
Requirements for Deadlock-Free, Adaptive Packet Routing

Robert Cypher*

*IBM Almaden Research Center

650 Harry Road

San Jose, CA 95120

Abstract

This paper studies the problem of deadlock-free packet

routing in parallel and distributed architectures. We

present three main results. First, we show that the

standard technique of ordering the queues so that ev-

ery packet always has the possibility of moving to a

higher ordered queue is not necessary for deadlock-

freedom. Second, we show that every deadlock-free,

adaptive packet routing algorithm can be restricted, by

limiting the adaptivity available, to obtain an oblivious

algorithm which is also deadlock-free. Third, we show

that any packet routing algorithm for a cycle or torus

network which is free of deadlock and which uses only

minimal length paths must require at least three queues

in some node. This matches the known upper bound of

three queues per node for deadlock-free, minimal packet

routing on cycle and torus networks.

1 Introduction

This paper studies the problem of deadlock-free packet

routing in parallel and distributed architectures. A wide

range of packet routing algorithms with differing prop-

erties and costs have been proposed [1, 2, 3, 4, 5, 6, 8,

9, 10, 12, 13, 14, 15, 16, 17, 19, 20]. In this paper we

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, tha ACM copyright notice and the

title of the publication and its data appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otharwisa, or to rapublish, requires a fee
and/or specific permission.

PoDC ‘92-8192 /B.C.

01992 ACM 0-89791 -496- 11921000810025 . ..$1.50

Luis Gravano*t

tCRAAG

IBM Argentina

Buenos Aires, Argentina

will focus on a particularly simple and important class of

routing algorithms which we will call queue-reservation

algorithms. A queue-reservation algorithm consists of

rules that specify to which queues a packet may move

based solely on the queue currently holding the packet,

the packet’s source node, and the packet’s destination

node. A packet is allowed to move from its current

queue to any other queue at any time, provided that the

other queue is empty and that the move is allowed by the

rout ing algorithm. Queue-reservation algorithms can be

implemented efficiently in hardware as they require only

local information to make routing decisions, they are

inherently asynchronous and therefore do not require a

global clock, and they do not require the creation or

exchange of any special packets containing only control

information. Furthermore, adaptive queue-reservation

algorithms allow packets to avoid congestion, thus per-

mitting high throughput in the network. As a result

of these advantages, queue-reservation algorithms have

been widely studied and implemented.

The primary disadvantage of queue-reservation tech-

niques is that they require that each node contain some

minimum number of queues. Although a great deal of

research has been devoted to the problem of minimiz-

ing the storage requirements of queue-reservation algo-

rithms [2, 4, 5, 6, 8, 10, 12, 15, 17, 18, 19, 20], very

little is known in terms of lower bounds on the storage

which is required by such algorithms. Our goal in this

paper is to characterize the properties which these algo-

rithms must have in order to be free of deadlock and to

use these properties to prove lower bounds on storage

requirements.

One well-known technique for proving freedom from

deadlock’ is to order the queues so that every packet

25

always has the possibility of moving to a higher or-

dered queue [8]. Providing such an ordering of the

queues is the standard technique for proving free-

dom from deadlock and has been used by many re-

searchers [2, 4, 5, 6, 8, 10, 12, 15, 17, 19, 20]. Therefore,

it seems plausible that the existence of such an ordering

of the queues is a necessary condition for freedom from

deadlock. In fact, in the special case of oblivious queue-

reservation algorithms, Toueg and Steiglitz have shown

that the existence of such an ordering of the queues is

necessary for deadlock-freedom [18]. However, in this

paper we will present an adaptive queue-reservation al-

gorithm which is provably free of deadlock and for which

no ordering of the queues can be defined such that every

packet always has the possibility of moving to a higher

ordered queue. Thus, in the case of adaptive routing

the technique of ordering the queues is sufficient but

not necessary for avoiding deadlock.

On the other hand, we will prove that every deadlock-

free, adaptive queue-reservation algorithm can be re-

stricted, by limiting the adaptivity available, to obtain

an oblivious algorithm which is also deadlock-free. As a

result, we will be able to use lower bounds on the storage

requirements of oblivious routing algorithms to obtain

lower bounds on the storage requirements of adaptive

routing algorithms. In particular, we will show that

any adaptive queue-reservation algorithm for a cycle or

torus network which is free of deadlock and which uses

only minimal length paths must require at least three

queues in some node. This matches the known upper

bound of three queues per node for deadlock-free, min-

imal routing on cycle [7] and torus networks [2].

The remainder of this paper is organized as follows. Def-

initions and a formal description of the routing model

are given in Section 2. Section 3 presents an exam-

ple of a deadlock-free, adaptive routing algorithm in

which it is impossible to order the queues so that ev-

ery packet always haa the possibility of moving to a

higher ordered queue. The fact that every deadlock-free,

adaptive queue-reservation algorithm can be restricted

to obtain a deadlock-free, oblivious algorithm is proven

in Section 4. Lower bounds on the storage requirements

for deadlock-free minimal queue-reservation algorithms

are given in Section 5.

2 Preliminaries

We will view a routing network as being an undirected

graph in which the nodes represent processors and the

edges represent communication links. Each node con-

tains a set of queues, one of which will be called an

injection queue, another one of which will be called a de-

livery queue, and the remainder of which will be called

standard queues. Packets can enter the routing network

only by being placed in an empty injection queue in their

source node, and they can be removed from the network

only when they are in the delivery queue of their des-

tination node. We will assume throughout that each

queue can hold exactly one packet and that the number

of queues is finite.

Given the queue in which a packet is currently stored,

and given the packet’s source and destination nodes, a

routing algorithm specifies a set of queues to which the

packet may be moved. More formally, the color of a

packet is the pair (s, d) where s is the packet’s source

node and d is the packet’s destination node. We will say

that a queue has color c if it contains a packet with color

c. A routing algorithm A is a function which associates

a set of queues, called a waiting set, with each possible

queue and color pair (q, c). The waiting set which A

associates with the pair (q, c) will be denoted A(q, c).

Given a routing algorithm A, a queue q is reachable by

a packet p with color c if and only if there exists some

path qo, ql, qk such that qo is the injection queue

in p’s source node, qk = q, and for all i, 1 < i < k,

qi E A(qi-1, c). It is required that the waiting set A(q, c)

be empty if and only if either q is a delivery queue or q

is not reachable by a packet with color c.

All of the queues in a waiting set A(q, c) must either be

in the node which contains q or in neighboring nodes

(that is, nodes that are connected by an edge to the

node containing q). An injection queue is never allowed

to appear in a waiting set, and a delivery queue must

only be reachable by packets destined for the node con-

taining the delivery queue. Furthermore, if qa G A(ql, c)

26

and if either ql is an injection queue or q2 is a delivery

queue, then ql and q2 must be in the same node. Thus

injection and delivery queues are used only for placing

new packets in the network and for removing packets

once they have reached their destination 1.

The routing algorithm operates asynchronously. A

packet with color c may move from a queue ql to any

empty queue q2 G A(ql, c) at any time, and a new packet

with an arbitrary destination maybe placed in an empty

injection queue at any time. Packets may be trans-

mitted in either store-and-forward [15] or virtual cut-

through [11] mode. The only requirement is that when

a packet is moved from one queue to another, it occu-

pies both of the queues for a finite amount of time, and

after a finite amount of time the former queue becomes

empty.

A routing algorithm is oblivious if every waiting set con-

tains at most one queue, and it is adaptive otherwise.

Routing algorithm A is a restriction of routing algo-

rithm B if and only if for every pair (q, c), A(q, c) ~

B(q, c), and for some pair (q, c), A(q, c) # I?(q, c). A

routing algorithm is minimal if every packet is routed

from its source node to its destination node while visit-

ing the minimum number of nodes possible. Note that

the concept of minimality is based on the number of

nodes visited, rather than the number of queues visited.

A configuration is a nonempty set S of queues such that

each queue q in S is either empty or has color c where q is

reachable by a packet with color c. The set of queues S

will be called the critical set of the configuration. Given

a configuration T with critical set S and given any queue

q 6 S, the notation T(q) will denote q’s color in config-
-

uration T (or the value “empty” if it does not contain

a packet). A deadlock configuration for a routing algo-

rithm A is a configuration with a critical set S such that

none of the queues in S is a delivery queue, none of the

queues in S is empty, and for each queue q in S, q has

color c where A(q, c) ~ S. A configuration is rout able if

and only if it is possible to start with an empty network

and to route packets so as to obtain the configuration.

1lt ,gh~tid & noted that the injection and delivery queues are

introduced only to simplify the description of the model, and that

they need not be physically present in an actual routing network.

A routing algorithm is deadlock-free if and only if it has

no rout able deadlock configuration. It is straightfor-

ward to +erify that this definition of deadlock-freedom

does in fact correspond to the impossibility of obtain-

ing deadlock when using the given routing algorithm.

Finally, given any two configurations T’ and T“ with

critical sets S’ and S“, respectively, T’”@ T)’ will de-

note the configuration T with critical set S = S U S1l

in which for each queue q E S’, T(q) = T’(q), and for

each queue q G S{l \ S, T(q) = T“(q). Thus T1 @ T’l is

obtained by taking configuration T1 and adding to it all

of those queues in T1l which are not also in T’.

3 Deadlock-Freedom Wit bout

Ordering Queues

In this section we will show that the standard technique

of ordering the queues so that every packet always has

the possibility of moving to a higher ordered queue is not

necessary for the prevention of deadlock. In particular,

we will give a simple example of an adaptive routing

algorithm which is provably free of deadlock and yet

has no such ordering of the queues.

The example is routing algorithm A shown in Figure 1,

in which each circle represents a queue and each arc rep-

resents a possible move between queues. There are three

injection queues labeled 11, 12 and 13, and three delivery

queues labeled D1, Dz and D3. In addition, there are

six standard queues labeled Xl, X2, X3, Y1, Yz and Y3.

We will consider only three colors of packets, namely Cl,

C2 and C’3, where packets with color C’i, 1< i <3, are

injected in queue Ii and delivered from queue Di. The

label associated with each arc specifies which color pack-

ets are allowed to make the given move between queues.

For example, A(lI, Cl) = {Xl}, A(X1, Cl) = {X2, Yl},

and A(X1, C2) = {X3}. Of course a complete routing

algorithm would provide routes for packets with other

colors and would include an assignment of the queues to

the nodes in a routing network. However, it is straight-

forward to extend the given example by adding addi-

tional queues for the packets with other colors and to

assign the queues to nodes in a routing network without

27

changing the deadlock or queue ordering properties of

the example.

Lemma 3.1 The rozding algorithm A shown in Fig-

ure 1 is free of deadlock.

Proof: Assume for the sake of contradiction that dead-

lock is possible, in which case there must be some

routable deadlock configuration with a nonempty crit-

ical set S. Clearly, the delivery queues cannot appear

in S. Similarly, Y1, Y2 and Y3 cannot appear in S’ be-

cause they are only reachable by packets which are able

to move directly to a delivery queue. Also, note that if

injection queue Ii, 1 < i S 3, is in S, then queue Xi

must also be in S. Therefore, at least one of the queues

Xi must be in S. Because none of the queues Yi is in s,

it follows that if Xl is in S it must have color C2 in the

deadlock configuration, if X2 is in S it must have color

C’l in the deadlock configuration, and if X3 is in S it

must have color C’3 in the deadlock configuration. Note

that X3 must be in S, because otherwise either Xl or X2

must be in S, and X3 E A(X1, 6’2) and X3 G A(X2, Cl).

Because XI E A(X3, C3) and X2 E A(X3, C3), both XI

and X2 must be in S. Therefore, the deadlock configu-

ration must include a C2 packet in Xl and a Cl packet in

X2. However, it is impossible to simultaneously route a

C2 packet to Xl and a Cl packet to X2, so the deadlock

configurate ion is not rout able, which is a cent radict ion.

•1

Lemma 3.2 There is no ordering of the queues shown

in Figure 1 such that every packet always has the possi-

bility of moving to a higher ordered queue.

Proof: Assume for the sake of contradiction that such

an ordering is possible. Because A(X1, C2) = {X3} and

A(X2, Cl) = {X3}, queue X3 must be higher ordered

than both Xl and X2. However, A(X3, C’3) = {Xl, X2},

so either Xl or X2 (or both) must be higher ordered

than X3, which is a contradiction. ❑

Combining the two previous lemmas yields the following

theorem.

Theorem 3.3 There exists an adaptive routing algo-

rithm which is free of deadlock, and for which there is

no ordering of the queues such that every packet always

has the possibility of moving to a higher ordered queue.

4 Restrictions of Adaptive

Rout ing Algorithms

In this section we will show that every deadlock-free,

adaptive packet routing algorithm can be restricted to

obtain an oblivious algorithm which is also deadlock-

free. The proof will depend on the following lemma.

Lemma 4.1 Let A be any deadlock-free, adaptive rout-

ing algorithm, let ql be any queue, and let c1 be any

color such that lA(ql, Cl)l ~ 2. Let q2 be any queue

such that qz G A(ql, cl), and let B be the restriction of

A obtained by removing q2 from the waiting set associ-

ated with (ql, cl). If B is subject to deadlock, then there

must exist some routable deadlock configuration for B

in which queue ql contains a packet with color c1.

Proof: Because B is subject to deadlock, there must

exist some configuration T which is a deadlock config-

uration for B and which is routable by B. Because B

is a restriction of A, itfollows that configuration T is

also routable by A. However, A is deadlock-free, so T

must not be a deadlock configuration for A. Therefore,

queue ql must have color c1 in configuration T. ❑

Theorem 4.2 Given any adaptive, deadlock-free rout-

ing algorithm A, there exists an obiivious, deadlock-free

routing algorithm B which is a restriction of A.

Proof Sketch: Assume for the sake of contradiction

that the claim is false. Then there must exist some

adaptive, deadlock-free routing algorithm A such that

every routing algorithm A’ which is a restriction of A

is subject to deadlock. Let A be such a deadlock-free

routing algorithm, let ql be any queue, and let c1 be any

color such that [A(ql, cl) I > 2. Let q2 and q3 be any dis-

tinct queues such that qz 6 A(ql, cl) and qs G A(ql, CI),

let A’ be the restriction of A obtained by removing q2

28

from the waiting set associated with (ql, cl), and let A“

be the restriction of A obtained by removing q3 from

the waiting set associated with (ql, cl). It follows from

Lemma 4.1 that there exists a configuration T’ (sim-

ilarly, T“) which is a routable deadlock configuration

for A’ (similarly, A“) and in which queue ql contains

a packet with color c1. Let T = T’ @ T“ and let S be

the critical set of T. Let R be the configuration which

also has critical set S but in which all of the queues are

empty. Note that the following properties hold:

Property 1: Configuration T is a deadlock configura-

tion for A.

Property 2: Configuration R is a routable configura-

tion for A.

Property 3: The set S is the critical set of both con-

figuration T and configuration R.

Property 4: Every nonempty queue q in R has a color

c such that A(q, c) ~ S.

We will define an algorithm for transforming R and T

while maintaining Properties 1 through 4 listed above.

The algorithm will repeatedly add packets to empty

queues in R until none of the queues in R is empty.

At this point R will be a routable deadlock configura-

tion, which will be the desired contradiction. The algo-

rithm for transforming R and T consists of repeatedly

performing the following subroutine until R contains no

empty queues.

First, select an arbitrary queue q which is empty in R.

Let c = T(q). Because queue q is reachable by some

packet p with color c (from the definition of a configu-

ration), there must exist a simple path from p’s injection

queue to queue q. Define the configuration P in which

the critical set consists of all of those queues that appear

in this simple path, and in which all of the queues in the

critical set contain a packet with color c. Transform R

to become the configuration obtained by adding P and

R (that is, perform the assignment R + P 6 R), trans-

form T to become the configuration obtained by adding

P and T (that is, perform the assignment ‘T+ P @ T),

and let S be the critical set of the transformed configu-

rations R and T. Note that at this point R is routable,

because it is possible to first route packets with the de-

sired colors to all of the nonempty queues in R which

are not in P and then fill the queues in P with packets

with color c. Also, note that at this point T may not

be a deadlock configuration, because it is possible that

some of the packets in P have waiting sets that include

queues which are not in S.

Next, select an arbitrary queue q’ in the simple path

described above such that A(q’, c) ~ S (if such a queue

exists). Let q“ be the successor of q’ in the simple path

described above (note that q“ must exist if q’ exists,

because A(q, c) ~ S so q’ # q). Let A’ be the restric-

tion of A obtained by removing qtt from the waiting

set associated with (q’, c). It follows from Lemma 4.1

that there exists a configuration D which is a routable

deadlock configuration for A’ and in which queue q’ con-

tains a packet with color c. Let D’ be the configuration

with the same critical set aa D but in which all of the

queues are empty. Transform R to become the config-

uration obtained by adding R and D’ (that is, perform

the assignment R + R @ D’), transformT to become

the configuration obtained by adding T and D (that

is, perform the assignment T + T @ D), and let S be

the critical set of the transformed configurations R and

T. Repeat this procedure of selecting a queue q’ in the

simple path such that A(q’, c) ~ S and transforming R,

T and S until no such queue q’ exists. When no such

queue q’ exists, return from the subroutine.

Note that upon returning from the subroutine Proper-

ties 1 through 4 above must hold. Also, note that any

queue in R which was nonempty before calling the sub-

routine will again be nonempty after calling the subrou-

tine. Finally, note that following the call to the subrou-

tine, R contains at least one additional nonempty queue.

Because the number of queues is finite, this procedure

must terminate, at which point R is both routable by A

and a deadlock configuration for A, which is a contra-

diction. ❑

29

5 Minimal Routing in Cycle and

Torus Networks

In this section we will prove lower bounds on the number

of queues per node that are required for deadlock-free,

minimal routing in cycle and torus networks. Our ap-

proach will be to first prove a lower bound on the queue

requirements of deadlock-free, minimal, oblivious rout-

ing algorithms for cycle networks, We will then use this

lower bound, along with Theorem 4.2 and the fact that

a torus network can be decomposed into disjoint cycles,

to obtain a lower bound on the queue requirements of

deadlock-free, minimal routing algorithms for both cy-

cle and torus networks.

Lemma 5.1 Let routing algorithm A be any deadlock-

free, minimal, oblivious routing algorithm for a cycle

network with n nodes. The cycle network must contain

at least 3n — 12 standard queues.

Proofi Because A is deadlock-free and oblivious, it fol-

lows that there exists an ordering of the queues such

that every packet visits the queues in ascending or-

der [18]. Let k =- in/2J – 1 (so either n = 2k + 2

or n = 2k + 3). We will say that a packet is routed

in the clockwise direction if it visits queues in nodes

of the form i, (i + 1) mod n, (i + 2) mod n, . . .,j, and

in the counterclockwise direction otherwise. Note that

for each node i, O < i < n, algorithm A routes pack-

ets from node i to node (i + k) mod n in the clockwise

direction. Therefore, for each node i, O s i < n,

there must exist an ascending sequence of standard

queues Sj,~ , Sj,(~+l)modn , . . . , %,(i+k)modn where each

queue of the form si,j is located in node j (for exam-

ple, let Si,j be the highest ordered standard queue in

node j which is visited by a packet with source node

i and destination node (i + k) mod n). For each i,

0 < i < n, let Si = .%,i , .$~,ti+l~~~d~ , %,(i+k)rnodn

denote the ascending sequence of standard queues be-

ginning in node i. Let h = n – 1 – k, note that

sh = sh,h , sh,h+~ , sh,n-~, and nOte that SO and

sh are disjoint.

We will say that a sequence of queues is a clockwise-

increasing (similarly, count erclockwise-increasing) S*

quence if when the queues are visited in ascending order,

the nodes containing the queues are visited in clock-

wise (counterclockwise) order. We will show that there

must exist at most three mutually disjoint clockwise-

increasing sequences of queues, the total length of which

is at least n + k. There are two cases:

Case 1: +There exists a clockwise-increasing sequence

of standard queues X = Z. , Z1 , . . . , Zn-l such

that for each i, O ~ i < n, xi is located in node i.

In this case, we have two sub cases:

Case la: There exists an a, O ~ a ~ n – 1,

such that Sa and X are disjoint. In this

case, the two disjoint clockwise-increasing se-

quences are S. and X, and their total length

isn+k+l.

Case lb: For each i, O ~ i ~ n – 1, Si and X

intersect. In this case, let a be the largest

value of i, O ~ i ~ n— 1, such that there exists

a value i’ > i where Si,il = XiJ. Let a’ be any

value such that at > a and S., at = x.t. Let

b = (a+ 1) mod n and let b’ be any value such

that sh,ht = xhl. Note that a’ > a > k > b’.

Let Y be the sequence

sh,h,... , sh,hl-1 , xbl , . . . , XOJ ,

Sa,a, +l , . . . , Sa,(a+k)modn.

The sequence Y is clockwise-increasing

has length n + k.

Case 2: There does not exist such a sequence X

this case, we have two sub cases:

and

In

Case 2a: There exists an a, O < a s h, such

that S. and SO are disjoint and such that

S= and S~ are disjoint. In this case, the

three disjoint clockwise-increasing sequences

are So, Sa, and sh, and their total length is

3k+3>n+k.

Case 2b: For each i, O s i ~ h, either S’i and

So intersect or si and sh intersect, but not

both. In this case, let a be the largest value

30

of i in the range O ~ i ~ h such that S’i and

So intersect. Let a’ be any value such that

sa, al = So,al. Let b = a + 1 and let b! be any

ValUe such that sb,bl = sh,bl (nOte that such

a b! must exist because of the definition of a

and the fact that sh does not intersect So).

Let Y be the sequence

Sl),l), ..., so,aJ-l , Sa,a! , . . . , sa, a+k

and let Z be the sequence

sb, b,..., sb,bl , sh,b,+l , . . . , sh,n-l.

Note that Y and Z are clockwise-increasing

sequences and that they must be disjoint

(because otherwise there would exist a

clockwise-increasing sequence X spanning all

of the nodes). Also, note that the length of

Yisa+k+l andthelength of Zisn–a–1,

so their total length is n + k.

Thus, in any case there must exist at most three mu-

t ually disjoint clockwise-increasing sequences of queues,

the total length of which is at least n + k. An anal-

ogous argument can be used to show that there must

exist at most three mutually disjoint counterclockwise-

increasing sequences of queues, the total length of which

is at least n+k. Because a clockwise-increasing sequence

of queues and a counterclockwise-increasing sequence of

queues can intersect in at most one queue, it follows that

the entire collection of clockwise-increasing sequences

and counterclockwise-increasing sequences contains at

least (n+k)+(n+k) -(3x3)=2n+2k-9 ~3n–12

distinct queues. ❑

Theorem 5.2

Let routing algorithm A be any deadlock-free, minimal

routing algorithm for a cycle network with 13 or more

nodes or for a torus network in which at least one of

the dimensions is of length 13 or greater. The cycle or

torus network must contain at least one node which has

three or more standard queues.

Proofi The claim for a cycle network follows ‘immedi-

ately from Theorem 4.2 and Lemma 5.1. The claim for

a torus network follows from Theorem 4.2, Lemma 5.1,

and the observation that a torus can be decomposed

into disjoint cycles such that all minimal length paths

between pairs of nodes within a cycle lie within the cy-

cle. ❑

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Baruch Awerbuch, Shay Kutten, and David Pe-

Ieg. Efficient deadlock-free routing. In Proc. ACM

Symposium on Principles of Distributed Computi-

ng, pages 177–188, 1991.

Robert Cypher and Luis Gravano. Adaptive,

deadlock-free packet routing in torus networks with

minimal storage. Technical Report RJ 8571, IBM

Almaden Research Center, January 1992. Also to

appear in Proc. 1992 Intl. Conf. on Parallel Pro-

cessing.

W. J. Dally and C. Seitz. Deadlock-free mes-

sage routing in multiprocessor interconnection net-

works. IEEE Transactions on Computers, 36:547–

553, May 1987.

Sergio A. Felperin, Hern&n Laffitte, Guillermo Bu-

ranits, and Jorge L.C. Sanz. Deadlock-free minimal

packet routing in the torus network, Technical Re-

port TR:91-22, IBM Argentina, CRAAG, 1991.

B. Gavish, P.M. Merlin, and P.J. Schweitzer. Min-

imal buffer requirements for avoiding store-and-

forward deadlock. Technical Report RC 6672, IBM

T.J. Watson Research Center, August 1977.

Inder S. Gopal. Prevention of store-and-forward

deadlock in computer networks. IEEE Transac-

tions on Communications, 33(12):1258–1264, De-

cember 1985.

Luis Gravano, Gustavo D. Pifarr6, Sergio A.

Felperin, and Jorge L.C. Sanz. Adaptive

deadlock-free worm-hole routing with all minimal

paths. Technical Report TR:91-21, IBM Argentina,

CRAAG, 1991.

31

[8] K.D. Giinther. Prevention of deadlocks in packet-

switched data transport systems. IEEE Transac-

tions on Communications, 29(4), April 1981.

[9] Peter A.J. Hilbers and Johan J. Lukkien. Deadlock-

free message routing in multicomputer networks.

Distributed Computing, 3:178-186, 1989.

[10] C.R. Jesshope, P.R. Miller, and J.T. Yantchev.

High performance communications in processor

networks. In Proc. 16th Intl. Symposium on Com-

puter Architecture, pages 150-157, 1989.

[11] P. Kermani and L. Kleinrock. Virtual Cut-

Through: A new computer communication switch-

ing technique. Computer Networks, 3:267-286,

1979.

[12] S. Konstantinidou. Adaptive, minimal routing in

hypercubes. In Proc. 6th. MIT Conference on Ad-

vanced Research in VLSI, pages 139–153, 1990.

[13] S. Konstantinidou and L. Snyder. The Chaos

router: A practical application of randomization in

network routing. In Proc. 2nd Annual ACM Sym-

posium on Parallel Algorithms and Architectures,

pages 21-30, 1990.

[14] Yishay Mansour and Boaz Patt-Shamir. Greedy

packet scheduling on shortest paths. In Proc. ACM

Symposium on Principles of Distributed Comput-

ing, pages 165–175, 1991.

[15] P.M. Merlin and P.J. Schweitzer. Deadlock avoid-

ance in store-and-forward networks. 1: Store-and-

forward deadlock. IEEE Transactions on Commu-

nications, 28(3):345–354, March 1980.

[16] Yoram Ofek and Moti Young. Principles for high

speed network control: loss-less and deadlock-

freeness, self-routing and a single buffer per link.

In Proc. ACM Symposium on Pra’ncipIes of Dis-

tributed Computing, pages 161-175, 1990.

Symp. on Parallel Algorithms and Architectures,

pages 278-290, 1991.

[18] Sam Toueg and Kenneth Steiglitz. Some complex-

ity results in the design of deadlock-free packet

swit thing networks. SIAM Journal on Computing,

10(4) :702–712, November 1981.

[19] Sam Toueg and Jeffrey D. Unman. Deadlock-free

packet switching networks. SIAM Journal on Com-

puting, 10(3):594-611, August 1981.

[20] J. Yantchev and C.R. Jesshope, Adaptive, low la-

tency, deadlock-free packet routing for networks of

processors. IEE Proc., Pt. E, 136(3):178-186, May

1989.

[17] Gustavo D. Pifarr6, Luis Gravano, Sergio A.

Felperin, and Jorge L.C. Sanz. Fully-adaptive min-

imal deadlock-free packet routing in hypercubes,

meshes, and other networks. In Proc. 3rd ACM

32

A 4 A A

1

/ 2

cfnfk)

1 3 3 2

I Y I
1 3 2

13

0D
3

Figure 1: A deadlock-free, adaptive routing algorithm A for which the technique

of ordering the queues cannot be used to prove freedom from deadlock.

33

