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Abstract

In this paper, two new algorithms for worm-hole
routing in the hypercube are presented !. The hy-
percude algorithm of Section 1 is adaptive, but non-
minimal in the sense that some derouting is permitted.
In Section 2, another deadlock-free adaptive worm-
hole based routing algorithm for the hypercube inter-
connection 1s presented. This algorithm, unlike the
one shown in Section 1, is minimal. Finally, in Sec-
tion 8, some well-known worm-hole algorithms for the
hypercube were evaluated together with the new ones
on a hypercube of 21° nodes. One oblivious algorithm ,
the Dimension-Order, or E-Cube routing algorithm(1]
was tried. In addition, three partially adaptive algo-
rithms were considered: the Hanging algorithm (2, 3],
the Zenith algorithm [3], and the Hanging-Order al-
gorithm [{]. Finally, a fully adaptive minimal algo-
rithm presented independently in /;] and [6] was tried.
This algorithm allows each message to choose adap-
tively among all the shortest paths from its source to
its destination. Only four virtual channels per physi-
cal link are needed to achieve this. This technique will
be referred to as Fully. The results obtained show that
the two new algorithms are good candidates as a choice
for worm-hole routing in the hypercube network.

1 Adaptive and non-minimal routing
algorithm.

In this Section, an adaptive, non-minimal,
deadlock- and livelock- free routing algorithm for the
hypercube will be presented. This algorithm will be
referred to as Non-Minimal Some limited derouting
is allowed at each step of the routing algorithm for ev-
ery message. This non-minimality, though limited, is
aimed both at providing each message with a wealth of
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paths for arriving at its destination, and at breaking
structured communication patterns. One important
feature of this algorithm is that each virtual channel
needs to reach only a constant number of other virtual
channels, independent of the size of the network [7].
This is relevant in the hypercube because of the loga-
rithmic growth of physical links per routing node, and
should be contrasted with the algorithms in [1] for the
hypercube.

Given a pair of nodes s and d, any route built
by this technique for a message going from s to d
has length between n and 2n in an n-dimensional
hypercube. The route of a message will consist of
n phases. Each phase processes one dimension. At
the start of phase i, dimensions » — 1 through i 4+ 1
have already been corrected, and will never be mod-
ified again. When dimension 7 is being processed, a
message m will either have to correct it or not. Re-
gardless of this need, m will be sent first through a
dimension j < i (if 5 is not one of the least significant
dimensionsg, no matter whether this means correcting
dimension j or not. Only after this will the message
be sent through dimension i, if required. j will be cho-
sen within a set of d dimensions, dims(p, i), where p is
the node m is in. In principle, the set of d dimensions
corresponding to a certain phase of the algorithm may
be different for each node of the network, but it must
be fixed in advance. The formal description of the al-
gorithm together with correctness and freedom from
deadlock proofs can be found in [7].

Now, the main problem to solve is how to select for
each node and for each phase the dimensions associ-
ated so as to have something at least similar to the
ezpansion property [8, 9], while keeping the number
of virtual channels associated with each physical link
independent of the size of the network.

Let d = 3. dims(p,1) has to be defined
for each node p and for each dimension i. For
every node p, dims(p,i) = {i - 2,i — 4,i —
6} ifi>6, dims(p,.? = {3,1}, dims(p,4) =
{2,0}, dims(p,i) =0 if 0 <i< 3. So, the algorithm
that results from the definitions above needs at most
4 virtual channels per directed physical link. Each of
these channels has to be connected to at most 4 other
channels. There are 3*~%22 different paths between
any pair of nodes. These paths are not necessarily
virtual-channel-disjoint.



2 Adaptive and minimal routing algo-
rithm.

In this Section, an adaptive, minimal routing al-
gorithm for the hypercube will be presented. This
technique will be referred to as Subcudes. Although
this algorithm has a considerable amount of adaptiv-
ity, it requires only very moderate resources for its
implementation, namely only 2 virtual channels per
physical link.

This algorithm is based mainly upon considering
the hypercube as a hierarchical network in which each
node is a small hypercube. These small hypercubes
will be referred to as subcubes?. FEach subcube will
consist of 2* nodes, for some 0 < k < n. Then, k di-
mensions, 1j,..., 4k, will be chosen such that they will
identify the position of each node within the subcube
it belongs to. Each subcube will be determined by the
value in the remaining n — k dimensions.

The routing functions over this network will be de-
fined as if the hypercube were hung from one of these
subcubes (2, 3]. The path of a message going from one
subcube to another subcube will consist of two hierar-
chical phases. During the first hierarchical phase, the
message will visit the nodes of the hierarchical net-
work by moving downwards, considering the network
as hung from a fixed subcube. During the second hi-
erarchical phase, the message will visit the nodes by
travelling upwards. When k& = 0 the two phase al-
gorithm used above is known to generate severe con-
gestion at node 1...1 (if the network is hung from
node 0...0) for moderate network sizes. If k is differ-
ent from 0, the congestion phenomenon is distributed
to all the nodes of one subcube. Since 2* nodes are
present in this subcube, congestion is less likely to
arise at a single node.

Several routing algorithms can be defined on top of
this routing strategy for routing between any pair of
nodes of the hypercube. These routing algorithms will
differ in the way in which messages will move within
each subcube. As an example of such an algorithm,
each message will be allowed to move within the sub-
cubes only during its first phase. By taking any of the
hierarchical steps of the first phase, the message passes
from one subcube to another, and different routing
strategies can be followed within each subcube, as
pointed out above. The message will have to have
corrected all the dimensions 1y,...1; before starting
the second hierarchical phase. The routing strategy
in each subcube can be chosen independently. Two
possible choices are: routing by correcting dimensions
in order [1], or routing as if each subcube were hung
from one node |2, ﬂ Either of these routing strategies
requires two virtual channels per bidirectional link for
its deadlock-free definition. The complete description
of the algorithm has been presented in [7].

2The idea of defining a hierarchical topology using the hy-
percube has also been used in [10].
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Figure 1: Results for Random Routing with worms of
length 10.

3 Simulations.

In this Section, a variety of algorithms for worm-
hole routing on the hypercube are evaluated together
with the new ones. A simple node model was designed
and adapted for all the algorithms. This allows to
compare the different strategies fairly from an algo-
rithmic point of view. Several simulations for contin-
uous routing were tried on a hypercube of 2!° nodes.
The traffic patterns analyzed include random rout-
ing, In which each node selects a destination randomly
whenever it injects a message, complement, and trans-
pose, in which each node keeps injecting messages to
1ts complement node, or to its transpose node, respec-
tively. The routing node model, the network activity
and the injection model of the simulation have been
discussed in [11].

Figures 1 to 6 show the maximum latency of the
messages as a function of throughput, for the different
traffic patterns described above. Figures 1 to 3 corre-
spond to messages 10 flits long, whereas Figures 4 to
6 are for messages 20 flits long.

Throughput is described as a percentage of Appae =
1/(2b), where b is the worm length (10 or 20 flits, in
this case), as this is a theoretical upper bound for the
maximum throughput achievable.

Non-Minimal performed well for every pattern of
communication, as was expected for its ability to
break structured communication patterns. However,
its performance is worse than the best algorithm for
each communication pattern as it is a non-minimal
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algorithm. Although Non-Minimal requires eight vir-
tual channels per bidirectional link, the moderate con-
nectivity between virtual channels required by this
algorithm may result in a practical node design [7).
Subcubes seems to be a good candidate for a node de-
sign with a small number of virtual channels. Even
for nodes with equal storage capacity, this algorithm
leads to a simpler node model [11}. Subcubes was the
only one among the algorithms requiring only two vir-
tual channels per bidirectional link that could sustain
a throughput of at least 20% of A,z in all the com-
munication patterns that were tried.
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