels

also yields the following important and immediate re-

sult :

Theorem 3.3 The *-Channels aigorithm yields a
packet routing technique for any n-dimensional torus.

The technique is fully-adaptive, minimal, free of dead-

lock and livelock in a deterministic sense, and can be

implemented using 5 buffers, in each node, per- bidi-

rectional physical link in all but one of the dimensions

where only 3 buffers per link sufice. Thus, the total

number of buffers per node is 10(n – 1) + 6. Further-

more, the packet routing technique does not wquire any

central queue mechanism for ensum”ng the above proper-

ties.

As no central queue is mandatory, *-Channels can

be used for combined routing, i.e., both short fixed-size

packets, and long messages of unknown size are han-

dled by the same network and routing resources. While

this type of combined routing can be naturally han-

dled in multistage adaptive networks such as the multi-

butterflies [KU91], fully-adaptive combined routing re-

mained as a difficult goal for toroidal networks before

*-Channels was discovered. Combined routing is accom-

plished in *-Channels by a” partial” virtual cut-through

implement ation, i.e. the storage of long messages would

span more than one routing node while short messages

may be buffered completely in one node. Practical stud-

ies are being carried out to experimentally determine

the performance of this combined routing, and the po-

tentizd improvements offered by a central queuing mech-

anism for enhanced routing of the fixed-size packets.

4 Node models and simulations.

In this Section, a comparison of four different routing

algorithms for the 2-dimensional torus network will be

presented. The four algorithms studied in this Sec-

tion are *-Channels (see Section 3), &Classes [FGPS91],

Linder-Harden’s [LH91], and Oblivious [DS87]. The first
three algorithms are fully-adaptive minimal, whereas

the last one is oblivious and non-minimal. These al-

gorithms require 16, 32, 36, and 8 virtual channels per

node, respectively, for their deadlock-free implement

tion. The comparison is carried out by equalizing the

number of virtual channels used by the different routing
techniques. This task ia accomplished by adding lanes

7

to the algorithms originally requiring fewer virtual chan-

nels per physical link. In the scope of this paper, a lane

in a physical link is simply a virtual channel that plays

an identical role to one of the original virtual channels

associated wit h the same link [Da190]. Lanes are known

to play a central role in enhancing the throughput of

oblivious routing worm-hole algorithms [Da190], Thus,

more than one message can be simultaneously using the

same virtual channel by occupying different lanes asso-

ciated with the virtual channel. For example, in order to

compare Oblivious with 4-Classes, 6 lanes will be added

per physical link, thus matching the 32 virtual channels

of d-Classes. Furthermore, notice that lanes are added

in a way that crossbars grow with the total number of

inputs,

The analysis of algorithms is carried out in two direc-

tions. First, routing node models are proposed for each

technique. Second, simulations on their performance

are shown for a network of 961 nodes.

4.1 Node models.

For some of the algorithms being compared, a parti-

tion of all of the buffers can be found such that the

connections that the routing function performs are only

between buffers that belong to the same set. Then,

each set requires a crossbar that is independent of the

others (see, for example, the node model of 4-Classes

and that of Linder-Harden’s algorithm). It is assumed

that each crossbar can set one new connection from its

inputs to its outputs per cycle [KS91], and this is exe-

cuted independently for each of the other crossbars in

the same node. Therefore, the more independent cross-

bars each node has, the more parallelism within each

switch is achieved. Oblivious is allowed to make all pos-

sible connections (depending on availability of output

buffer space) in its crossbar in each routing cycle, be-

cause this crossbar is oblivious, and therefore simpler

than the others.

is drawn as a box in the middle of Figure 1. This is

a mechanism to connect input frames to output frames

adaptively which is functionally similar to a crossbar

for oblivious routing, except that more than one useful

output buffer, if available, may be used for potential

progressing of a message toward its destination. An

analogous input-to-output frame connectivity is used in

other routers such as the Chaos [BS91].

Lanes are added to the virtual channels, as explained

above. Therefore, each node will have an adaptive 17 x

17 crossbar. The size of all of these buffers depends on

whether *-Channels is intended to work for worm-hole

or for packets of fixed and small size. In the latter,
the size of the buffers will be identical to the packet

size, typically 150-300 bits. The inputs to the adaptive

crossbar and physical channel arbitration are handled

with fairness to avoid st arvat ion.

4.1.2 Algorithm 4-Classes.

This algorithm requires four virtual networks, each of

which is split into two levels. Therefore, there are eight

levels. Virtual channels corresponding to one level are

independent of those of other levels. Thus, 8 adap-

tive 3 x 3-crossbars are required, Figure 2 shows the

node model for this algorithm. 2 input buffers, 2 out-

put buffers and a 3 x 3-crossbar for each level, add up to

16 input buffers, 16 output buffers and 8 crossbars per

node. Multiplexer connect the injection buffer to the 8

crossbars and the 8 crossbars to the delivery buffer.

4.1.3 Linder-Harden’s Algorithm.

Figure 3 shows the node model for this algorithm. Each

node has 36 buffers and 6 adaptive 4 x 4 crossbars,

assigned as follows: 1 crossbar, 3 input buffers and 3

output buffers per independent level. Two multiplex-

er connect the injection buffer to the crossbars and the

crossbars to the delivery buffer.

4.1.1 Algorithm *-Channels.

4.1.4 Algorithm Oblivious.

In Figure 1~ a node model for *-Channels is presented.

Only 8 input and 8 output buffers per node are needed.

The node also has an injection buffer and a delivery

buffer, thus making a total of 9 the number of inputs

and outputs of the adaptive crossbar, because adaptive

connectivity between all of the inputs and all of the

outputs of a node is required. This adaptive crossbar

For this routing algorithm, the set of buffers cannot

be split into independent classes. Therefore, the node

model has a single crossbar (see Figure 4). Then, eight

buffers and one 5 x 5-crossbar [DS86] are needed. 12

input and 12 output buffers are added as lanes to the

virtual channels, as mentioned above. Adding buffers

8

to implement lanes gives this algorithm some degree of

adaptivity, since messages can take different lanes de-

pending on traffic congestion.

4.2 Simulation results.

Each routing algorithm was simulated according to the

high-level node models sketched above. Several continu-

ous injection simulations were tried. These experiments

involved two different message sizes, namely worms of

15 and 31 flits, and two different traffic patterns: ran--

dom traffic and bit-reversal traffic, on a 2-dimensional

torus with 961 nodes. Under bit-reversal traffic, node

((zP. -. zo), (YP . . VO)) sends all of its messages to node

((Ye... Y?), (ZO . . . zP)), where P = [log2(k)] [DA90].

Figures 5, 6, and 7 show the mean latency as a func-

tion of the achieved throughput, for the four routing

algorithms and the different traffic patterns and worm

lengths. The results corresponding to bit-reversal trafiic

for 31-flit worms are similar to those for 15-flit worms.

From the experimental performance study, several

conclusions can be drawn. First, *-Channels showed

better performance than Oblivious for all of the commu-

nication patterns and at all of the applied loads tried.

This comparison is “fair” because Oblivious was allowed

to make all possible connections in its oblivious crossbar

in each routing cycle, while in the adaptive crossbar of

*-Channels only one connection per cycle was allowed.

Furthermore, the number of inputs and outputs to their

crossbars was equalized.

It is important to remark that *-Channels outper-

formed Oblivious even for random traffic, and did so

with a large performance gap. This gap is not com-

monly encountered when comparing adaptive and obliv-

ious packet-switching routers [BS91] ,[FLBS91],[KS91].

This observation holds true in spite of increasing the

number of extra lanes in the oblivious router to yield a

total of 32 buffers per node,

While the experimental results show that *-Channels

also outperformed the other two rout ers, this compari-

son would be “unfair”. The reason is that even though

all routers have been equalized with respect to the num-

ber of virtual channels, the resulting adaptive crossbars

have different sizes. Thus, Lander-Harden’s algorithm

is based on a 4 x 4 adaptive crossbar, and 4-Classes
on a 3 x 3 crossbar, while *-Channels uses an adaptive
crossbar connecting all inputs to all outputs.

I OUTPUT
BUFFER:

Figure 1: Node Model for Algorithm *-Channels.

On the other hand, J-Classes outperforms Linder-

Harden’s and the comparison is “fair” because the size

of the adaptive crossbar in the former is smaller than in

the latter. The result of this comparison is consistent for

all message sizes tried, all patterns of communication,

and all applied loads.

References

[BCC+-88]

[BS91]

[CEDK91]

S. Borkar, R. Cohn, G. Cox, S. Gleason,

T. Gross, H.T. Kung, et al. iWarp: an inte-

grated solution to high-speed parallel com-

puting. In Proceedings of SuperComputing

88. ACM, 1988.

K. Bolding and L. Snyder, Mesh and torus

chaotic routing, UW CS91-04-04, Univer-

sit y of Washington, 1991. To appear in the

MIT/Brown Advanced Research in VLSI

and Parallel Systems Conference, March

1992.

F. Chong, E. Egozy, A. DeHon, and

T. Knight. Multipath fault tolerance in mul-

tistage interconnection networks. Transit
note #48, MIT, June 1991.

r —..—-—
C&l#ety

‘7 7

Figure 2: Node Model for Algorithm 4-Classes.
,——--

“—”” -1

I

Dellvery
Buffer

Y

ml

I

I

17 I

I Injection
B utter

I

Figure 3: Node Model for Linder-Harden)s Algorithm.

Figure 4: Node Model for Algorithm Oblivious.

le@.. I cnlwi.ms

I& G.. I
14C .

I
/ ~4-cla5se,

1: c ..
/

I -~ /
10s L,r,d,,-Harden,s .. “-chn”ek

/ .

Figure 5: Results for Random Routing with worms of

length 15.

10

L,nd,r-IiUdeD ‘S

/

Random, +31

\

J 4-clas6es

/ ,’

0’ *.chr.. m+
Obb? >..s

/

--

‘Th,.. ghr.:

Figure 6: Results for Random Routing with worms of

length 31.

L@”g Blt-rtov.m .1, k.-15

400. I
I

3oG.-

Linder-Iimden,,

~[“d

&classes

..—-..--—-----~””””’ ..ch..”el.

Figure 7: Results for Bit-Reversal Routing with worms

of length 15.

[CG92a]

[CG92b]

[DA90]

[Da190]

[DS86]

[DS87]

[Dua91]

[FGPS91]

[FLBS91]

[GPFS91]

[Hi185]

R. Cypher and L. Gravano. Adaptive

deadlock-free packet routing in torus net-

works wit h minimal storage. RJ:8571

(77350), IBM Almaden Research Center,

January 1992. To be presented in ICPP ’92.

R. Cypher and L. Gravano. Requirements

for deadlock-free, adaptive packet routing.

Technical report, IBM Almaden Research

Center, February 1992. To be presented in

PODC ’92.

W. J. Dally and H. Aoki. Adaptive Routing

using Virtual Channels. Technical report,

MIT, 1990.

W. J. Dally. Virtual-Channel Flow Control.

In The 17th Annual International Sympo-

sium on Computer Architecture, May 1990.

W. J. Dally and C. L. Seitz. The Torus

Routing Chip. Distributed Computing, pages

187-196, 1986.

W. Dally and C. Seitz. Deadlock-free mes-

sage routing in multiprocessor interconnec-

tion networks. IEEE Transactions on Com-

puters, 36:547-553, May 1987.

J. Duato. Deadlock-free adaptive routing

algorithms for multicomputers: Evaluation

of a new algorithm. In Proceedings of the

3’d IEEE Symposium on Parallel and Dis-

tributed Processing. IEEE, December 1991.

S. A. Felperin, L. Gravano, G. D. Pifarr6,

and J. L. C. Sanz. Fully-adaptive routing:

Packet switching performance and worm-

hole algorithms. In Supercomputz’ng, 1991.

S.A. Felperin, H. Laffitte, G. Buranits, and

J .L.C. Sanz. Deadlock-free minimal packet

routing in the torus network. TR:91-22,

IBM Argentina, CRAAG, 1991.

L. Gravano, G.D. Pifarr6, S. A. Felperin,

and J .L.C. Sanz. Adaptive deadlock-free

worm-hole routing wit h all minimal paths.

TR:91-21, IBM Argentina, CRAAG, August

1991.

D. Hillis. The Connection Machine. The
MIT Press, 1985.

11

[KS90]

[KS91]

[KU91]

[Lei90]

[LH91]

[LLK+91]

S. Konstantinidou and L. Snyder. The

Chaos router: A practical application of ran-

domization in network routing. In i?nd. An-
nual ACM SPAA, pages 21–30, 1990.

S. Konstantinidou and L. Snyder. Chaos

Router: Architecture and performance. In

18th International Symposium on Computer

Architecture, pages 212-221. IEEE, May

1991.

S. Konstantinidou and E. Upfal. Experimen-

tal comparison of multistage interconnection

networks. RJ :8451 (76459), IBM Almaden

Research Center, November 1991.

T. Leighton. Average Csse Analysis of

Greedy Routing Algorithms on Arrays. In

SPAA, 1990.

D.H. Linder and J .C. Harden. An Adap-

tive and Fault Tolerant Worrnhole Routing

Strategy for k-ary n-cubes. IEEE Trans-

actions on Computers, 40(1):2–12, January

1991.

D. Lenoski, J. Laudon, Garachorloo K.,

A. Gupta, W. Weber, and J. Hennessy.

Overview and status of the dash mul-

tiprocessor. In International Sympostum

on Shared Memory Multiprocessing. Tokyo,

Japan, 1991.

[LM89] T. Leighton and B. Maggs. Expanders might

be practical: Fast algorithms for routing

around faults on multibutterflies. In IEEE,

editor, 30th Annual Symposium on Founda-

tions of Computer Science, pages 384-389,

October 1989.

[NS87] J .Y. Ngai and C.L. Seitz. A framework for

adaptive routing. 5246: TR:87, Computer

Science Department, California Institute of

Technology, 1987.

[PGFS91] G.D. Pifarr6, L. Gravano, S.A. Felperin,

and J .L.C. Sanz. Fully-Adaptive Minimal

Deadlock-Free Packet Routing in Hyper-

cubes, Meshes, and Other Networks. In
Proceedings of the 3’d Annual ACM Sympo-

stum on Parallel Algorithms and Architec-

tures, 1991.

[Ran85] A.G. Ranade. How to emulate shared mem-

ory. In Foundations of Computer Sciencel

pages 185-194, 1985.

[RBJ88]

[RU91]

[Upf89]

[Va188]

A.G. Ranade, S.N. Bhat, and S.L. Johnson.

The Fluent Abstract Machine. In J. Allen

and F.T. Leighton, editors, Fifth MIT con-

ference on advanced research in VLSI, pages

71-93. The MIT press, March 1988.

P. Raghavan and E. Upfal. A theory

of worrnhole routing in parallel computers.

Technical report, IBM Research, December

1991.

E. Upfal. An O(log IV) deterministic packet

routing scheme. In 21St Annual ACM.
SIGACT Symposium on Theory of Comput-

ing, May 1989.

L.G. Valiant. General purpose parallel ar-

chitectures. In J. van Leeuwen, editor,

Handbook of Theoretical Computer Science.

North-Holland, 1988.

12

